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Analytic singularities
and geodesic completeness. I (*)

E. IHRIG D. K. SEN

Department of Mathematics, University of Toronto,
Toronto, Canada, MSS lAl

Ann. Inst. Henri Poincaré,

Vol. XXIII, n° 4, 1975,

Section A :

Physique théorique.

ABSTRACT. - The concept of an analytic singularity is defined in General
Relativity. Although there are space-times with non-analytic singularities
it is shown every Uniform Stationary space-time has only analytic singu-
larities. As a result every periodic Uniform Stationary space-time is singu-
larity free.

1. INTRODUCTION

Recently Hawking has proven a series of singularity theorems which
show that singularities occur under very general circumstances in General
Relativity [1] . However these theorems do not exhaust all the physically
interesting models since they assume that the cosmological constant is zero.
In fact the Hawking theorems can be viewed as a generalization of the cir-
cumstances that occur in one of three types of Robertson-Walker metric [2].
The three types are those in which R(t) is not defined for all real t, those
which are singular and R(t) is defined for all t, and those which are non-
singular. These types contain respectively the big bang universes, the steady
state model, and the periodic universes (which can be made locally the same
as any Robertson Walker universe). The question arises whether there are
singularity theorems which generalize the situations in these other types.
In [2] we have given a singularity theorem which generalizes the circum-
stances in the second type of Robertson Walker metric. We will now try to
find some nonsingularity theorems that correspond to the third type.

(*) Supported in part by N. R. C. Canada Operating Grant no. A. 4054.
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350 E. IHRIG AND D. K. SEN

In this third class we have the metrics with a periodic function R(t).
These space-times are periodic as will be defined later, and thus are singular
if and only if a corresponding compact space-time is singular. If the space-
time metric were positive definite then we could immediately see why these
space-times are complete. However there are space-times which are compact
but are incomplete [3]. Thus one problem with singularities in relativity
is that there are singularities which do not correspond to the metric going
bad somewhere. We define the concept of an analytic singularity which will
exclude the bad types of singularities. Then any theorem which can state
that in a certain circumstance every singularity must be analytic will give
us as a corollary a nonsingularity theorem that periodic space-times in
this circumstance are complete. Thus such theorems would start to provide
theorems generalizing the third type of Robertson-Walker metrics. These
theorems will also provide a very good start towards answering the question
when a singular space-time must have some invariant that « blows up ».

In this paper we first define the concept of an analytic singularity. We
then define a special class of space-times, the Uniform Stationary space-
times, which can be easily dealt with using classical techniques. We finish
with a theorem showing every singularity is analytic in a Uniform Statio-
nary space-time. Periodic space-times are defined and the nonsingularity
theorem is given as a corollary.

2. ANALYTIC SINGULARITIES

We try now to give a precise meaning to our idea of « analytic singula-
rity ». By a singularity in a space-time M we mean a causal geo-
desic y : : [0, a) - M which is incomplete (one can include timelike paths
of bounded acceleration if one wishes [4]). We define an analytic singularity
as follows :

2.1. DEFINITION. - A singularity y is analytic iff Im y is not contained
in any compact subset of M.
We see that even though a space-time may be compact and have a sin-

gularity, no compact space-time has analytic singularities. Let us now try
to relate this definition of an analytic singularity to our idea of what an
analytic singularity should be. We think intuitively that y should represent
an analytic singularity if y runs into some point where the metric is not
defined. Of course, the whole difficulty with this idea is that in our space-
time any points at which the metric is not defined are left out. But let us
suppose we have an analytic singularity in this sense; that is, we suppose our
space-time M is a submanifold of a larger manifold and that we have a
singularity which runs into one of the points p of the larger manifold which
is not a point of M. We will show y is analytic in the sense of our definition.
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351ANALYTIC SINGULARITIES AND GEODESIC COMPLETENESS. I.

First give the larger manifold any positive definite metric. There is a sequence
which converges to p since y runs into p. is thus Cauchy in our

metric and so is Cauchy in the induced metric on M. Suppose y is not

analytic; that is, suppose the image of y is contained in a compact subset
of M. Then y(tt) is a Cauchy sequence in a complete space since a compact
set is complete in any metric. Thus y (tt) converges in M showing that p has
to be in the space-time, a contradiction.
Suppose now that we have an analytic singularity in our precise sense.

Where is the « bad » point of our space-time. It is oo in the one point
compactification of M (M~ ) . Our condition for an analytic singularity
implies that y(t) will have co as a limit point as t approaches a. This, of
course, is not intended to have any precise physical meaning since Moo is
not in general even a manifold, but it does enable us to get a feeling of a
« place » where things « go bad » for the geodesic. We should remark that
our definition does not imply that some invariant must « blow up » for an
analytic singularity. However if some invariant does go to infinity along a
geodesic, then the singularity must be analytic since no invariant can go to
infinity on a compact set. We should also observe that all inessential singu-
larities are analytic. A singularity y in a space-time M is inessential if there
is another space-time M’ with M an open sub-space-time of M’ in which y
can be extended. Suppose we have such an inessential singularity which is
not analytic, that is, suppose Im y is contained in K compact. Suppose y is
defined on [0, a) in M and can be considered a continuous map
from [0, a + t] into M’. Now is closed, so it must contain ct, 
is open so it must contain [0, a + À) since it contains a. So y is actually
extendable in M giving a contradiction.
Now that we have defined analytic singularities we will define Uniform

Stationary space-times, and find some of their properties.

3. UNIFORM STATIONARY SPACE-TIMES

We start with the following definitions :

3.1. DEFINITIONS. - a) A physical timelike Killing vector field is a timelike
Killing vector field of constant length.

b) A special Killing vector field is a vector field v together with a timelike
vector field w such that

i) v is a Killing vector,
ii ) (v, v) = constant,
iii ) Dwv = 0.

Note that a physical timelike Killing vector (PTKV) is also a special

Vol. XXIII, no 4 - 1975.
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Killing vector (SKV). For, if v satisfies i) and ii) above, then given any vector
field x we have

So Dvv = 0 (here Axy = - Dyx) and iii) is satisfied with w = v.
The following Lemma will give us a hint how to define a Uniform Sta-

tionary space-time :

3.2. LEMMA. - Suppose M has a SKV then
a) if Ric (v, v) &#x3E;- 0 then v is totally geodesic, i. e.

and consequently
b) Ric (v, v) _ 0 at every pt.

Proof - We have (see [5])

Now

where E~~) = 1 if 5~ 0, 8(0) = - 1. Here { is an orthonormal basis of

the tangent space at a point. So we need only show that is spacelike;
then both sides of the above equality will be positive, and thus 0. Then

and each is spacelike, thus

and we have shown part a). b) Will follow trivially since Ric (v, v) &#x3E; 0 at a pt
will contradict trace 0. So we need only show Avxr. is spacelike.
We will show Avxr. is perpendicular to the timelike vector w

3.3. COROLLARY. - Suppose M has a PTKV then

a) if Ric (w, w) &#x3E; 0 for all w timelike then M has a totally geodesic
timelike vector field,
and consequently
b) Ric (w, w) _ 0 for some timelike vector w.
The corollary eliminates the possibility of a spacetime with a PTKV

which satisfies the energy condition with A = 0. Part a) says that if we

Annales de l’Institut Henri Poincare - Section A
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relax the energy condition and allow equality with 0 for nonempty space, we
still will get some models with a PTKV. This condition is compatible with
any 0. Since A should be very small the condition that Ric (w, w) &#x3E;_ 0
for w timelike is perhaps not unreasonable. Since it is the only one that
mathematically is of use we will make the following definition :

3.4. DEFINITION. - A space-time M is a Uniform Stationary space-time
if

a) it has a locally defined PTKV in a neighbourhood of each point,
b) it satisfies the weak energy condition Ric (w, yv) &#x3E;_ 0 for w timelike.
We give here some examples of Uniform Stationary space-times. The

first example is perhaps one of the earliest cosmological models and it
motivated Einstein’s introduction of the cosmological constant A. It is
R x S3 as a manifold with metric (dt)2 - (dU)2 where dU2 is the metric of
the 3 sphere S3 induced from its embedding in R4.
The second class of examples are the Godel universes. The metric is

given by

where a, b, c, g33, g44 are constants [6]. These space-times are Uniform

Stationary if -aa is timelike.
We now prove an easy theorem that classifies the Uniform Stationary

space-times.

3.5. THEOREM. - Let M be a space-time. The following are equivalent :
a) M is Uniform Stationary,
b) M is locally isometric at each point to M’ x R, M’ with a negative

definite metric and R with the flat metric dt 2,
c) D*, the local holonomy group of M, is compact at each point,
d) M has a timelike totally geodesic vector field v in a neighbourhood of

each point.

Proof - ~) =&#x3E; d) is 3.3. ~) =&#x3E; a) since v is the physically timelike Killing
vector. d) o b) is de Rham’s decomposition theorem. ~) =~ c) since any
subgroup of the Lorentz group that fixes a timelike vector is compact.
For c) =&#x3E; d) we assume the connection is analytic. Thus there is a neigh-
bourhood U such that «1&#x3E;* is the holonomy group of the connection restricted
to U. Now a compact connected subgroup of the Lorentz group must fix
a timelike vector. We define the vector field v in U by parallel transport
which is well defined since 1&#x3E;* fixes v. v is totally geodesic and thus we are
done.

Vol. XXIII, nO 4 - 1975.
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3.6. COROLLARY. - Let M be simply connected and complete. Then M is
a Uniform Stationary space-time -

where R is the flat metric and M’ has a negative definite metric.

Proof. « = » is obvious. « =&#x3E; » follows from ~) =~ b) of the theorem
where = 0 and completeness makes the De Rham theorem global.

4. SINGULARITY THEOREMS

We are now ready to prove the theorem relating Uniform Stationary
space-times to analytic singularities. First we need a definition.

4.1. DEFINITION. - A Uniform Stationary space-time is special if it
has no locally defined spacelike totally geodesic vector fields.
A special Uniform Stationary space-time (S. U. S. space-time) is one

without too much flatness. If a Uniform Stationary space time has a unique
timelike hypersurface orthogonal Killing vector field then it is S. U. S.
Thus the « special » condition means there is a « unique time ».

4.2. THEOREM. - Let be finitely generated and let M be a special
Uniform Stationary space-time. Then y is a singularity ~ y is an analytic
singularity.

Proof. Let Clt be a set of generators of n 1 (M). Let (M, x) be the covering
space of M such that x 1 (M) is generated by oc where

M has a natural space-time structure which makes it a S. U. S. space-time.
Let y be a path in M and y its lift to M. y is singular if and only if y is.
Also y is an analytic singularity if and only if y is since TC - 1 of a compact set
is compact (x is a finite covering). Thus we may confine ourselves to showing
the theorem for M. First we define a global totally geodesic timelike vector
field v. Since M is Uniform Stationary v is locally defined. To define v

globally we need only verify that parallel transport around ai leaves v fixed.
We claim that transport around ai in M of = vi gives ± vi, which
shows ai fixes v. Suppose ai does not take vi into + v i . Then the result of

transport around ai of say, must be independent of vi. By using
parallel transport locally one can extend v2 to a totally geodesic vector
field. By taking an appropriate linear combination of vi and v2 one can
thus find a locally defined spacelike totally geodesic vector field, giving a
contradiction.

Annales de l’lnstitut Henri Poincaré - Section A
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Thus we have a globally defined totally geodesic vector field v. Now define
the following positive definite metric (normalizing v so that g(v, v) = - 1)

Since g and g have the same Levi-Citiva connection, a geodesic in one is a
geodesic in the other. Since every singularity is analytic in a positive definite
metric we are finished.

4.3. COROLLARY. - Suppose M is a special Uniform Stationary space-
time in some open neighborhood U and n 1 (M) is finitely generated. Assume
M is real analytic. Then M has only analytic singularities.

Proof. Using the above argument and Theorem 3.5 we find the identity
component of the group to be O(n - 1). This was all that was used in the
proof of our theorem.
Although S. U. S. space-times are special indeed (because they are Uni-

form Stationary) Corollary 4.3 is of physical interest because of its form.
All the conditions (except the negligable technical condition that be

finitely generated) are local, yet the result is global. Since observational
information about the universe can only be gathered from a small portion
of it, only this type of theorem can give an observational bases for a global
property.

4.3. DEFINITION. - A space time M is periodic if there is a compact
space-time M and a map n

which is a covering projection and a local isometry.
The most common examples of periodic space-times are the Robertson

Walker metrics with spherical spacelike sections and a periodic time function

R(t). M in this case will be S3 x S1. Some periodic Uniform Stationary
space-times are the Godel universes with periodic ~r(x4). M in this case is T4,
the 4 dimensional torus.

4.4. THEOREM. - If M is a periodic special Uniform Stationary space-
time then M is complete.

Proof - Let x : M ~ M with M a compact space-time. M is also a special
Uniform Stationary space-time since x is a local isometry. M has a finitely
generated Poincare group because it is a compact manifold. Since M is
compact 4.2 says it must be singularity free. Thus M is also.
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(*) Note added in proof: A similar concept seems to have been also considered by
Shepley and Misner (cf. Ann. Phys. t. 48, 1968, p. 526). The theorems given here,
we believe, provide new ~nsights.
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