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Axiomatic field theory and quantum electrodynamics :
the massive case

O. STEINMANN

Universitat Bielefeld, Fakultat fur Physik, Bielefeld, Germany

Ann. Insr. Henri Poincaré,

Vol. XXIII, n° 1, 1975,

Section A :

Physique théorique.

ABSTRACT. - Massive quantum electrodynamics of the electron is formu-
lated as an LSZ theory of the electromagnetic field and the electron-
positron fields 1/1, ~. The interaction is introduced with the help of mathe-
matically well defined subsidiary conditions. These are: 1 ) gauge invariance
of the first kind, assumed to be generated by a conserved current j ; 2) the
homogeneous Maxwell equations and a massive version of the inhomo-
geneous Maxwell equations; 3) a minimality condition concerning the high
momentum behaviour of the theory. The « inhomogeneous Maxwell
equation » is a linear differential equation connecting F /lV with the current j .
No Lagrangian, no non-linear field equations, and no explicit expression
of ju in terms are needed. It is shown in perturbation theory that the
proposed conditions fix the physically relevant (i. e. observable) quantities
of the theory uniquely.

1. INTRODUCTION

Any attempt to fit quantum electrodynamics (henceforth called QED)
into the framework of axiomatic field theory encounters two types of
problems, namely

1 ) the general problem of characterizing particular models without
using such mathematically dubious notions as Lagrangians, non-linear
equations of motion, or equal time commutators of interacting fields,

2) problems specific to QED, which are connected with the vanishing
photon mass. The best known of these are the infrared divergences of the
S-matrix, which prevent the application of the LSZ formalism in its esta-
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62 O. STEINMANN

blished form. It is known, furthermore, that QED does not even fit into
the more general Wightman framework [7]: in formulating QED as a
field theory one must violate one or several of Wightman’s axioms.

In the present work we shall deal only with the first type of problems.
The difficulties mentioned under point 2) will be avoided by giving the
photon a small non-vanishing mass A. We hope to make the limit A -~ 0
the subject of a subsequent paper.
We consider the QED of a charged spin 1 2 particle, called « electron »,

with mass m &#x3E; 0. This theory we want to formulate as an LSZ theory
of the electromagnetic field Fuv and the electron-positron fields ~, ifj.
The interaction shall be specified with the help of mathematically well-
defined subsidiary conditions.

In Section 2 we consider the LSZ formulation of the theory in question.
In particular we discuss the GLZ theorem, which permits the complete
characterization of the theory by its retarded functions.

In Section 3 we propose a set of conditions singling out QED from all
possible §-theories. We do not use Lagrangians or non-linear field
equations. The conditions are formulated directly for the field The
introduction of a vector potential is not necessary, though later on it will
turn out to be useful as a means of algebraic simplification. Hence no
mention will be made of gauge transformations of the second kind. They
cannot be fitted easily into the axiomatic frame, because in general they
do not respect translation invariance. Since they leave the observables
completely untouched, their physical significance is anyway not clear, so
that their absence should not be considered a flaw of our formalism ( 1 ).
Our conditions are of the following kind. shall satisfy the homo-

geneous and a massive version of the inhomogeneous Maxwell equations.
The latter are linear equations between and the electromagnetic
current so that no distributionistic difficulties arise. An explicit expres-
sion of ju in terms of ~, ~ is not needed. The coupling to ~, ~ is achieved
cia the commutation relations of these fields with the space integral over jo,
the charge Q. In addition, we postulate a minimality condition for the
behaviour of certain physically important quantities at large 4-momenta.
We have no general proof that these conditions do indeed specify a

theory. In Section 4 we show, however, that they can be satisfied in all
finite orders of perturbation theory and determine there the physically
relevant quantities uniquely (2). For this we follow the methods developed

(1) The author is aware that this attitude towards the gauge group is not in accordance
with the fashion of the day.

(~) Perturbative QED has already been discussed in a similar vein, but on a lower level
of rigour, some time ago by Nishijima [3]. Nishijima considered directly the case A = 0,
disregarding the infrared problems.
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63AXIOMATIC FIELD THEORY AND QUANTUM ELECTRODYNAMICS : THE MASSIVE CASE

for the simpler case of a single scalar field in Ref. [2], henceforth quoted
as B. The results of B will be used freely. Their generalizations to the present
case are mostly straightforward and will not be explicitly proved. Equa-
tion (n. m.) and Theorem n. m. of B will be quoted as Eq. (B. n. m.) and.
Theorem B. n. m. respectively.

Section 5 is devoted to a brief discussion of observable fields other
than and ju.
As was to be expected we do not gain any fundamental new insights,

but reproduce merely in a mathematically clean way some well-known
results of the canonical formalism. Also, the expert reader will easily
perceive that our methods of proof have often been inspired by the corres-
ponding canonical considerations.

2. THE LSZ FORMALISM

The generalization to massive QED of the formalism discussed in B
for a scalar field does not present any fundamental difficulties. Therefore
we only collect here without proofs the facts and notions which we shall
need later on.
We consider a theory of two four-component spinor fields ~, ~ and a

real antisymmetric tensor field which satisfy all the Wightman
axioms [4] [5]. In particular we assume invariance under the orthochronous
Lorentz group Lt, including the parity component. Our theory will also
be C-invariant, hence, due to the CTP theorem, also T-invariant, so that
the latter invariance need not be postulated explicitly.
We use the following notations: arguments of ~-fields appearing in

retarded products and their vacuum expectation values are denoted
by small latin letters : x, y, ..., p, q, ..., arguments of ~-fields by barred
small latin letters: x, y, ..., p, q, ..., arguments of by small
script letters: ..., ~, ~, .... The bar over a variable is not part of
the variable, but signifies only the occurrence of this variable as a 
ment. The same variable x may occur in a given mathematical expression
once with a bar, once without a bar, e. g. in different x-dependent factors
of a product. Small greek letters : ~, ~, ..., p, (D, ... stand for variables
which may be arguments of any type of field. As in B we use capitals to
denote sets of small letters of the same character, e. g. X = { ..., ~c" }.
I X ~ stands for the number of elements in the set X (note that this conven-
tion differs from B, where ! X ) I had another meaning).
We use Dirac matrices yo, ... , y~ with

gllv the Minkowski tensor defined with signature ( + - - - ). yo is hermi-
tian, yt 23 are anti-hermitian. Vector indices are raised and lowered with
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64 O. STEINMANN

the metric tensor Indices occurring once as subscript, once as super-
script are summed over. For V~ an arbitrary 4-vector we define

The fields are connected by

The field Fuv shall satisfy the homogeneous Maxwell equation (HM equa-
tion) _ _ .. _ _ _ u

with ~03B1 = 20142014 . .a 

For large positive or negative times ~, F are assumed to converge
in the LSZ sense [6] to free fields Fex, where ex stands for in in the
case t -~ 2014 ~c, for out in the case t ~ + oo. The asymptotic fields shall
satisfy the Dirac equations

and the Klein-Gordon equation

respectively, with 
(2.7)

The Fourier transform of any field is defined as

Since we shall mostly work in p-space we shall henceforth omit the tilde
in ~p. It will usually be clear from the argument of cp and from the context
whether we are in x-space or p-space. In case of doubt this will be explicitly
specified.
The free fields are in p-space of the form, dropping the super-

script ex for the moment:

= 0(± Po)~( P2 - m2) and

They satisfy the anticommutation relations

from which the anticommutators of the creation operators § - , $ - and the
. Annales de l’lnstitut Henri Poincaré - Section A



65AXIOMATIC FIELD THEORY AND QUANTUM ELECTRODYNAMICS : THE MASSIVE CASE

destruction operators ~+, ~+ are easily obtained. For the free electro-
magnetic field Fex we have

We assume asymptotic completeness:

where ~ is the total Hilbert space of the theory, ~ex the Fock space of the
fields The identity operator in ~’n can be written

with Eap the orthogonal projection onto the a-electron 03B2-positron subspace
of the Fock space, E~ the projection onto the y-photon space
in the F"~ Fock space. These projections have the representations

Here cv( p) _ ( p2 + m2)1/2, = (.2 + A2)1 i2. ~ 10)  0 I is the projec-
tion onto the vacuum 0 ). The arrows over the products in (2.17) mean
that in 171 the factors stand in order of ascending indices i, in fi in order
of descending i.

The GLZ theorem [7] tells us that we can characterize the theory by
specifying its retarded functions [8]. Due to the anticommutativity of
spinor fields there are some trivial changes of sign, relative to the scalar
case, in the definition of retarded products. In Ruelle’s formal definition [9]
of a retarded product (or a generalized retarded product) as a sum over
permuted products of fields multiplied with appropriate step functions,

(3) Note that the mass in the definition of ð:t is In or A according to the character of its
argument. We hope that this illegitimate notation will not lead to confusion.
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66 O. STEINMANN

we have an additional minus sign for the terms in which the ordering of
the spinor variables differs from a standard ordering (defined as the order-
ing exhibited in the argument of R( ... )) by an odd permutation. In the
axiomatic definition of B we replace Eq. (B. 2.22) by

..., Çn } is a set of variables of arbitrary type. The tensor
indices of F and the spinor indices of ~, ~ are to be considered part of the
corresponding variables ~,. This convention will be used throughout this
paper. In cases where explicit exhibition of these indices is desirable, they
will be shown as subscripts standing in front of the variable. For instance,
the expression /l"X in the argument of a retarded product or function
means that x is the argument of a field while x  denotes the p-com-
ponent of the 4-vector x.
The sum in the right-hand side of (2.19) extends over all partitions

of E into two complementary subsets 3L and An anticommutator
occurs if both factors R(~, 3L) and R(’1, contain an odd number of

spinors, a commutator otherwise. ~L = t 1 is the parity of the spinor
variables in the ordering E:L, 1], Ep as compared to their ordering in ç,
1], E. Within E~, the variables stand in the same order as in E. The alter-
native sign in the left-hand side is positive if both ç and 1] are spinor variables,
negative otherwise.
The retarded function is the vacuum expectation value of R(E:).
Amputation of a retarded function with respect to a photon variable ~ in

p-space means multiplication with (~ 2014 A2}. For the electron momenta p, q
we use two different amputation prescriptions:

The amputated variables are separated from the non-amputated ones by
a semi-colon. We shall never have occasion to use the completely unampu-
tated r-functions. Therefore we can again drop the index n in r", with the
understanding that henceforth r(...) will stand for n( ... ).
The reduction formulae for matrix elements of fields and retarded pro-

ducts between in-states look exactly like in the scalar case (see (B. 2 . 32)),
with the r"-functions used.
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67AXIOMATIC FIELD THEORY AND QUANTUM ELECTRODYNAMICS : THE MASSIVE CASE

The GLZ equations are obtained from the relations (2.19) by forming
the vacuum expectation value, inserting the identity representation (2.16)-
(2.18) on the right-hand side and expressing the resulting in matrix ele-
ments with the help of the reduction formulae. We obtain the following
equations, written in p-space, for the totally n-amputated r-functions :

8L and the sign on the left-hand side are as in (2.19). pi, p2, S2, are called
external variables, S, T, 2, internal variables. Let NL be the number of
external spinor variables in the left-hand r-factor of the integrand. Then (4)
8~ = ( - 1 The tensor indices of the internal F-variables are, according
to (2 .18), upper indices in the left r, lower indices in the right r. With respect
to the spinor indices matrix multiplication is implied. For the variable sl,
e. g., this looks, written out explicitly :

with = 

By a simple generalization of Theorems B . 2 . 1 and B. 2. 2 a solution
{ r(Q)} of the GLZ equations (2.21) defines a field theory of the desired
type, provided that the distributions r(Q) satisfy the following conditions :

a) Reality. - The relation (2.3) leads to

Here yq~ acts on the spinor index belonging to q and analogously for yp~.
The ordering of the variables in the argument of rp need not be as shown
here. It can be arbitrary, but it must be the same on both sides (5). In (2.22)

(4) Because of the well-known fermion superselection rule only the r with an even number
of spinors can be non-zero. Hence G~ = G~ except in the trivial case of an odd number of
external spinor variables, in which case both sides of (2 . 21 ) vanish identically.

(5) Unless noted otherwise, this remark will also apply to similar expressions in the
future.
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68 O. STEINMANN

we have assumed P ~ = Q ~ as will be the case in QED, due to charge
conservation.

b) Covariance. - Under orthochronous Poincaré transformations ;
transforms like the corresponding product of classical fields F, ~.

c) Symmetries. - We have

where the minus sign applies if the exchanged variables are both spinor
variables, the plus sign in all other cases. (2.23) does not hold if one of the
exchanged variables is the foremost standing one. This exceptional first
variable will henceforth be called the « distinguished variable » ... ).
We shall occasionally take the liberty of not putting it at the front of the
argument.
Note that the two r in (2 . 23) represent different functions if pt and 1

are not of the same type, e. g. r(x, y) ~ r( x, y). We apologize for this possibly
confusing notation which has been introduced to avoid an even more
confusing proliferation of indices.

d) Support. - In x-space ..., ~n) vanishes outside the set

(ç - ç) E V +, di.

e) Mass shell restriction. The restriction of r to the mass shell in
several or all of its variables exists and satisfies the smoothness pro-
perty (B . 2 . 43), which we will not repeat here. It guarantees the local
existence of the integrals in (2 . 21 ). Since this condition is automatically
satisfied by the perturbative construction of B we will not consider it any
further.

f) Normalization ql’ the 2-point functions. - For p2  (m + A)2 and
jt2  4A2 respectively we have

with Fi analytic. The other 2-point functions vanish identically.
As a further condition we have the HM equation (2.4) which has no

equivalent in the scalar case of B. Before formulating it as a condition

for r we must make a preparatory remark. The fields defined by a solution
of (2 . 21 ) with all the necessary properties are explicitly given by their
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Haag expansion. Let be any local field of our theory, i. e. Fuy, or any
of the fields to be introduced later on. Then we have in n-snace

Summation over corresponding spinor and tensor indices in r and the in
fields is understood. Because of the relations

following from the Dirac equations (2.5) we can replace r by r" in (2.26).
The combinatorial coefficient in front of the integral acquires then the
additional factor (2m)°‘( - 

Since the fields ~, ~, F, determine the theory completely, the r-functions
are physically relevant only in so far as they contribute to the Haag expan-
sions of these fields. More exactly: two sets of retarded functions {r1}
and { s~2 ~ for which

~’ i ~P ~ Jf, P, Q) = ~~ P, Q) for A2, p~ = qh - rn2
are physically equivalent.

After this side remark we return to the HM equations.
g) Homogeneous Maxwell equations. - We must have

Condition (2.28) reflects that the ra occurring in it is, for k0 &#x3E; 0, apart
from a numerical factor the matrix and
for ’0  0 a similar matrix element with the one-photon state on the
right. (2.29) stipulates that every term in the Haag expansion of F satisfies
the HM equation. (2.28) is not a consequence of (2.29) and the asymptotic
condition, because the Haag expansion presupposes validity of (2.28).
We end this section with a remark concerning the normalization condi-

tions (2.24). In anticipation of the limit A -~ 0 to be performed at a later
occasion it v’ould be desirable to generalize these conditions to

Vol. XXIII, n° 1 - 1975.



70 O. STEINMANN

with Z2 &#x3E; 0 an arbitrary function of A. An additional factor Z- 2)’ must
then be inserted in the GLZ equations (2. 21) and the Haag expansion (2.26).
We can, however, at once find a solution { of the generalized case from
a solution r} with Z = 1, to wit:

Hence we can put Z = 1 without restricting generality.

3. FIXING THE INTERACTION

From the collection of theories covered by the general formalism of
Section 2 we want to single out QED by appropriate subsidiary conditions.

Firstly we demand gauge invariance of the first kind. A gauge transfor-
mation of the first kind is a substitution

with a a real number. These transformations form an Abelian group.
Invariance of the theory under this group means existence of a continuous
unitary representation U(oc) with

By Stone’s theorem there exists a self adjoint operator Q’ such that

Gauge symmetry shall be generated by a conserved current, the electro-
magnetic current. This means that in § there exists a vector field 
satisfying Wightman’s axioms, which is local relative to F, gl, and is
conserved: 

_ - ,- ",

such that

with e a real number which will serve as coupling constant. For the exact
mathematical sense in which the integral (3.9) must be understood we
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71AXIOMATIC FIELD THEORY AND QUANTUM ELECTRODYNAMICS : THE MASSIVE CASE

refer to the review article by Orzalesi [10] and the original papers quoted
there.

Q is assumed to commute with jP-.
The current shall be coupled to the field F p-v through the « inhomoge-

neous Maxwell equation » (I M equation)

Note that this equation is linear in the distributions F and j, hence mathe-
matically meaningful. We need no explicit expression for j in terms of t/1
and ~.
A final condition concerning the high momentum behaviour of the

theory will yet have to be introduced. But first we want to transcribe the
conditions formulated up to now into properties of the retarded functions.
We consider now also retarded products containing j/l-fields. Their argu-
ments will be denoted by barred script letters : ~ ..., ~, .... j-variables
are never amputated.

It is well known that gauge invariance implies vanishing of the Wightman
functions, and hence the retarded functions, with unequal numbers of 03C8
and § variables: .

The conservation equation (3 . 8) and the I M equation (3.10) can be
translated by analogy to (2.29) into conditions on the Haag coefficients
of j and F.
For fixing the numerical value of e we need a normalization condition:

This we obtain by inserting the definition (3.9) of Q into

and expressing the resulting matrix element of jo with the reduction formula.
The result is

.. ~ ...~ . ~ a~ .rU wlrl . i

which generalizes by covariance to

Conversely, let us assume (3 .11 ), (3.14), and the validity of the IM equa-
tion and the conservation equation for the Haag coefficients of F and j
respectively. From the latter two assumptions we find at once that the
fields F and j themselves satisfy the IM equation (3.10) and the divergence
condition (3.8) respectively. But (3. 8) implies that the operator Q defined
Vol. XXIII, n° 1 - 1975.
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by (3.9) annihilates the vacuum [10]. Making use of results due to Kraus
and Landau [11] we find furthermore

with e, f; h as yet undetermined complex numbers and the charge
conjugate of In deriving these equations we have used that [Q, 
must satisfy the Dirac equation and that Q is a Lorentz scalar. As a conse-
quence of (3.11) the functions  0 ~ I 0 &#x3E; and  0 I 0 &#x3E; vanish,
hence 

_

This implies / = 0, because ( 0 ! 0 ) does not vanish identically.
Insertion of (3.15) into  0 I [Q, I 0 &#x3E; gives (3.12), and the

’ 

normalization condition (3.13) shows that e has the desired real value.
We have then also

Commuting Q once to the right, once to the left in ( 0 0 )
we obtain

hence h = 0. From their respective Haag expansions we easily find the
commutators of Q with the interacting fields :

i. e. we recover the relations (3.6). According to Kraus and Landau [11] ]
the operator Q is self-adjoint. This is then also true for Q’ = and

equation (3.5) defines the desired unitary representation of the gauge
group.
As a result of these considerations we find that our conditions on the

r-functions are equivalent to the operator conditions formulated at the
beginning of this section.
We come now to the minimality requirement at high momenta already

alluded to. The conditions discussed until now do not determine the

theory uniquely.
We need yet a condition corresponding to the small distance condi-

tion of B. A direct generalization of this condition to our case, translated
into a p-space form, reads as follows. We define the asymptotic degree of
the p-space distribution r(Q), abbreviated AD(r), as the real number 03B2,
for which
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for all G &#x3E; 0. Here 0  ~  x~, is a distribution in Q and the limits
~ -+ JJ must be taken in ~’. The asymptotic degree is connected with
the x-space scaling degree of B by

where r(Q) and r(E) are Fourier transforms of each other. The smoothness
condition of B becomes then : the distiibutions r(Q) shall have the mini-
mal AD that is compatible with the conditions already enumerated. We call
this condition the first minimality condition.

Unfortunately it will turn out in Section 4 that at least in perturbation
theory first minimality still does not determine the theory uniquely : the
theory is unrenormalizable in the terminology of B, Chapter VIII. In order
to escape this predicament we examine more closely which objects of the
theory are physically relevant, meaning that they enter into measurable
quantities. Obviously these are the matrix elements of observables between
physical states. We do not wish to discuss here what are the most general
observables of the theory. For the moment we note only that the fields Fuy
and ju are observables (after integration over real test functions), but not
the fields ~ and ~. More general observable fields, e. g. local polynomials
of ~, ~, will be discussed in Section 5.

constitutes a complete set of states. Hence it suffices to consider
the matrix elements of F, j, between in-states (6), and these matrix elements
are, according to the reduction formulae, determined by the restrictions
to the mass shell Zf = A2, , p2 = q2 - m2 of ra(~ ; Jf, P, Q) and

5i, P, Q) respectively. More generally we include retarded products
of F and j fields among the prospective observables and define

We demand now minimality of within the class of r-functions
admitted by the earlier conditions. This condition we call the second mini-
mality condition. Excluded from the second minimality condition are the
2-point functions r( p, q) and r( p, q), for which rMS does not exist. The
functions r(P, Q) with I P - ~ I Q &#x3E; 1 must, however, be included, because
they will play an essential role in our later discussion of the consequences
of second minimality, and because they are closely related:..to certain
S-matrix elements, which are also observable quantities.

In the following section we shall show in perturbation theory that
second minimality determines the r~ uniquely, whilst the off-mass-shell
continuation of ra remains strongly ambiguous. These ambiguities do not,
however, influence the physical content of the theory.

(6) Note that these matrix elements also determine the matrix elements of polynomials,
and even more complicated functions, of the smeared fields.
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Let us briefly recapitulate our conditions: the theory is determined

by a set { J?, P, Q)} of distributions which
i) satisfy the GLZ equations (2 . 21 ) and conditions a)-g) of Section 2,
ii) satisfy the gauge condition (3 .11 ),
iii) taken as Haag coefficients of F or j satisfy, in analogy to (2.29),

the IM equation (3.10) and the conservation equation (3.8),
iv) satisfy the normalization condition (3.14),
v) satisfy, the second minimality condition.
In order to keep the unphysical parts of r as smooth as possible we can

also demand first minimality. For the sake of simplicity we shall do this in
the present paper, even though it is not necessary.
For the purposes of the following section it turns out to be convenient

to reformulate the theory somewhat by the introduction of a vector
potential. We define ~

From the conservation of j and the Maxwell equations (2.4) and (2.10)
we derive 

_ .~

Conversely, if Au is a conserved local field, then (3.23) and (3. 24) define
local fields Fuv and ju satisfying the Maxwell equations and current conser-
vation. Hence knowledge of A is equivalent to knowledge of F and j.

For large times A~ converges in the LSZ sense towards free vector
fields with .

Ain can take over the part of F~~ in asymptotic completeness: the Fock
space of A in, is the §’" of our theory.
We can therefore reformulate massive QED as an LSZ theory of the

fields A, ~, ~ instead of ~. This theory is again characterized by
its n-amputated functions ;(3i, P, Q). Unless noted otherwise, script
letters: x, ..., ~, ..., ~, ... in the argument of r-functions will hence-

forth denote A-variables. Amputation with respect to an A-momentum k
means multiplication with (fz2 - A~).
The GLZ equations of the new formulation look almost exactly like

the former GLZ equations (2.21). The only difference, aside from the
reinterpretation of the photon variables as A-variables, is the replacement
of the factor ( - 2A2)-’’ by ( - 1 )- y in the combinatorial coefficient on the

right-hand side. Similarly we obtain the new Haag expansions from (2.26)

Annales de l’Institut Henri Poincaré - Section A



75AXIOMATIC FIELD THEORY AND QUANTUM ELECTRODYNAMICS : THE MASSIVE CASE

by dropping the factor (2A~ and replacing by Condi-

tions a)-e) and the normalizations (2.24) are taken over unchanged, while
(2.25) is replaced by

with N the second-rank tensor

The new version of condition g) expresses conservation of A :

The normalization condition (3.14) becomes in view of (3.24)

The gauge condition (3 .11 ) and the two minimality conditions are taken
over unchanged.

In connection with condition (3.29) it is convenient to write the GLZ

equations in a slightly more complicated way. By (3.29) we have

Therefore we can introduce factors N(f;) into the integrals of the GLZ
equations without changing anything. The equations read then (see (2 . 21 )
for definitions of the symbols)

The reverse of (3.32) holds as follows : let = Nu then
= 0 for jt2 = A2. Using this we can prove

THEOREM 3. L - Let {r(Q)} be a solution of the GLZ equations (3 . 33)
Vol. XXIII, n° 1 - 1975.
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satisfying all subsidiary conditions stated before with the possible exception
of (3. 29). Then .

solves (3.33) and satisfies all subsidiary conditions including (3.29).
The proof is trivial and will not be given here.
In considering only solutions of the form (3.34) we are not restricting

generality: any admissible solution is physically equivalent to, i. e. yields
the same Haag coefficients for A, ~, as, a solution of the form (3.34),
where we can set r = r’. This is so because these Haag coefficients are not
changed by multiplication with any A-variable, due to (3.29)
and (3.30). Hence, if using the GLZ equations in the form (3.33), we can
ignore condition (3.29), since it can eventually be satisfied with the help
of Theorem 3.1. In Section 4 we shall therefore not take (3 . 29) into account.

4. PERTURBATION THEORY

In this section we solve the model defined in Section 3 in perturbation
theory. We expand the quantities of the theory, in particular the retarded
functions, into formal power series in the coupling constant e, e. g.

We will not discuss convergence of this series, but only derive the coeffi-
cients r6 in every finite order.

In zeroth order the fields are free, i. e.

All other ro vanish.
In orders a ~ 1 we follow exactly the procedure established in B for

the scalar case, ignoring for the moment the divergence condition (3.8)
and the second minimality condition, which have no equivalents in the
scalar case. The generalization of the procedure to our model being straight-
forward we give here only the merest outline. The only point whose genera-
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lization is not obvious : the proof that covariance of r can be satisfied, will
be dealt with in an appendix.
The expansions (4 .1 ) are substituted into the GLZ equations (3.33)

and the terms of a given order 7 collected on both sides. This yields equations

where Ia is, in very abbreviated notation, of the form

For the meaning of the dotted parts see (3.33). The important feature of
this expression is that it does not contain ra: Ia can be computed from
the ~, r  (1, by summation. This allows a recursive determination of r~.
Let rr, z  7, be known and satisfy the subsidiary conditions, possibly
with the two exceptions noted above. Then Ia can be calculated, and fy is
obtained as solution of the linear functional equation (4.3), where in the
course of the solution full account must be taken of the subsidiary condi-
tions. The basic idea behind the solution is that, due to the postulated
x-space support of r, we must have

if (~ 2014 r~) ~ 9_, V - the closed backward cone, and

if (~ 2014 r~) ~ V +. This fixes r~ outside the manifold ~ = ~. The result must
be continued onto this manifold in such a way that our conditions are
satisfied. That such a continuation exists has been shown in B. There we
have also discussed to what extent first minimality restricts the possible
solutions. The solution is unique if  - 4, otherwise it is ambi-
guous, the number of ambiguities increasing with increasing The
ambiguous parts of ra are solutions of the homogeneous equation

and are of the form

with ~ a polynomial with appropriate symmetry and covariance pro-
perties. For this h~ we have

provided that B ~ 0. deg B is the degree of the polynomial B.
In first order we find = 0 for all Q, and first minimality implies

the vanishing of all r 1 except the 3-point function q)-and the
functions connected to it by permutations of the arguments for which
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the normalization condition (3.31) must be satisfied. This is achieved by
choosing 

"T

Namely, for po = the relation

holds because (p - + m) = p2 - m2 vanishes on the mass shell.
1"1 as given by (4.10) has the asymptotic degree - 4, which is the minimal

possible value for an expression of the form (4. 8). (4.10) satisfies also the
as yet ignored divergence condition (3.30), since p - q,

p2 = q2 = m2 we find

(4.10) is the only ansatz of the form (4.8), with asymptotic degree - 4,
satisfying both these conditions.
Note that r I as given by (4.10) saturates condition (3.31). Hence we

have for a &#x3E; 1 the requirement

We must now turn to the remaining conditions in orders a &#x3E; 1, i. e. conser-
vation of A and second minimality, which are not covered by the results
of B. In the remainder of this section we prove

THEOREM 4.1. - In all finite orders 6 of perturbation theory there exist
distributions ~(Jf, P, Q) satisfying all the conditions enumerated in Sec-

tion 3, including condition (3.30) and second minimality. The corresponding
mass shell restrictions ~s are uniquely determined.
The proof of this theorem is attained in several steps.
First we introduce, as an auxiliary mathematical construct, a one-

parameter family of LSZ theories of vector fields and spinor fields 03B403C8, 03B403C8,
5 is a parameter characterizing a particular theory of the family. It lies in
the interval 1. The couples are related by (2.3). The GLZ
equations of the ð-theory look exactly like (3.33), except that the kernels

are replaced by A A

The distributions 03B4r satisfy the same reality, symmetry, covariance, and

x-space support conditions as the physical r. The 2-point normaliza-
tions (2.24) hold for general ~, while the 2-A-function satisfies

F3 regular in ~2  4A2.
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The free ð-theory, which is also the 0 th order in the perturbation expan-
sion, is defined by the ð-independent 2-spinor functions of (4.2) and

The Wightman function corresponding to (4.14) is

and is not positive definite for 03B4 ~ 1. This means that the auxiliary theories
with 0  6  1 belong to « Hilbert spaces » with indefinite metric. This
does not bother us for two reasons. First, these theories have no direct
physical relevance, they occur only as convenient tools in the proof of
Theorem 4.1, whose explicit formulation makes no reference to them.
Second, the perturbation methods of B apply to these theories without
any trouble, because they never use the definiteness of the metric. This
definiteness is anyway violated in finite orders of perturbation theory.
The normalization condition (3 . 31 ) shall hold for all 5.
We solve the auxiliary models again in perturbation theory with the

recursive method of B, starting from the b-independent first-order expres-
sion (4.10). In orders 7&#x3E; 1 we demand first minimality. Furthermore,
we demand that the Ward-Takahashi identities (WT identities)

be satisfied. Here lj is an arbitrary element of jf, % j is the set obtained
from 5i by omitting lj, P’ and Qi are defined analogously. pi + kj is a
#-variable taking the place of p; in the argument and analogously for q; + lj’
If ~~ is the distinguished variable in the ora on the left-hand side, then
p; + lj and q; + lj must in the terms of the right-hand side be permuted
through to the distinguished foremost position. This leads possibly to a
change of sign according to (2 . 23). (p - m) -1 1 stands for

the upper sign applying if p is the distinguished variable, the lower sign
otherwise. The same goes for (~ + m) -1. Multiplication of r( ... , p, ..., q, ... )
with (p - In) - or (~ + m)-1 de-amputates r in the variables p or q respec-
tively. The product ~~r( ... ) is the scalar product ~~ r( ... , ...).
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(Pi + arT( , .. , p~ + ~~, , , , ) is a distribution in the variables .~,
P, Q, with obvious symmetry and covariance properties. Moreover, it

has the same x-space retardedness as P, Q), and its restriction to
the mass shell in some or all the variables (pi and l j taken as separate
variables !) exists in the same way as for the latter function. The proof of
this proceeds, mutatis mutandis, like the proof of Theorem B.7.1, which
is the theorem establishing existence of the mass shell restrictions of

P, Q). Note that the de-amputation factor [( p + ,~)2 - m2] -1 1 is

regular on the intersection of the mass shells p2 = m2, l2 = n2.
The WT identities imply conservation of for 6 ~ 1. By (4.16) the

divergences of the Haag coefficients ... ) are sums of terms of the
form

But the quotient in this expression exists on the mass shell p? = m2, accord-
ing to the foregoing consideration, hence the complete expression vanishes
at pf = m2.

In Oth order, however, ~Ao is not conserved 1, as is seen from (4.15),
hence the total field 03B4A is not conserved. But for 03B4 = 1, Ao, and thus
A = are conserved. The 03B4 = 1 case is obviously the physical theory
in which we are interested, still ignoring second minimality.

Disregarding the WT identities, we can find with the methods of B.

We prove now that the WT identities can be satisfied in addition to the
other conditions.

LEMMA 4 . 2. - There exist solutions 03B4r03C3 of the auxiliary models 0  b  1

in all orders 03C3  1 which satisfy the WT identities. The corresponding minimal

asymptotic degrees AD(ar~) are the same as those obtained without taking
the WT identities into account.

It is easy to see that the first order ansatz (4.10) satisfies the WT identities.
That they can be satisfied in higher orders is proved, as usual, by induction
with respect to a.

We consider a model with a fixed 5, dropping the index 5 for convenience.
Assume that the WT identities hold in all orders 1 ~ r  d. Let fa be a
solution with all the desired properties except possibly the WT identities.
Define P, Q) as the difference of the two sides of equation (4.16),
the left-hand side formed with r6. Let P, Q) be the right-hand side of
the GLZ equation (4.3). We wish to repeat here our former notational
remark, namely that the arguments of la and the other functions considered

may stand in any order, not necessarily the one shown here explicitly. In

particular, the two distinguished variables of the GLZ equation may be
of any type.
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With our definitions we obtain

The arrow in the second ~~ means that the first two variables (the varia- .

bles pi, p2 of (4.3)) have been exchanged. The variables + lj’ qi" + ~
stand in the argument of I03C3-1 in the same places as p; and qi in the I03C3 argu-
ment. + ~, ... ) is zero by definition if Pi and lj happen to
be the two distinguished variables pi, p~ of the GLZ equation. Pi is
one of the two distinguished variables in 1 if this is true for either p~ or l j
in 1~
The induction hypothesis: validity of the WT identities in orders T  a,

implies D~ = 0. Namely, consider a typical integral occurring in the defi-
nition of 1~:

We contract this with lj and use (4.16) in order T. This gives, on the one
hand, terms of the form

These vanish on the mass shell after multiplication with (~T 2014 m), hence
do not contribute to (4.18). On the other hand we get terms in which l j is
added to external spinor variables, and these terms just cancel the corres-
ponding terms in the la - 1 parts of D~.
Thus A( is a solution of the homogeneous equation (4.7) and is of the

form (4.8):

fl3( being a polynomial with suitable symmetry and covariance properties.
Computing the minimal asymptotic degree of the various terms in ~~

with the methods of B, Chapter VIII (later on we shall do this explicitly
for the case 5 2014 0), one finds that they are all equal. Let G~ be this common
degree. fl3( is then a polynomial of degree ~ G~ + 4. This already implies
vanishing of aa, i. e. validity of the WT identities, if G~  - 4.

For G~ - 4 we show that there is a solution P, Q) of the .

homogeneous GLZ equation (4.7) with asymptotic degree
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such that ~4( ... )~3~. r~ = t~a - h~ is then the solution whose exis-
tence is claimed in Lemma 4.2.

A necessary condition for the existence of ha is the vanishing of ~~ at

,~~ = 0. We show that this is true for both sides of (4.16), hence also for
their difference ~~.

Since ~~ is a solution of (4.7) it does not depend on whether is the
distinguished variable in r or not. We can therefore assume that l j is not
distinguished. But then the restriction of P, Q) to the manifold 0

exists as a distribution in the remaining variables. This follows from the

analyticity properties of r, as explained e. g. in Epstein’s lectures [12]. Let

Q = {~o.....~nL Wo the distinguished variable. Then

and r’ is, as a consequence of its x-space support, the boundary value of a
function analytic in 1m Wi E V_. Moreover, if we keep all the cv; except Wn
real, the corresponding analytic function of 03C9n can be analytically continued
into an open neighbourhood of the real space-like points. This neighbour-
hood contains in particular the origin Wn = 0, which proves our contention
about the existence of fa at this point. But then ljfa(..., lj, ...) = 0
at ~~ = 0, as desired.

For the contribution of the right-hand side of (4.16) to 0~ we note
that

which leads immediately to a total cancellation of the terms in this right-
hand side at /, j = 0, because of) P i = 

This shows that = 0 at /, j = 0, i. e. i3( is of the form ’13~ = 

polynomials of degree (deg 1). It is not hard to prove by simple
algebra that the ~~,u can be chosen such that h~( ... , ... ) = b4( ~ ~ . )~,~
has the correct symmetries and covariance. For ) Jf ) &#x3E; 1 one can also

show that ~~~~ - ~;~~, hence ~3~.,,~ can be chosen to be independent of j,
so that h6 is independent of j/ as it must be. The necessary symmetries can
be achieved without raising the degree of ~Q,~, so that ra will not have a
higher asymptotic degree than ra.
Note that the 3-point normalization (4 .11 ) and the 2-point normaliza-

tions (2.24) fit consistently into the WT identity for p, ~ hence do
not prevent its fulfilment. This ends the proof of Lemma 4.2.

Before we can proceed we must introduce a new type of objects: the
« modified » retarded products and functions. In a modified retarded

product (Inrp for short) two spinor variables, called the modified variables,
are set apart from the others. This is indicated by capping them with

inverted carets: p, q, .... The definition of the mrp is similar to the axio-
matic definition of the ordinary retarded products given in B, Chapter II.

The inip have the same x-space support and the same transformation
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law under the Poincare group as the corresponding unmodified products.
They also have the same symmetries, with the modified variables forming
a class of their own, i. e. the mrp is not invariant under exchange of a modified
and an unmodified variable. The perturbative version of the identities (2.19)
holds for the mrp with the following definition of a « commutator » of two
retarded products with one modified variable each :

Here p ± ~ are ~-variables, q ± ~ ~-variables. If the modified variables
are both of the same type (both ~ or both ) then the right-hand side
of (4 . 20) is multiplied with - 1, and the de-amputation factors (...)-1
are, of course, changed accordingly. Note that (4.20) is not a true commu-
tator : the factors R~( .. , p, .. ) and Rt( .. , q, .. ) are not even defined
separately. However, the expression (4.20) has all the properties of a
(anti)-commutator which are relevant for our purposes.
The modified retarded function ( = t~6( .. , p, .., q, .. ) is the vacuum

expectation value of R~( .. , p, .., q, ..). The mass shell restrictions of
the shall exist in the same sense as those of the ordinary r and the
reality condition (2.22) shall hold. The WT identities (4.16) shall hold
for the with the factors (Pi - +,~~ - m)-1 and (Iii +~ + ~)’ ~ + in)
replaced by 1 for the modified variables. Finally, the 0th and 1 St order
contributions to the /w/ shall vanish:

The LSZ reduction formulae and the Haag expansion (2.26) hold for
the n1rp, with mrf with the same modified variables as coefficients. Moreover,
we can derive GLZ-like equations for the mrf from the modified iden-
tities (2. 19), using the definition (4.20) for the commutators of products
with one modified variable each. It is important to note that on the right-
hand side of these modified GLZ equations the terms coming from expres-
sions of the type (4.20) contain only ordinary r-functions, no modified
ones.

The mrf are determined by solving the modified GLZ equations in
perturbation theory, with the subsidiary conditions mentioned above,
demanding first minimality. The solution follows exactly the by now familiar
pattern used already for the determination of the ordinary r. A close step-
by-step examination of this procedure, as explained in B, shows that it
applies with some obvious changes to the modified case. It is clear how the
definition (4.20) extends to the generalized retarded products used in
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Chapter VI (7) of B. In the adaption of the existence proof of B, Chapter VII,
we use that the restriction of (~ + / - m)-1 r( ... , p + ~, ... ) to the mass
shell p2 = m2, t2 = A2, exists, as has already been mentioned in connection
with equation (4.16).
We have noted earlier that the right-hand side of the modified GLZ equa-

tion contains terms depending only on the ordinary r-functions. This occurs
for the first time in order 6 = 2, hence the modified r2 do not all vanish
in spite of (4.21).
We return to the main stream of the argument of this section. Up to now

we have considered models with a fixed 6. Now we proceed to considering
ð-dependent families of solutions.

In a finite order a we can select a unique solution {03B4r03C3} (including
the for fixed 6 among the minimal solutions by prescribing a certain
finite number of normalization constants. These constants we can, e. g.,
choose to be the values at the p-space origin of some specified derivatives
of certain after discarding the momentum-conservation ~4 factor

(see B, Chapter VIII, for examples). For 0  6 fi 1 the minimal necessary
number of such constants can be shown to be independent of b. If we

choose them as differentiable functions of 5, then the corresponding br~
will also be differentiable in b. This fact one can ascertain by examining
the explicit construction of as described in B. For 03B4 = 0 minimality
fixes the solution uniquely, as we shall show later on. Hence no additional
conditions are necessary in this case. In order to obtain a differentiable
minimal family of the type just described in the whole interval 0 ~ ~ ~ 1

we choose the normalization constants such that they tend for 6 - 0
towards the values of the corresponding quantities in the minimal 
We prove :

LEMMA 4 . 3. - Any solution ora. 0/ the ~ = 0 model can be imbedded into
a differentiable famil y 03B4r03C3 of solutions for 0  6 fi 1, such that 03B4r03C3MS is

independent oj’ b.

For the definition of rMS see (3 . 21 ).
Lemma 4.3 is again proved by induction with respect to 6. The lemma

is true in order a = 1, since the only non-vanishing function in this order
is the b-independent 3-point function (4.10).
Assume that the lemma holds in orders r  a. Let aY~ be a differentiable

family of solutions such that °fa = °r~.. Define

"(1) The CTP considerations of this chapter get rather involved due to the compli-
cated CTP behaviour of the spinors ~, but this does not create any essential problems.
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D has the same symmetry and covariance properties and the same x-space
support as r, and its restriction to the mass shell exists in the same way
as for r. ~b~ satisfies GLZ-like equations obtained from the GLZ equa-
tions for by differentiation with respect to 6. This gives on the left-
hand side the usual difference of two D with exchanged variables. On the
right-hand side we obtain terms which differ from the original GLZ terms
by the substitution of a D03C4 for one of the r03C4 factors. In addition there are
terms coming from the ð-dependence of the kernel factors ~N. Consider
the integral shown in (3.33) in order 7, with N replaced by aN, and see
what happens on differentiating with respect to 6. Because of the

symmetry of the integrand in £f, differentiation of each gives the
same contribution. We can therefore differentiate only and multiply
the result with y. This gives

For the two factors and we substitute the WT expressions (4.16).
The terms in which ~y is added to an internal variable do not contribute,
since they vanish on the corresponding mass shell after multiplication
with (~T 2014 m) or (Ij + m) respectively. This was already noted after equa-
tion (4.19). There remain terms of the form

and similar terms in which two 03C8-variables or two 03C8-variables are

concerned. Comparing this with the modified GLZ equations one finds
th~t

solves the same GLZ-like equation as aD6 and has all its desired linear

properties. The notation Pi, P‘~ means that the variables p;, or p~, p f respecti-
vely, are modified.

Vol. XXIII, n° 1 - 1975.



86 O. STEINMANN

Since aD~ and both solve the same GLZ-like equation, their diffe-
rence is of the form

~~ a polynomial with suitable symmetry and covariance properties. The
polynomial _ _

will then also have these properties, and

is again a differentiable family of solutions coinciding with the given solu-
tion for b = 0. The ð-derivative of is But from (4 . 23) we see that ~D6,
multiplied with + m) vanishes on the mass shell p2 = qJ = m2,
hence is independent of ð, which proves Lemma 4 . 3.
We learn from Lemma 4. 3 that for each solution of the auxiliary model

6 = 0 there is a solution of the physical model 6 = 1 such that the physically
relevant quantities coincide. Conversely, to each solution for 6 = 1
there is a 6 = 0 solution with the same rMS, as can be proved in the same
way. We can therefore use the 03B4 = 0 model for the determination of the
physical rMS and can study the consequences of second minimality in this
simpler model (8). In what follows, r03C3 stands for unless noted otherwise.

Let us determine the asymptotic degree

given by first minimality. We use the results of B, Chapter VIII. From (4.10)
we obtain

Let r~~ be constructed in the same way as r~, starting from the same ;( = ri,
but in a theory with masses Lemma B. 8 .1 becomes

By Theorem B.8.2 ~ increases for h - co slower than any positive
power 03BB~, ~ &#x3E; 0 arbitrarily small. In analogy to (B. 8 . 3) we obtain

This estimate is relevant only for the r(1 that do not vanish identically
because 1(1 --_ 0. For these vanishing functions, and they comprise in any
finite order all but finitely many, we have d = - oo.

(8) As a side remark we note that in the 03B4 = 0 theory the A-2 terms in N are not present.
This is important in view of the fact that eventually we want to go to the limit A = 0.
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The bounds (4.30) do not depend on 6: our auxiliary 6 = 0 theory is
renormalizable in the sense of B. ra(~’, P, Q) is uniquely determined if

This is satisfied, independently of a, in all cases except

The 3-point function {3, 0} is one of those vanishing identically in all
orders (9), so that (4. 30) is not relevant in this case. In the case {4, 0} we
are at the borderline of onsetting ambiguity. The only possible ambiguity
is of the form ..., ~4) = C/ll,...,/l4¿j4(11 + ... + ~4), with c a totally
symmetric constant tensor. The only such tensor at our disposal is
const. + cyclic in 234). But the resulting h(J violates the conser-
vation condition (3.30) and is therefore inadmissible. (Note that

... , ,~4) = r(,~ 1, ..., ,~ 4), so that the 4-point functions of the 6 = 0
and the 03B4 = 1 models coincide.) In the case { 1, 1} we obtain also d = - 4,
which at first implies an ambiguity of the form const. 6~(...). But this
ambiguity is removed by using conditions (4 .11 ) and, again (3 . 30). The
ambiguities in the 2-point functions {2, 0} and {0, 1 } are removed by
conditions (4.13) and (2 . 24). As a result, we have proved :

LEMMA 4 . 4. - The retarded functions n~ of the 6 = 0 model are uniquely
determined.

We turn now to the second minimality condition. First we prove

LEMMA 4. 5. - For the unique first-minimal solution of the 6 = 0 model
the estin1ates

hold in all orders a of perturbation theo;y.

Proof: From (4 . 29) we obtain

The mass shell ð-functions in the definition of must of course be taken
for mass ~m/~,. Again, diverges slower than any power ~,
E &#x3E; 0. This is a special case of the generalization of Theorem B. 8. 2 to
our model. Namely, let P±, Q+ be the variables to be restricted to the
positive and negative mass shell respectively (1 °). Let

(9) This is the result of a non-trivial cancellation in ~2, ~3) which we will not
prove here.

(lo) P- is a set of 4-vectors and should not be confused with the P- of B, which is a set
of scalar variables. Apart from that and some obvious renaming of variables the notation
is as in B.
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H~ the space of Holder continuous functions defined in B. We first integrate
the product over Jf and P+, Q+. According to Theorem B . 8 . 2

. this yields a function P_, Q-) E E’  E. f~ diverges
for 2 -~ oJ at most like ~~ c6 some fixed constant. This property is not
destroyed by the integration over the remaining variables. The lemma
follows then immediately.

Next we want to show that the first-minimal solution is the only solu-
tion satisfying (4.32).

LEMMA 4.6. - Let

i3 a polynomial, {| k |,| P! = ! Q|} ~ i 0, 1 }, be a solution of ’ the homo-
geneous GLZ equation. Let 0, i. e. 03B2 shall not vanish identically on
the electron mass shell pf = m2. Then

P~~oof : Define

This is a tempered distribution. Obviously

3~ is again a tempered distribution, as can be shown by a slight adaption
of the a = 1 part of the proof of Theorem B . 7 .1. The exceptional case
I Jf! = 0, ~ P = ~ Q ~ - 1, is of no interest in the present context. We

We write 5 as a sum over + IQI terms by decomposing the mass shell b’s
as b~ p2 - m2) = 6 +( p) + 6 -( p). Let ~ be the restriction of to the support
of one of these S-contributions. For ~ we can find a suitable representa-
tion as follows. First, we substitute

and analogously for powers of q;,o. The sign in the second equation accords
with the sign in the 5+(~) factor in the 3-contribution under consideration.
Next, if Jf # 0, we substitute for k1 the sum
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obtaining for i3 the representation

The sum extends over all subsets P’, Q’, of P, Q, the empty and full sets
included. The are polynomials. is the set { ~2, ..., 

In the case = 0, I P I = Q ~ &#x3E; 1 we substitute

The second of these equations does not yet exhaust energy conservation,
because of the elimination of in favour of p2 used in (4 . 39). We
take account of this by solving the equation

for the product and substituting the resulting expression where-
ever the said product occurs in 03B2. This yields

The sum extends over all subsets p2, ..., and all
subsets Q" c Q which do not contain both q 1 and q2. are poly-
nomials.
The representation (4.41) and (4.44) respectively are unique: for any ~

there exists exactly one such representation, and ~ == 0 if and only if all
the or vanish.

Let us, for the moment, treat the as independent variables, i. e. con-
sider 03B22014written in the form (4.41) or (4.44)-as polynomial in the
variables Jf, P, Q, cv(p;), w(qj)’ We decompose this polynomial into its
homogeneous parts. Let i3’~~ be such a part, i. e. a form of degree N with a
representation (4.41) or (4.44). Taking the p-dependence of w(p) again
into account, we obtain for I # 0
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and an analogous result for = 0. Here [ ... ]N denotes the homogeneous
component of degree N in [ ... ]. The right-hand side of (4 . 45) is the special
case m = 0 of the representation (4.41), so that i3§§ # 0 if and only if at
least one ’13P’Q’ # 0.

If N is the maximal degree occurring in ~, we obtain

Under our assumption hMS =1= 0 at least one i3p,~, in at least one ~-compo-
nent does not vanish identically, so that the right-hand side of (4.46) is
different from zero. We note furthermore that rMS is formed with the ampu-
tated functions na of (2.20), so that any admissible homogeneous addi-
tion must contain the factor + m), i. e. satisfy the
Dirac equations (Pi - = m) = 0 for all i, j. This implies
that the limit polynomial satisfies the corresponding massless Dirac
equations, and this in its turn implies the presence of the factors 03A0Ppi
and nQgj in so that N &#x3E; ~ I PI + Q ~ = 2 ! P ~ . (4.46) gives then the
result claimed in Lemma 4.6.
Lemma 4.5 and Lemma 4 . 6 permit us now to conclude that the unique

solution with first minimality of Lemma 4.4 also satisfies second minima-
lity, and that any other solution with second minimality yields the same rs.
For, according to (4.35) and (4.32), the addition of a homogeneous solu-
tion to the na of Lemma 4 . 4 increases unless ) 5i ) + 3 4.
This leaves exactly the same candidates for ambiguities as in the discussion
of first minimality (see the paragraph following (4 . 31 )), and the possible
ambiguities are discarded by the same arguments as used there.

Because of Lemma 4. 3 these results carry over immediately to the 6 = 1
model : the second-minimal for 03B4 = 1 are the same as those for 6 = 0,
hence uniquely determined. But the 03B4 = 1 model is exactly the physical
model defined in Section 3, except that in Section 3 we did not demand
the WT identities. However, the WT identities have only been used to obtain
the estimate (4 . 32) for the second-minimal Lemma 4.6 and the unicity
proof for derived from it do not use the WT identities, i. e. our minimal

solution { r~ } is unique within the wider conditions of Section 3, without
assuming the WT identities. This completes the proof of Theorem 4.1.

5. LOCAL OBSERVABLE FIELDS

The only observables considered until now are the fields and ju.
In this section we want to discuss briefly some more general observables.
We understand the term « observable » in the general sense of including
the local operations of Haag-Kastler [13]. Of course, we are dealing not with
an abstract algebra of observables, but with an algebra of operators in our
Hilbert space §. Also, we do not insist on these operators being bounded.
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We assume that all observables are functions in some sense or other of

« observable fields », or O-fields for short. An O-field is a Wightman field B(~)
in ~ which is local relative to the fundamental fields F, ~, ~ :

[B(~ F(x)] = [B(~ ~(x)] _ [B(~ ~{x)] = 0 for (x - ç)2  0, (5.1) &#x3E;

and which commutes with the charge Q :

Under the Lorentz group B shall transform according to a (one-valued)
tensor representation.

Because of the general notion of « observable » that we are using B need
not be self-adjoint. However, B*(ç) is an a-field if B(ç) is one.

According to a result of Borchers’s [14] (5.1 ) implies that all O-fields are
relatively local among themselves. In particular, any O-field commutes at
space-like distances with the special 0-fields ~ and A~, so that we can use
the formulation of QED in terms of A instead of F that we have introduced
in Section 3.
The O-field B is completely fixed by its Haag coefficients, hence by the

retarded functions of one B-variable and any number of ~, and A-varia-
bles. B-variables in the argument of a retarded function will be denoted by
a barred greek letter : (, ..., p, .... In the Haag expansion of B enter only
the amputated functions ra with all A, 03C8, variables on the mass shell.
~ and r" are defined as in (2.20). The B-variable is never amputated and
need therefore not be separated from the rest by a semi-colon. The index n
in r" will again be dropped, r henceforth standing for r".
The r-functions with one B-variable p satisfy GLZ-equations of the

form (3.33), p being one of the external variables. On the right only one of
the r-factors contains p, so that the GLZ-equations are linear in the as yet
undetermined functions r(..., p, ... ). These functions also satisfy all the
familiar linear subsidiary conditions. Of course, no restriction to a mass
shell in p need exist, since B is in general not associated with any particle,
so that a mass shell is not defined. Because of (5 . 2) the r( ... , p, ... ) with
unequal numbers of 03C8 and 03C8 variables vanish.
We develop r( ... , p, ... ) into a perturbative expansion (4 .1 ) and deter-

mine its coefficients r(1 recursively by solving the GLZ equations, using
the P, Q) from Section 4. The right-hand side of these GLZ equations
vanishes in 0th order, hence ro(p, Jf, P, Q) is of the form (4.8). Inserting
this into the Haag expansion and transforming into x-space we find
that Bo(ç) is a sum of local Wick products of the free fields Ao, ~o,
and their derivatives, i. e. of terms of the form 

.

with /3 = 2a. The D; are derivatives of arbitrary orders. If we demand that
our fields are tempered, i. e. that their Haag coefficients rMS are tempered
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distributions, then Bo is a sum of at most finitely many terms (5.3) [15].
Because of the linearity of the problem we can assume without restricting
generality that Bo is the monomial (5.3).

In higher orders 6 &#x3E; 0 we demand second minimality, i. e. minimality
of ~ P, Q)). The resulting expression for the O-field B can be
considered a generalization to interacting fields of the Wick product (5.3)
and is called the normal product ... DyA(~)). Our procedure
of determining this normal product is a transposition of Zimmermann’s
canonical method [16] to our formalism..
The vacuum expectation value of an O-field need not vanish, i. e. we can

have y = 0 in (5. 3). This means = c, a constant multiple of the
identity. Since the 1-point function r(p) does not enter the GLZ equations,
our minimality requirement implies then vanishing of all r~(p, ... ) with
a &#x3E; 0, so that B(ç) = Bo(ç) = c. In what follows we consider only the non-
trivial case y &#x3E; 0.

The determination of ra( ... , p, ... ) follows exactly the recursive method
used for P, Q). The constructions and existence proofs of B are
immediately applicable. The methods used in Section 4 for the discussion
of second minimality are also easily extended to the present case. We
introduce again the auxiliary theories with 1 and consider solu-
tions satisfying WT identities obtained from (4.16) by inserting an addi-
tional variable p into all the terms. That the WT identities can be satisfied
in all orders is proved in the same way as in Section 4. This induction
proof holds, provided that the WT identities hold at the start of the
induction. This is here the order a = 0, not 6 = 1 like in Section 4.

We start from the form (5.3) that Bo takes in the physical theory 6 = 1.
The retarded functions ro(p, ... ) of this field can be calculated explicitly,
taking due account of the ambiguities inherent in the definition of r. Only
the ro(p, Jf, P, Q) with different
from zero. A possible form of this non-trivial ro is

with

The Di are polynomials obtained as Fourier transforms of the deriva-
tions D~. The variables are I = ( P = { Q = ~ tiq~ ~ . The
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indices ai, 6~, belong to the fields in (5 . 3), i. e. they are associated with p.
The sums run over all permutations ..., 6a), etc.

It is easy to verify that (5.4) has all the desired properties and; if substi-
tuted into the Haag expansion, reproduces (5 . 3) : this ro is physically
equivalent to any solution of the a = 0 GLZ equation leading to (5.3).
But, because of = 0, (5.4) satisfies the WT identity

when we define r- := 0. The aro of the auxiliary theories are set equal
to ro by definition, so that they, too, satisfy the WT identity.
With the methods of Section 4 we find then that the minimal Haag

coefficients Jf, P, Q) of the physical theory 6 = 1 are the same as

those of the unphysical theory 6 = 0. Therefore we can use this simpler
theory for the discussion of the ambiguities in 
For the 03B4 = 0 theory second minimality is again a consequence of first

minimality, hence we use this simpler condition. Let the polynomial
multiplying ~4( ... ) in (5 . 4) be homogeneous of degree N. Then

Let a be the number of A-factors, b the number of ~-factors in (5.3). We
introduce again the functions r03BB03C3 belonging to a theory with masses 039B/03BB,
and starting with ro = ro. The factor A- 2 of (5 . 5) is not scaled. We find
in analogy to (4.29)

hence

As was the case for (4. 30), this bound is independent of (1. This means that
the possible ambiguities in B~ are of the same form in all orders. Moreover,
the number of ambiguities is finite, because the unicity condition

is satisfied for all but a finite number of { I P |}-combinations. The
larger the number y of factors in (5.3) and the higher the order of the
derivatives D~, the larger is the number of ambiguities in the definition
of B.
We conclude the section with two important remarks.

I) Consider the 0-field characterized by the 0 th order

We have N = 0, a = 0, b = 1, and from (5.9) and (5.10) we obtain
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as unicity condition for 5i, P, Q). It is easy to see by comparing the
respective lowest order Haag coefficients that

j/l the electromagnetic current. A close scrutiny of our construction in
higher orders shows that 

-..

is a solution for B~ in all orders. This particular solution is singled out
from the set of all possible solutions by demanding:

satisfies for 6 &#x3E; 0 the normalization condition (4.11)
with p replacing ’-,

c) ’-2’ ~3) and r~(p, p, q) satisfy the conservation conditions

Under these additional conditions we find ~ = and in this sense
the canonical expression

is true in our formalism.

2) We have demanded validity of the WT identities for r(p, ...). In
contrast to the situation of Section 4 this is here a genuine restriction of
ambiguity. Therefore the question arises how the WT identities can be
motivated. In dealing with this question it is important to remember
condition (3 . 29), which has been ignored up to now in view of Theorem 3 .1.
The ... ) as calculated above do not yet give the correct Haag coeffi-
cients ra, they must first be multiplied with the factors N(~~) in all A-variables.
This has been done in the zero-order ansatz (5.4) but not in higher orders.

be the correct r-function obtained by multiplication of r with fIN.
Now we take into account that eventually we want to pass to the limit A = 0.
In any attempt to attain this limit the A - 2 terms in the factors of rc are
bound to create problems unless they can be shown not to contribute to
the physically relevant quantities. This is the case if ..., lj, ... )
vanishes on the mass shell, and this is true if the WT identities are satisfied
for ra. Hence the restricted set of O-fields singled out by the WT identities
has a much better chance of existing in the limit A = 0 than the other
O-fields.
We have already mentioned that the necessity of going from r to rc has

been allowed for in the zero-order expression (5.4). As a result we find
there the factors N containing the denominators A - 2, so that again we can
expect serious problems if we wish to go to the limit A = 0. These problems
are avoided by narrowing the set of possible O-fields by admitting for Bo
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only expressions of the form (5.3) in which fields replace the poten-
tials A/l,o. The factors N/lil) of (5.4) are then replaced by

and this exists in the limit A = 0. Only for this restricted class of O-fields
can we hope to prove existence, in some appropriate sense, of the
limit A -~ 0. In canonical language, the O-fields singled out by the fore-
going considerations are those that are invariant under gauge transforma-
tions of the second kind.
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APPENDIX

COVARIANCE

The methods used in B, Chapter IV, to prove the existence of invariant solutions of
the GLZ equations do not generalize easily to the more complicated, covariant instead
of invariant, situation met with in QED. These methods were also unnecessarily complicated.
We shall therefore describe here an alternative method with a larger scope.
We consider the GLZ equation

r(SZ) :t r(H Q) = 1(0) (A. 1)
where I is known. The double arrow in the second r signifies exchange of the first two varia-
bles. We assume that I transforms under the proper Lorentz group (11) L~ according to a
certain finite dimensional representation, the product of the representations associated
with the fields occurring in I. We wish to prove existence of a solution r of (A. 1) trans-
forming under 1~ with the same representation as I. This representation, being a direct
product, is in general not irreducible. It can be decomposed, however, into irreducible
components, and we look for an r containing the same irreducible representations. The
number of components in I is, of course, finite.

Let be a solution of (A. I) satisfying all the subsidiary conditions except possibly
the covariance condition just discussed. According to a result by Bros et al. [17] we can
decompose r’ into a finite sum of terms, each of which transforms under some irreducible
representation. Moreover, each of these components has the same x-space support as r’
itself: it is retarded.
We can find the irreducible components of r’ explicitly as follows. Let

= 

20142014 , be 
the infinitesimal generators of L~+. Then

are two independent Casimir operators. An irreducible representation is completely
specified by the corresponding eigenvalues Cl,2 of C1,2.

The part of r’ transforming under the representation (c 1, c~) is given by

Here the two products extend over all those eigenvalues cy which belong to at least
one of the finitely many representations in r’.
The Cy are totally symmetric under permutations of the cv;. In x-space M; takes exactly

the same form (A. 2) as in p-space, hence the ~~ are local operators. This means that 
has the same symmetries and the same x-space support as r’.
The components belonging to representations not present in I solve the. homo-

geneous equation r + r ++ = 0, as is seen by applying the projection (A. 4) to (A. 1 ). Sub-

(11) The discrete symmetry P can easily be dealt with by symmetrization of the solution
and is therefore not considered here.
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tracting them from r’ results then in a new solution of (A.1) which now satisfies all the
requirements, including covariance.

Application of Ma, and therefore of C~ to the distribution r’ does not increase its asymp-
totic degree, because multiplication by raises the asymptotic degree by at most 1, while
differentiation with respect to ~ lowers it by at least 1. Hence the new solution r has at
most the same asymptotic degree as r’ : it is minimal if r’ is.
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