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Coherent states and symmetric spaces. II

M. I. MONASTYRSKY and A. M. PERELOMOV
Institute for Theoretical and Experimental Physics, Moscow, USSR.

Ann. Inst. Henri Poincaré,

Vol. XXIII, n° 1, 1975,

Section A :

Physique théorique.

ABSTRACT. - Properties of system of the generalized coherent states
related to representations of class I of principal series of the motion groups
of symmetric spaces of arbitrary rank have been studied. It has been proved
that such states are given by horospherical kernels and are the generaliza-
tion of the plane waves for the case of symmetric spaces. The case of sym-
metric spaces of the tube type is studied in more detail.

0. INTRODUCTION

This paper deals with the further study, started in paper [1], of the systems
of generalized coherent states (CS), which are not square-integrable. The
generalized CS introduced in paper [2], as well as usual CS [3] [4], turn
out to be very convenient for the solution of a number of problems possess-
ing a dynamical symmetry.

Thus, for instance, in papers [5] the problems of boson and fermion
pair creation in alternating homogeneous external field were solved with
their aid. In paper [6] CS for the rotation group of three-dimensional
space (previously introduced in paper [7]) were used to obtain estimates
for the partition function of the quantum spin system. In papers [8] [9]
such states were applied in the so called Dicke model describing the inter-
action of radiation with matter.

In the following we shall call generalized CS for short simply CS. Note
that the CS system is an overcomplete and non-orthogonal system of
states of Hilbert space.
Under the additional assumption on square-integrability a number of
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24 M. I. MONASTYRSKY AND A. M. PERELOMOV

properties of such systems was considered in papers [10]-[14]. In paper [1]
some CS systems which are not square-integrable, namely the systems
related to the unitary irreducible representations (UIRs) of class I of the
principal series of symmetric space motion groups of rank 1 were studied.

In the present paper we study the CS systems related to the symmetric
spaces of arbitrary rank.
The special attention is paid to those symmetric spaces which are Her-

mitean spaces and can be realized in the form of tube domains.
It is known that there exist four series of domains of this type (so called

classical domains) and one special domain. The classical domains of this
type are the following coset spaces:

SU( p, p)/SU( p) x SU( p) x U( 1 )
X~ = 
X2p = SO*(4p)/U(2p)
X~ = S0o(p, 2)/SO( p) x SO(2)

All these domains may be considered as the phase spaces of special dyna-
mical systems and their motion groups-as the dynamical symmetry groups
of the corresponding Hamiltonians. Note that there is a relation between
the CS method and the so called problem of quantization considered by
Kirillov [15] and Kostant [16].
We shall not consider here this relation but we shall give only some

examples of physical problems related to the considered groups.
1. The SU( p, p) group for odd p is the dynamical symmetry group of

the problem of boson pair creation in alternating homogeneous external
field [5].
The SU(4p) group is the dynamical symmetry group of the corresponding

problem of fermion pair creation [5].
2. The symplectic group S p( p, R) is the group of linear homogeneous

canonical transformations of boson creation and annihilation opera-
tors = 1, ..., p) [17]. The space, which is dual, according to
Cartan, to the space X~, appears in the problem of distribution of eigen-
values of random Hermitean matrices considered by Dyson 

3. The space, which is dual, according to Cartan, to the space X2p,
appears in the consideration of linear canonical transformations of fermion
creation and annihilation operators. 

’

4. The SO( p, 2) group is the group of conformal transformations of

p-dimensional Minkowsky space, i. e. pseudo-euclidean space of signa-
ture (p - 1, 1). It is also the symmetry group of spherical functions of
p-dimensional space. For p = 3 the SO(3, 2) group (de Sitter group) is

locally isomorphic to the Sp(2, R) group. For p = 4 the SO(4, 2) group
is locally isomorphic to the SU(2, 2) group, and its Lie algebra is isomorphic
to the algebra of Dirac’s matrices. Since recently, the study of representa-
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25COHERENT STATES AND SYMMETRIC SPACES. II

tions of SO(4, 2) group has been of particular interest in view of considera-
tion of the field theories with conformal invariance. See for example review
paper [19].

In the present paper in Sec. 1 the necessary facts are collected from the

theory of induced representations and the CS system is constructed for
UIRs of principal series of class I and it is proved that the kernels which
determine the coherent states are constants on horospheres of correspond-
ing symmetric space.

In Sec. 2 the horospheres in the symmetric space are studied. In Sec. 3
the properties of the classical domains are investigated. The tube domains
are studied in more detail. Finally in Sec. 4 explicit formulae for the coherent
states are obtained and their properties are investigated.

1 COHERENT STATES RELATED TO REPRESENTATIONS
OF PRINCIPAL SERIES

Let G be a connected real semisimple Lie group with finite center. It

is well known [20] that such a group possesess a series of unitary irreducible
representations (UIRs) of class I, i. e. the series of UIRs for which in the
Hilbert space there is a vector invariant under the action of maximal

compact subgroup K of the group G. Let T(g) be such a representation.
According to [2] the system of generalized CS of the type (T, ~) is called
the set of states {T{g) can be easily seen that the elements gl
and g2 which belong to one coset G on K determine the same state. There-
fore CS of the type (T, |03C80 )) is given by the point of the cosetspace X = G/K.
Just choosing some element gx E G in the coset gK corresponding to the
element x E X we get the CS system { x ) } :

For representations of class I of the so called principal series we may
use their explicit realization as induced representations. Let us remind it.
The group G has the Iwasawa decomposition: G = KAN where K is the
maximal compact subgroup of group G, A is Abelian noncompact subgroup
and N is the maximal nilpotent subgroup. Let M be centralizer A in K,
B be the subgroup G equal MAN, E be coset space BBG = MBK and

dJl(ç) be K-invariant measure on E which is normalized so that = 1.

The UIRs of the principal series of class I are called the representations
of the group G induced by unitary characters XÀ(b) of the subgroup B
trivial on M (i. e. x~(b) = 1, if b e M). In other words, UIRs of the principal
series of class I can be realized in the space of square-integrable functions
L2(S, The operator of representation T~(g) is given by the formula:
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26 M. 1. MONASTYRSKY AND A. M. PERELOMOV

where

and elements E E and g) E A are determined from the expansion

Here g~ and g, are the elements of cosets space BBG corresponding to

elements ç and ~. Note that the quantities and XÀ are functions of
the quantities ~ g). 

q a d x are functions of

For the symmetric space X = G/K of the rank r (1) such representations
are determined by the real numbers ..., ~ (2). The function g)
which determines the representation T~(g) satisfies the functional equa-
tion ’ .

Going to another function = if necessary, we may assume
that

It means that

where x = x(g) is the coset gK corresponding to element g.
It is easy to see that the function 1 belongs to and

it is invariant under transformations of the maximal compact subgroup K.
Acting on it by the operator T~(g) we obtain the expression for coherent
states in the ~-representation :

Thus CS x ) is determined by the x ), where ~ e E and x e X.
Let us go now to the study of properties of these kernels. First of all we

shall prove.

PROPOSITION 1.1.2014 For fixed 03B6 ~ E the kernel ç, À x ~ is constant
on orbits of the group N~ which is conjugate to the group N present in the
Iwasawa decomposition G = KAN and having the fixed point ~.

Proof - Let us fix the point 03B6~ and consider the function
= = C(Å( ç, g) as function of the variable g. Let us denote

(~) Let us remind that the rank of symmetric space G K is called the number of inde-
pendent metric invariants of a pair of its points. This number equals to the dimension of
the subgroup A of the group G [21].

(~) As is shown in paper [22] all representations of principal series are irreducible. In
this paper it is also proved that for the spaces of rank I each UIR of class I belongs either
to principal or to complementary series which is obtained from the principal series by
means of an analytic continuation in /L
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27COHERENT STATES AND SYMMETRIC SPACES. lI

by H~ the stability subgroup of the point ~. Putting ~ _ ~ in ( 1. 4) we

obtain 
’~4 ~ ~4 ~ ~~4 ( 1. 9)

i. e. the group H~ is conjugated to the group B = MAN. Correspondingly,
the nilpotent part N~ of the group H~ is

and, as it is easy to see, it keeps the point ç to be fixed.
Let h be an element of N~ : h = Then the function h)

is completely determined by the quantities g) which enter in the expan-
sion (1.4). Furthermore

Consequently, a(~ h) = e (e is the identity element of the group G).
So we have proven that for h E N

From this it follows also that for h E M~, M~ = g~ 

Finally, for hE Aç = g~ ~ 1 Agç, h = g~ 1agç

Let us consider now an arbitrary element of group G. Then g = gxk and
therefore , __ _ , .._ , , , , ~ , " ,.,

Let us denote y = xh, h E N~. It means that

Now in view of the functional equation ( 1. 5)

Therefore

Note that when h goes over the whole group N~, xh goes over the orbit
of this group in the space X. These orbits are called the horospheres of
maximal dimension of the symmetric space X or the horocycles. Hence the
proposition 1.1 I can be formulated in the following equivalent form.

PROPOSITION 1.1’.2014 The kernel ~ ~, À x ~ describing coherent state x ~
is constant on horocycles of group N~.

It is naturally to call these kernels by horospherical kernels. This relates
the coherent state method for the considered case to the horosphere method
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28 M. I. MONASTYRSKY AND A. M. PERELOMOV

developed in paper by Gel’fand and Graev [23] and considered in detail
for the case of symmetric space in paper by Helgason [24].

Let us consider the connection of coherent states with the horocycles
of symmetric space in some more detail.

2. HOROCYCLES IN SYMMETRIC SPACE

Note once more, that horospheres of maximal dimension in the space X
or horocycles are called the orbits of subgroups conjugated to the sub-
group N. In this conception one usually includes also horospheres of
lesser dimension-the horospheres of non-general position, but here we
shall not consider those. Let us consider the properties of horocycles.

PROPOSITION 2.1. - Let SZ = ~ ~ ~ be the set of horocycles. Then
Q = G/MN.
The proof is given in paper [24].

PROPOSITION 2.2.

1 ) K~G/K = A/W
2) = A x W

where W is the Weyl group of the symmetric space: W = N(A)/M, N(A)
is normalizer A in K.

Every horocycle may be represent in the form

(0 is the origin of the space X), while the elements k and mk determine
the same horocycle, and the element a is unique. Hence the quantities ç
and a determine the horocycle w unambiguously. This gives the possibility
to introduce the horospherical system of coordinats: the element ~ E E
is called the normal to horosphere w, and element a is called the complex
distance from the horocycle woo
The important special case of symmetric space is the case of Hermitean

symmetric space, i. e. the case of symmetric space possessing a complex
structure. It is known that these spaces can be realized in the form of

bounded domains in n-dimensional complex space the space C".
In this case we can obtain complete description of boundary of symmetric

spaces and its horospheres by using the conception of boundary component
introduced by Pyatetsky-Shapiro in [25].

DEFINITION 2.3. - Let X be the Hermitean symmetric space which is
realized in the form of a bounded domain ~ in the space C", a~ be the

boundary of ~. The subset /J’ c d~ is called by boundary component, if
every analytic curve cp(t) (t e  B) which as a whole belongs to ~
and cross as a whole belongs to ~ .

Annales de l’Institut Henri Poincaré - Section A



29COHERENT STATES AND SYMMETRIC SPACES. II

As an arbitrary Hermitean symmetric space is a direct product of irre-
ducible Hermitean symmetric spaces then, in order to prove the following
statements it is sufficient to consider only irreducible spaces. Let ~ be an
irreducible Hermitean symmetric space of rank r realized in the form of
bounded symmetric domain in C", d~ be the boundary of this domain.
In this case the following proposition is valid.

PROPOSITION 2.4. - The number of nonequivalent components a~ is
equal to r.

Proof. - This statement follows from the explicit enumeration of these
components for the case of classical domains [25]. The proof which does
not use the enumeration see in [26]. From this proposition it is easy to
obtain the description of orbits in ~.

LEMMA 2.5. - The number of nonequivalent G-orbits in a~ is equal
to r.

Proof. - From the proposition (2.4) the existence follows of r analyti-
cally nonequivalent components ~ ~‘~ (i = 1, ..., r). Let us consider the

set Fi = It is easy to see that F~ n F J = 0, if i ~ j, and that
geG - 

can be transfer into with the help of analytical automor-
phisms of domains ~. So we obtain r G-nonequivalent orbits.
As well known, among the subsets of boundary there exist Bergman-

Shilov boundary (BS-boundary). Let us describe this boundary in the terms
of boundary components.

LEMMA 2.6. - The BS-boundary consists of zerodimensional compo-
nents.

Proof - Let be analytical curve tp = (rp 1, ..., tpn)’ where

..., tpn(t) are functions which are analytic in the disk ) t  8. Let
us denote M = sup ( + ... + 12). Then

and equality is valid if and only if all are constants. From the defini-
tion of BS-boundary S follows that for each analytical function z E !Ø
there exist the point of BS-boundary so E S in which the quantity I
achives maximal value. Then it follows from the above discussion and from
the definition 2.3 that the boundary component which contains the
point so consists only from this point. Let us apply the construction of
lemma 2.5 to the point so. The orbit Gso coincides with the BS-boundary.
For the following study of the boundary and horospheres it is appro-

priate to use another though equivalent definition horospheres which was
introduced by Gel’fand and Graev [23].

Vol. XXIII, n° 1 - 1975. 
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30 M. I. MONASTYRSKY AND A. M. PERELOMOV

Let us consider a subgroup P c G so that

Here g(t) is the one-parameter subgroup in G such that g(t) E A. Let
us denote by Ni the nilpotent part of group P.

It turn out to be that to different one-parameter subgroups corresponds
different horospheres, which are orbits of subgroups, conjugated to the
subgroup N~.

In the book [2J] it is proved that in any boundary component there
exist one and only one point 5 which may be connected by geodesic with
the fixed point xo of domain ~. This geodesic is, of course, not unique.

PROPOSITION 2.7. - The number of nonequivalent horospheres equal
to r. Indeed, let us fix the point xo (for example the origin of ~). The geo-
desic x(t) has the form g(t)xo, where g(t) is one-parameter subgroup such
as g(t) E A. The number of different nonequivalent oneparameter subgroups
equal to r. The geodesic x(t) determine the point 6 = lim x(t) of boun-

dary It is easy to see that to different boundary components corres-
ponds different type of geodesic.

Let Ri be the subgroup of all transformations of group G, keeping each
point of to be fixed in the following sence : for each geodesic x(t) such
that lim x(t) = 6 E follows that p(x(t), gx(t)) = 0 for g E Ri. Here p(x, y)
is distance between the points x and y. It is evident that g(t)~ = 6. Then

so lim p(x(t), g(x(t)) = 0. Let us denote x(t) = g(t)xo, then we get
lim (g(t)xo, gg(t)xo) = 0. Hence lim g( - t)gg(t) = e and the nilpotent sub-

groups of group Ri coincides up to conjugation with nilpotent parts of
subgroup P in (2 .1 ).
The following result will be presented without a proof.
The stability subgroup G of point so E S of BS-boundary is isomorphic

to the group KoAN, where Ko is compact subgroup which contains the
centralizer M. From this follows that dim dim S (The proof see e. g.
in [26]).

In conclusion this section we show that there exist the natural equi-
variant mapping of space E into space S. Let us remind the definition of
equivariant mapping.

DEFINITION 2.8. - Let X and Y are G-invariant spaces. The mapping
/ : X -~ Y is called equivariant mapping if the diagramm

is commutative.

Annales de l’lnstitut Henri Poincaré - Section A



31COHERENT STATES AND SYMMETRIC SPACES. II

Each normal ~ E M/K determine the unique horocycle containing the
origin. This horocycle determine the point BS-boundary. It is obvious
that this mapping commute with the action of group G.
Note that the group K acts transitively on the space E and hence from

equivariance of mapping E - S follows that K acts transitively also and
on BS-boundary.

Let us consider in more detail the classical domains.

3. CLASSICAL DOMAINS

As is known (see e. g. [25] [27]) there exist four types of classical domains

Here SO*(2p) be subgroup of group SO(2p, C) which leave invariant the
form 1 + ...

where SOo( p, 2) denotes the connected component of the identity trans-
formation of the group SO( p, 2).

All these domains are irreducible Hermitean symmetric spaces except
the domain type IV for p = 2. Let us give the table of the principal characte-
ristics of classical domains. Note that dimensions the space X and E connec-
ted by the formula dim E = dim X - r, which follows from the formula
dim G/K = dim G/MN.

Let us denote by Ko the maximal compact subgroup of stability sub-
group Go of the point so E S. As the group K acts transitively on S, then the
group Ko is stability subgroup of the point so relative to the action of
the group K. Let us remind that Go = KoAN.

Vol. XXIII, n° 1 - 1975.
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The compact subgroup Ko may be described as follows

As it is known there exist two realizations of classical domains : bounded
realization (of the type of unit disk) and unbounded realization (of the
type of upper halfplane).
The bounded realization is described in detail e. g. in [27]. In this paper

is given also description of BS-boundary. To reach our aims it is convenient
to use unbounded realization. We restricted to the consideration of the
most important class of domains namely the tube domains.

Let us remind that the homogeneous domain ~ is called the tube domain,
if it may be represented in the form : ç¿ = { Z : Z = X + iY, 
where V" c [R" is convex selfadjoint homogeneous cone.
The tube domains belong to the four classical series and there is one

exceptional domain.

Here E~ is certain real form of the exceptional group E6 is the compact
form of the exceptional group E6, dim qøv = 54 and the rank the domain qøv
equal to 3.

It is known that the possibility of representation of domain ~ in the
form of tube domain is connected with the structure of its root diagram.
The domain * has a form of tube domain if its root diagram has the type Cp
and cannot be realized as a tube if the root diagram has the type BCp
(see e. g. [26]).

In order to obtain explicit formulae for the kernels describing CS one
should find the character x~(a) of the representation T~. Note that geometri-
cally the element a E A characterizes the complex distance between parallel
horocycles.

PROPOSITION 3 .1. - Let o be origin in qø, 03C90 = N . 0 be the horocycle
parallel to 03C9 and x E Then the element a E A defining the complex
distance between the horocycle cvo and w may be found from the formula

Annales de l’Institut Henri Poincaré - Section A



33COHERENT STATES AND SYMMETRIC SPACES. II

The paper [23] contains the proof of this statement for the case of coset
space of a complex group. This proof can be also applied to our case because
the family of horocycles is transitive relative to the action of group G.

Let us go to the explicit calculation of the complex distance and some
necessary subgroups for the four series of the classical tube domains.
Some general results will clear up the structure of these calculations.

PROPOSITION 3.2. - Any analytic automorphism of tube domain which
fixes infinity point has the form

where A is an affine transformation of the cone V on itself and B is a real

vector.

PROPOSITION 3.3. - The BS-boundary S is a part of the boundary c~
which consists of the points {Z = X, Y = 0}. BS-boundary is invariant
under the automorphisms of the domain and dimR S = dimC D.

It follows from the proposition 3.2 that all transformations of the

BS-boundary are of the form (3.7). Consider all transformations of the
group G which keep the point s of the BS-boundary S to be fixed. Choose s
as the infinity point. The stability group of this point is Go = KoAN.
If Go acts on ~ as the group of fractional linear transformations

Let us describe the nilpotent subgroup of the group G for the case of
tube domains.

PROPOSITION 3.4. - Let N be the nilpotent subgroup present in the
Iwasawa decomposition of G which acts in ~. Then N is a semi-direct
product N = N1N2 where N1 1 is a nilpotent subgroup of the group
of affine transformations of the cone and N2 is the commutative invariant
subgroup the translation group of the BS-boundary.
The group Gi of affine transformations of the cone V acts as follows

where A belongs, correspondingly, to (notations see in [21])

where SU*(2p, R) x R+ is the group of real quaternionic matrices, R+ is
a multiplicative group of positive real numbers,

Vol. XXIII, n° 1 - 1975.



34 M. I. MONASTYRSKY AND A. M. PERELOMOV

Note that the nilpotent subgroups N 1 are the maximal nilpotent sub-
groups of the above groups G, and any element Y eV can be represented
in the form

where A E N 1, Yo is the diagonal matrix with positive elements.
Note that the cones connected with the domains of the types ~I, ~II,
~v can be described as:

I) The cone of positive definite complex hermitian matrices in the
case of ~I.

II) The cone of positive definite real symmetric matrices in the case
of ~II.

III) The cone of positive definite hermitian-quaternion matrices in
the case of 

IV) The cone of positive definite « hermitian » 3 x 3 matrices over the
Cayley numbers (octonions) in the case 

It follows from the above considerations that in the root diagram Cp
multiplicity m of the roots ± (e; ± e~) in the case of ~I is equal two, m = 2,
in the case of m = 1, in the case of III m = 4 and in the case of = 8.

Finally, we note that for the domain of the type the cone consists of
a set of vectors {~=(~1, ...~p);~-yi- ... -~&#x3E;0,~&#x3E;0}.

Let us consider the classical tube domains in more detail. We shall use
the following notations: A+-the matrix hermitian conjugated to the
matrix A, A &#x3E; 0 where A is a hermitian matrix means the positivity of
all eigenvalues of the matrix A, matrix with p lines and q columns,

matrix of order p.

3A. The tube domains of the type I.

Let us remind that this domain is defined as

or

where G = SU( p, p~ _ ~ g ~ acts on ~ as the group of fractional linear
transformations.

where A, B, C, D are the matrices of order p.
The BS-boundary consists of the hermitian matrices Z = X, Y = 0.
From the invariance of the BS-boundary it follows that

Annales de l’Institut Henri Poincaré - Section A



35COHERENT STATES AND SYMMETRIC SPACES. II

(where £ is a real number. Let us put £ = 1. Then it is easy to verify that the
condition (3.11) is equivalent to the condition

where E = 1 B ~ J and I is the unit matrix.

It means that G = SU(p, p).
Note that in the case of the bounded realization the matrix g satisfies

the condition

From relation (3.12) we can find that the Lie algebra of the group G
consists of the following matrices: .

Let us give some useful information on the structure of the group G and
its Lie algebra ~.

1 ) The maximal compact subgroup K = ~ k } is isomorphic to the

group SU(p) x SU(p) x U(l). Its Lie algebra Jf consists of the matrices:

2) Exponenting the matrix (3.15) we obtain the expression for a matrix
kEK

3) The Cartan decomposition % = Jf + * is as follows

and k is obtained by the formula (3 .15).
4) The maximal Abelian subalgebra can be chosen in the

form .s~ = f a 1

a is a real diagonal matrix. Correspondingly, the group A consists of the
matrices

where A is a diagonal matrix with non-negative elements.

Vol. XXIII, n° 1 - 1975.



36 M. 1. MONASTYRSKY AND A. M. PERELOMOV

5) The subgroup M (the centralizer A in K) consists of the following
matrices: 

~ ’

where T is a diagonal unitary matrix with det T = ± 1. Correspondingly,
M = U(l) x ... x U(l) ( p - 1 times).

6) Choose the point s of the BS-boundary S as the infinity point. Then
as follows from (3.10), the stability group Go of this point consists of the
matrices

The group Go acts on ~ as:

The group Go acts transitively but not simply transitively on ~. For
example, the stability subgroup of the point Zo = iI is isomorphic to the
group SU(p) (see table I) and in this realization it is a group of matrices:

7) Now we shall find the maximal nilpotent subalgebra of the algebra %
or, what is the same, of the algebra ~o. To do this we shall find the root
subspaces of the algebra ~o which correspond to the positive roots with
respect to the algebra /. We have

Calculating the commutator we get the following conditions:

Now we introduce the short notations: eij - the matrix with elements
p

[eij]ke = (where ðij is the Kroneker symbol). Then 

Now we will investigate the cases B = 0 and A = 0 separately :

and other commutators are equal to zero.

Annales de l’Institut Henri Poincaré - Section A



37COHERENT STATES AND SYMMETRIC SPACES. II

Thus the matrix of the form .

where A = l!ij or A and B = 0 corresponds to the root (cy - e~).
The multiplicity of this root is equal to 2.

b) A = 0, B = eij or B = i{eij - ~), i  j. These matrices corres-

pond to the root eI + e~, i  j and the multiplicity of this root is equal
to 2 also.

c) A = 0, B = + = 2B. This is the case of the root 2e; and
the multiplicity is equal to one.
The nilpotent subalgebra corresponds to the set of all positive roots.

So . consists of the matrices such as

where A is the upper triangular matrix with diagonal zero, and B is hermi-
tian matrix.

8) The subalgebra N is the semidirect sum of two subalgebras
~ = 81 ..V?

where matrices A, B satisfy the conditions of point 7 and . ,11’2 is the ideal
in .11’.

9) We can find the group N exponenting the algebra 

where A is the upper triangular matrix with unities on the diagonal, B1 is

hermitian matrix, N is the semidirect product of two groups N 1 and N2,
where

The group N 1 naturally acts on the cone V

Its action on the cone is not transitive. The orbits of this group may be

naturally called as the horocycles of the cone. The group N2 acts as the
translation group.
So the horocycle c~ of the whole symmetric space can be represented

bv
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38 M. 1. MONASTYRSKY AND A. M. PERELOMOV

10) The group AN in this realization consists of the following matrices :

Here A is the upper triangular matrix with positive numbers on the dia-
gonal. The group AN acts simply transitively on D and AN1 acts on the
cone V.

11 ) Let Z = X + iY be a general point of the domain ~. It is easy to
see that we can transfer the point Z into the point iY by the transformation
of the group N2 and then by the transformation of the group AN transfer
it into the point Zo = il. Therefore Z = X + iAA +, Y = AA +. The
matrix Y is positive definite and it can be represented unambiguously in
the form where A is the complex matrix with unities on the dia-
gonal, Yo is a diagonal matrix with Yii &#x3E; 0. It follows from 7a that A corres-
ponds to the set of roots (e; - e~), i  j. The elements of the matrix Yo
define the complex distance between matrix Y and the standard horocycle
passing through the point Zo = iI. It is not difficult to obtain the following
expression for the elements yi

where ~~(Y) is the principal lower angle minor of i-th order, Ao(Y) = I.
The values yt~ are positive according to Sylvester cryterion of positive
definition of the matrices Y and the cone V is defined by the inequalitites :

It is easy to find the half sum of the positive roots p = (pl, ..., pp)

Thus we obtain

Now we shall consider the domains of the second type.

3B. The tube domains of the type II.

The considerations are the same as in the case of domains of the first
type with some evident modifications. So we only describe the matrix
realization of the domain and formulate the final results.

and in the tube realization
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where X and Y are real symmetric matrices of the order p and Y is positive
definite. The group G = Sp( p, M) acts as the group of the fractional linear
transformations (3.10). And matrices A, B, C and D satisfy the following
conditions

2) Let Zo = iI, Z = X + iY. As in 11) of the previous section we

obtain Y = AA’ (here A is the real upper triangle matrix with’ positive
elements on the diagonal). Let us represent the matrix Y as AYo A’ where A is
the upper triangle matrix with unities on the diagonal and Yo is the diagonal
matrix with elements ..., ypp. We obtain

The halfsum of the positive roots p = (pi, ... , in this case is repre-
sented by , , ’" 

Now we are going to domains of the third type.

3C The tube domains of the type III.

The domain of the type III is a tube if p is even. In this realization

where X and Y are the matrices of order 2p satisfying the additional condi-
tion :

where

It is convenient to break all matrices of order 2p in p2 blocks of matrices
of order 2 considered as quaternions

where

As it is known elements to, !k (k = 1, 2, 3) are the basis of the noncommuta-
tive but associative algebra with the division over the field of the real
numbers.
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As usual we can define the conjugate quaternion q = qktk and
the norm N(q) = qq = qq ==~(~~)~ + qkqk. As it is easy to verify

Let us define the complex-conjugate quaternion by the formula

qc = q° + where q~ is a number complex conjugate to qk. Then
q+ = 

Let X’ = (xke) be the quaternionic hermitian matrix of order p satisfying
the condition (3.35).
From (3.39) we obtain

But as X+ = X, then xke and consequently matrix X is real

quaternionic and hermitian as the matrix Y too.
Positive definite matrices Y (Y &#x3E; 0) form a cone V in p(2p - 1)-dimen-

sional real linear space. The affine transformations of the cone V have
the form

From condition the matrix Y to belong to the cone V it follows the condi-
tion

So A must satisfy the condition

i. e. be real quaternionic but not necessary hermitian. The real quaternionic
matrices form a group SU*(2p) x R+. This is the group of the affine
transformations of the cone V.
We shall not enumerate the properties of the third type domains because

they are analogous to those of the domains of the type I and II.
We note only that the root diagram is as in the previous cases of the

type Cp. It contains the roots + (e; ± i  j with multiplicity 4 and the
roots ± 2e; with multiplicity 1. It follows from this that p = (pi, ..., pp)
has the form 

_ _

3D. The exceptional domain DB

Beside the « classical » tube domains an exceptional domain exists
in ~2’. It is ~v = x SO(2) where E~ is the real form of exceptional
simple group E~. This space can be represented as

where X and Y are hermitian matrices for order 3 x 3 over Cayley numbers
and Y is positive definite matrix (Y &#x3E; 0). The matrices Y form a convex
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selfconjugated cone in the space 1R27. The rank ~ equals to 3. The root

diagram is of the type C3. The multiplicities of the roots ± (el ± e2),
± (e2 ± e3), ~ (e3 iL ei) are equal to 8 and of the roots ± 2ei, ± 2e2,
+ 2e3 are 1. The vector of the halfsum of the positive roots is represented
bv ~

3E. The domains of the type IV.

All of these domains are tubes.
This domain can be realized in the form:

where the cone V is defined by inequalitites

or in the other metrics:

The affine transformations of this cone can be represented by

where A is a real matrix of order p such as A’EA = ÀE (A is some positive
number) and the matrix E has the form

for the cone (3.45) and

for the cone ( 3 . 45’). 
’ ’ 

_ 

It follows from this that the group of affine transformations of the cone
is SO( p - 1,1) x R+. The dimension of the group A is equal to 2. It contains
the dilatation ~ - and the Lorentz transformation in the plane y i, yp,

Now we shall find the root spaces following our general scheme. Choose
the metric matrix in the form (q = p - 2)
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In this metrics

The group A consists of matrices

and acts as

The Lie algebra .s~ = { a} is represented by

where a is the real diagonal matrix of the second order.
Let us find the Lie algebra ~ of the group G using the equation for its

elements:

It is convenient to represent A in the block form

So the condition (3.51) is equivalent to the following conditions

The root spaces are found by the condition

Calculating the commutator we obtain the following relations

From this it is easy to obtain

a) All I - e12 corresponds to the root e 1 - e2 with the
multiplicity 1.
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multiplicity 1.

multiplicity p - 2.

multiplicity p - 2.
If we make the transformation in the root space

we obtain the root diagram of the type C2

Here and 2/2 have the multiplicity 1 and (11 + f2), (~ -~2) have the
multiplicity p - 2.
The halfsum of positive roots has the form

The metrics (3 .45’) is obtained by means of the transformation A ~ UAU-1i

where

and the elements of matrix Yo are given as

4. PROPERTIES OF THE COHERENT STATES

Now we will obtain the explicit formulae for the system of coherent states
and study their properties.

Note that studying the tube domains we have used unbounded realiza-
tion of the space X = G/K. Therefore it will be convenient for us to give
the formulae for the horospherical kernels  ~, À x ~ = in this
realization.
Let D be a tube domain. There exists an involutive automorphism 03B8 of

this domain 0 : ~ - ~, 82 = I with the fixed point Zo E ~. After this
transformation the point s = 00 of BS-boundary transforms at the point
s=0.
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The map 0 has the following form:
1 ) For the domains 

2) For the domain ~

where

Therefore if the nilpotent subgroup of stability group of the point s = 00
is the group N then the stability group of the point s = 0 will be N = ONe- 1.
As it follows from Bruhat decomposition (see e. g. [24]) the diffeomor-
phism N on the open everywhere dense set in E = MBK exists. So we
can take that ç E N. We shall use the scheme of sec. 1 to obtain the explicit
formulae for the horospherical kernels (with some evident modifications).
Let be a K-invariant function on E. The function in

unbounded realization is found from the condition

Let us denote {( ç) = ~~(~) f (~) then

So

where

So in order to find W£(j) it is sufficient to calculate the multiplicator

Find at first a~(Z, where Ço corresponds to the point s E S, s = oo. As
it is known, a~(Z, depends only on the function a(Z, We have
obtained the explicit expression for the distance a(Z, in sec. 3. And

hence to obtain the final expression we can use the known formula for the
Jacobian of the transformation

Using the explicit expression for p : p = ..., pp) we finally obtain:

PROPOSITION 4.1. 
-
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Here p is the rank of the domain are the diagonal elements of the
matrix Yo (see (3.9’)) and p; are obtained by (3.32) in the first type case,
(3. 34) for (3.43) for (3.44) for g)v and (3. 55) for ,

Using the involutive automorphism 9 and the group properties of the
multiplicator o~(Z, ç) we obtain the general formula. As the group N is
the stability subgroup of the point s = 0, s E S and the group N acts transiti-
vely on E we shall obtain

hence

here ~ _ ~°, and = 

So 03A803BBZg(03B6) = 03A803BBZ(03B6), g E N03B6 as it follows from the Proposition 1.1 (Here n03B6
is an element of the group N transforming and N~ = is
the stability group of the point ~).
Note that

It coincides with the well known Poisson kernels formula (see e. g. [24]).
The system of CS is overcomplete and nonorthogonal and possesses a

number of remarkable properties some of which are enumerated below
(We omit the proofs of these propositions).

1. The system {! x )} is complete. It follows from irreducibility of
the T~(g) representation.

2. Coherent states are normalized to unity

It follows from the unitarity of the T~(g) representation.
3. Operator T’‘(g) acts transitively on the set of CS {~x ) }

4. Horospherical kernels are the eigenfunctions of the Laplace-
Beltrami operator of the space X = G/K

It follows from combined results by Harish Chandra [24] [28] and from the
fact that the space of representations of class I consists of zonal spherical
functions on X.

5. Coherent states are nonorthogonal to each other
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where r = r(.x, y) is the distance between the points x, y E X, is defined

by formula 1&#x3E;;.{t) =  0 ~ T~~ g) ~ I 0&#x3E; or

Here T = !(xo, gxo), xo = 0, 0~(r) is the so called zonal spherical function.
6. The expression by hypergeometrical function in the case of rank I

is known [28] for this function. But only its asymptotic behaviour in general
case is known

where W = N(A)/M is the Weyl group of the space, C(À.) is defined by

and the measure is normalized so that

(Let g = k(g) exp H~g)n(g) ; g E G. It follows from Bruhat decomposi-
tion [24] that NMAN is dense in G and for g = namn, n is unambiguously
defined by g). It was obtained [30] the explicit expression for C(~,)

Here B(a, f3) is Beta function, E+ is the set of positive roots, are the

multiplicities of roots,  a, is the scalar product in the space of roots.
7. The system of functions describing the CS satisfies the following

relations of completeness and orthogonality

Here the functions 5(x, x’), 5(~ ç’) normalized so that

and C(A) is defined in (4.16).
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The proof of relation (4.17) follows from generalization of Schur lemma
(see, e. g. [15]). The relation (4 .18) follows from the completeness of the
system of spherical functions.

8. Let us point out an interesting connection of considered problem
with those by Furstenberg [29] and some problems related to generaliza-
tion of Fatou theorem on symmetric spaces (see, e. g. [24]).
As was shown in [29] it may be introduced the concept of the boundary

group and the boundary of the group.
Let U = G/P where P is the closed subgroup in be the Borel measure

on U and g E G ; g acts on  as g. (E) = (g- E), E be the subset in U.

DEFINITION 4.2. - The space U is called the Furstenberg boundary
and P is the boundary group if U is compact and for every probability
measure  on U can be found the sequence gn so that 6(j) (6(j) is
the Dirac ~-function, the convergence is considered in the weak topology).
The maximal boundary 0 exists. As it follows from [26] for symmetric
spaces of noncompact type C = E = BBG.
The representations of class I are characterized by horospherical kernels

T~) which satisfy the equation (4.10). The following generalization of
Fatou theorem for eigenfunctions of Laplacian is valid:

PROPOSITION 4.3. - Let

where

Note that for £ = - ip, P~(x, ç) = is the Poisson kernel. Then

Here x(t) is the geodesic in the space X. We can consider the boundary
values /(~) of the function F~(x) as distributions and hyperfunctions. The
proof uses the formulae (4.17), (4.18) but is more complicated.
Some class of representations of the group G on every Furstenberg

boundary can be constructed. For nonmaximal boundaries these repre-
sentations correspond to representations of degenerate series. And so
analogous systems of CS can be constructed.
As was shown in [14], CS for representations of discrete series are given

by generalized Bergmann kernels. For representations of principal series
we obtain the connection with generalized Poisson kernels.

9. Now we consider the decomposition of representation T~( g) into
irreducible components at restriction by a maximal compact subgroup K.
It follows from the Frobenius reciprocity theorem (see, e. g. [20]) that the
Vol. XXIII, n° 1 - 1975. 4
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decomposition contains those and only those representations of the group K
which when being restricted by the subgroup M contains the identity
representation. Thereby the problem is reduced to that for the compact
groups.

In conclusion let us note that both the results and the calculation methods
for classical domains of the tube type are also valid for other Hermitian
domains.
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