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Section A :

Physique ’ theorique. ’

ABSTRACT. - We study the generating functional r {A} for vertex
functions in ~(~p)2 models and prove the Callan-Symanzik equations
for the weakly coupled model. Under reasonable (but unproved)
assumptions, we show that the dimensionless physical coupling constant g
in cp2,3 models achieves its maximum value at the critical point. We discuss
a more general picture of « critical point dominance ».

1. THE CALLAN-SYMANZIK EQUATIONS

The Euclidean ~(cp)2 quantum field models are parameterized by (mo, go)~
Here mo is the bare mass and go = is the dimensionless bare charge.
The bare charge ~,o is the vector of coefficients of the interaction polynomial
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28 J. GLIMM AND A. JAFFE

We discuss the variation of the solution with respect to these bare para-
meters, and the transformation from bare parameters to a physical para-
meter space (m, g). Here m is the physical mass, inf (spectrum (M) ~ {0 })
where the mass operator M = (H2 - p2Y1-. A physical coupling constant g
may be defined by the momentum space vertex function (for I ~ 3) as

where

For j = I, we take g(1) = (p). The field strength renormalization
constant Z is

where ( ) denotes expectation in the Euclidean ground state measure.
For increased flexibility we consider theories without the field strength
renormalization, i. e. with Z #- I. Then the Green’s functions and vertex

functions can be considered as functions of Z as well as go). We note
that

or in terms of the generating functional

and the field strength renormalization amounts to choosing the theory
with Z = l.

Under scaling, one can check that Z is invariant (dimensionless) and
that

see the appendix. Thus the definition of in ( 1 . 2) is scale invariant.

The Callan-Symanzik equations [77] ] describe a one parameter family

of perturbations of the form ~p2 : After a new choice of

bare mass (see the appendix), this family defines a smooth curve
Z(6)). The Callan-Symanzik equations express the variation

of the theory with respect to 6. One side of the equation is an expression
for which can be recognized as a prescription for cp2
vertex insertions into the lines of the vertex functions. The other side of

the equation is the chain rule, 
-
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29CRITICAL POINT DOMINANCE IN QUANTUM FIELD MODELS

Here r is the generating function for the (amputated, one particle irredu-
cible) vertex parts.
We now study (1.5) for weak coupling. In [5] we prove the existence

of r, for weak coupling, and its analyticity in A and cr. Let JAt6) be the
solution of the equation

where G { J, 7 } is the generating function for the Euclidean Green’s func-
tions and GX = From the Legendre transformation

we find

for AEH1, 1 and 1 small. We use the notation

(with mo(Q)- Wick ordering). The field strength renormalization then
amounts to choosing Zo to be the Z of (I .3), but for the time being we
regard Zo as an independent variable.
We have

and

In order to simplify subsequent formulas, we assume that ~ is even.
so G( 1 )(J) = 0, and then

For J regular, we establish ( 1. 6) by Dimock’s asymptotic calculations [3].
First we keep mo fixed, and consider the interaction ~(~p) + (1 : ~2 : .
Then the mass renormalization transformation (see appendix) is used to
obtain ( 1. 6) with Wick order. For the techniques to prove conver-
gence of the integral in (1.6) with J E H_1, see [5, Chapter 2]. The key point
is that since H_1 1 is an L2 norm, we must be careful to eliminate terms
linear in J, or in localized portions Jx of J. Since 9 is even, these terms
do not contribute to the cluster expansion of (1.6).
We note that the integrand ,

Vol. XXI, n° 1 - 1974.



30 J. GLIMM AND A. JAFFE

which clusters can be written

where

so

Recall that G { J, 7} === In ~ ~ the generating function for

connected parts. Then regarding Zo, 6 and ~,o as independent variables,

We eliminate the J dependence in (1.8) by using Gx {J, 7} = A(x) and
the fact that - r xy { A, r} is the kernel of the operator inverse to 6 ~.
Thus by ( 1. 8),

In order to equate ( 1. 9) to the right side of (1.5), the only problem is to
show that the indicated derivatives exist. We specialize further to the case
of a pure interaction. For small coupling, there are no multiple phases,
and so m and g are functions of mo and go. The existence of derivatives

and ~0393/~g0 follows from the analyticity of r { A, 7} in the bare
parameters [5], while exists by ( 1. 3b). The fact that is diffe-

rentiable with a bounded inverse is the second transformation of the

appendix. We regard Z as a function of mo and go, defined by ( 1. 3), and
we take Zo = Z. By scaling = ~Z/~m0 = 0 and = 1, while

and exist by [9]. Thus the derivatives and 

taken at constant ~,o exist also. We show below for weak coupling
that (mo constant) and ~g/~m0(03BB0 constant) (i. e. exist and

are not zero. Furthermore, it follows that the Jacobian go)
is not zero. The proof of the Callan-Symanzik equations for weak 
models, namely

is reduced to the following £ result :

Annales de 1’Institut Henri Poincare - Section A



31CRITICAL POINT DOMINANCE IN QUANTUM FIELD MODELS

THEOREM 1.1. - For a pure ~p4 interaction with weak coupling, the
coordinate transformation (m, g) H (mo, go) is differentiable with a

nonvanishing Jacobian, for real bare parameters and for g defined by (L 4).

Proof : 2014 We have already seen that it is sufficient to show exists
and is nonzero. With mo fixed, is proportional to

where the amputated Green’s function Ga equals

Using Dimock’s proofs [3] of the asymptotic formulas for the Euclidean
Green’s functions, (1.11) can be evaluated as

which is "# 0 for small coupling.

2. CRITICAL POINT DOMINANCE

In this section we discuss the global nature of the transformation
(m, g) H (mo, go) for the ~p4 model. Unlike the mathematical proofs of
Section 1, our discussion here is a heuristic picture, based on reasonable
assumptions about the physical parameters (m, g). In a multiple phase
region we consider a pure phase. We conclude that the charge g achieves
its maximum value gc for the 03C642 or 03C643 model at the critical point (m = 0),
which we presume exists. Here gc may be infinite, but corresponds to finite
values in the bare parameter space (mo, go). We relate this behavior to /3(g),
one of the coefficients in the Callan-Symanzik equation, and are led in the
superrenormalizable cases (d = 2, 3) to :

THE PICTURE OF CRITICAL POINT DOMINANCE. The curve ~(cr)~ has
a unique zero and increases monotonically to + 00 on each
side of this zero. The curve decreases monotonically to zero as

t 03C3 - 03C3c I -+ 00, with a (possibly infinite) maximum gc at 6 = see

Figure 1.
We now discuss our assumptions and conclusions. For d = 2, the

cluster expansion deals with the 6 ~ +00 limit [6]. After scaling (to
ensure that the mass remains bounded) the model converges as 03C3 -+ 00
to a free theory. In this limit ~, ,: ~ ~ ~ mo, and g ,: go; the monotonicity
Vol. XXI, n° 1 - 1974. 3



32 J. GLIMM AND A. JAFFE

of or follows by perturbation theory, see [3]. The more general
result that is monotonic for 6 &#x3E; (1, was established in [7]. We remark
that in the Ising model, a stronger result holds for the inverse correlation
length ç - 1. For Ising2, ç- 1 is monotonic in both the single phase region
and the two phase region, see, e. g. [8], vanishes at the critical point,
near which there is a linear power law behavior ~ -1 = a ~ r 2014 .

FIG. 1. - Critical Point Dominance.

For d = 3, the 6-perturbation produces no new ultraviolet divergences
in a finite volume [4], and we expect the same behavior in an infinite volume.
Thus for d = 3 the same picture should hold for as in d = 2. The dimen-

sionless coupling constant in three dimensions is g = - r~(0)/~.
This picture of monotonicity of rn(6) is related to a choice of variables

made by Symanzik in analyzing the characteristics of the Callan-Symanzik
equations [77]. Symanzik chooses a dimensionless parameter s to repara-
meterize the rn(6) curve, 03C3 = 7(s), starting from a point m(0), and such
that

Since (2.1) can be integrated to yield m(s)2 - it is a valid assump-
tion only on a branch of the 6 curve for which ~(r)~ varies monotonically
between 0 and oo. Since ~(r)~ is finite for 6 finite, and (assuming continuity)
is bounded for r bounded, ~!(r)~ -~ oo can occur at most for 6 -+ ±00.
In terms of the new parameter, an s-curve corresponds to a monotone branch
y &#x3E; Q~ or 6  ~ of a 6-curve.

Let us assume that on each s-curve the use of physical coordinates m(s)
and g(s) is justified. We now argue that g is monotone in s on each side of

Annales de l’Institut Henri Poirrcaré - Section A



33CRITICAL POINT DOMINANCE IN QUANTUM FIELD MODELS

the critical point. Let j8 = By scaling, {3 is a function ~3(g) of g alone.
(Here we use the fact that the 6-curves and s-curves are mapped into one
another by scaling. Then the tangent lines

transform as m- 2 and 03B2 is scale invariant.) Thus the equation

is a first order ordinary differential equation.

PROPOSITION. Assume g and are bounded for 
for all G &#x3E; 0. Then is monotone in  and ~i(g~  0.

2014 By the assumed bound, ~3(g) satisfies

giving existence and uniqueness for the solution of the equation (2.2).
Let (s, oo) be the maximum interval on which g(s) is strictly monotonic
in s. Then j8(g(5)) = 0 and by the uniqueness of the solution to (2.2),
g(s) = g(s) = const. for s E [s, oo). However, the d = 2 cluster expansion [6]
concerns the 03C3 -+ 00 (s -+ oo) limit. In this limit g r: go, m : mo and
go(s) -+ 0 as s -+ oo . By (2 . 1 ) and perturbation theory (which is asymp-
totic [3])

as g  0. We conclude for small g that ~3(g)  0, a contradiction to
~3(g) _ /~(g(s)) = 0, so s = - oo, completing the proof for d = 2. For d = 3,
we expect a similar result with {3 = - const g + 0(g2), but the required
estimates have not yet been proved.
We now argue that for 03C3  03C3c, g(s) --+ 0 as s --+ oo (cr --+ - oo). In

that case, the proposition also applies for 6  ~~, i. e. in the two phase
region. We appeal to the Goldstone picture of the ground state, in which
the ground state is determined by the minimum of the Euclidean action
function V, and where the curvature at the minimum approximates the
mass. For the model with 7 « 0, the minimum of V(’) occurs at
± (6 /%~o)~ = ± x. At the minimum, the curvature if V(2)(i: x) = 2 ,

while V(3)(:t x) = ± (6~,0 ~ and V(4)(:t x) = ~,o. Hence the dimen-
sionless couplings at the minimum ± x are for d = 2,

We conclude that as 7 -~ -co, and after scaling so that the mass (21 (11 1 2
remains bounded, the model converges to a free field (or a sum of two free
fields, depending on the boundary conditions). By (2 . 4), we also see that the
Vol. XXI, n° 1 - 1974.



34 J. GLIMM AND A. JAFFE

Goldstone picture suggests in this limit, and by (2 .1 ),
~(~) ~ 2014 ~ in this limit. In other words (2. 3) holds for 6 -~ 2014 oo as well
as for 03C3 -+ + oo. A similar picture holds for the quartic coupling g(4)
(but not g~3~) in three dimensions.
With this picture of critical point dominance, the function ~3(g) has a

zero at g = 0, and a second zero at g = g~ (possibly inanity). The coupling
constant is bounded by g~, and {3 is represented in Figure 2. The zero at
g = 0 governs the canonical (short distance, ultraviolet) behavior of the
theory, while the presumed zero at g governs the infrared (long dis-
tance) behavior.

This question remains open whether gc = oo, in which case the function
~3~g)  0 for g &#x3E; 0. In order for gc to be finite, it is necessary that ~,~ = 0
and that A vanish as 6 -+ 7~ in such a way that //~ -+ gc’ oo, then

our picture of critical point dominance says that gc is the maximum value
and in the two phase region f3~g) returns to zero along another curve

j8  0, see Figure 3.

Critical theories (g = g~) need not be scale invariant, but lie on the cri-
tical line of bare parameters go,c (see the appendix). This line is transformed
into itself by scale transformations. If a scale invariant ~ model exists, it is
obtained by an infinite scaling of a critical (but not scale invariant) theory.

In four dimensions, as opposed 4, the coupling constant ~, is

dimensionless, i. e. g = A. Hence the first order contribution to does

Annales de 1’Institut Henri Poincaré - Section A



35CRITICAL POINT DOMINANCE IN QUANTUM FIELD MODELS

not contribute to ~3(g~ and explicit calculation shows that the second order
contribution is positive. Hence for weak coupling,

The change in the sign of ~3(g) from d = 2 or d = 3 reverses the roles of
the zeros of j8(g). Thus the zero at g = 0 is the critical zero, g~ = 0, and
governs the infrared (long distance) behavior of the theory. On the other
hand, a zero at g = 0 would govern ultraviolet behavior (and is

expected to be noncanonical). The arguments from the two dimensional
case, applied to 03B2 &#x3E; 0, yield characteristic curves drawn in Figure 5.

As for d  4, we expect in four dimensions that there are infinitely many
critical theories, all interchanged by scaling. These theories presumably
have canonical long distance behavior and infinite scaling of these theories
in the long distance direction should produce a free theory of zero mass
particles. _

Finally we reconsider the behavior of

as we approach the critical point from the single phase region. By the
definition of Z, Z ~ ~G~"(0), so

Vol. XXI, n° 1 - 1974.
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Each of G(2)-, G(4)- and m2 is assumed to have behavior characterized by
a critical exponent. We use the terminology of statistical mechanics,
see [7~]: the mass m is the inverse correlation length ~ -1, and G~"(0) is
proportional to susceptibility = If~ = 1 ), the e-depen-
dence in the neighborhood of the critical point is given by

In field theory, we (m20 m20,c - 1 ) 1 . The four point correlation func-
/

tion G(4, has the gap exponent ~4’ which relates its critical behavior to

the behavior of 

Thus

For the Ising model in the single phase region (s &#x3E; 0) the exponents are

so

Here we use exponents as in [70], and the d = 3 exponents are approximate.
While there is no known relation between the Ising model exponents and
the field theory exponents, Wilson and others have argued that they may
coincide. These exponents do not distinguish for d = 2, 3 whether g has
a finite limit at the critical point. Furthermore, these exponents indicate
that the dimensional coupling constant ~,~ = 0.
The critical exponent ~ describes the rate of decay of the pair correla-

tion function at the critical point,

and 11 ~ 0 is the case of anomalous (noncanonical) dimensions. In the I2
1

model, 11 _ - . This anomalous dimension indicates that the propagator
4

decays faster than it would in the presence of zero mass particles (i. e. 11 = 0).
Thus we do not expect zero mass particles in the critical theory and we

Annales de 1’Institut Henri Poincare - Section A



37CRITICAL POINT DOMINANCE IN QUANTUM FIELD MODELS

expect the critical point, the bound Z ~ m2G{2~ ~ (O)
shows

By the known inequality (2 - ~)03BD ~ y, we have 03B6 ~ ~03BD. Furthermore,

( =- for I2, using a recent calculation of Tracy and McCoy [12], and thus
for I2 the inequality is an identity. Thus anomalous dimensions, ’1 &#x3E; 0,
indicate Zc = 0.

Rigorous bounds on the two point function [6] exclude zero mass par-
ticles in the two point function, and assuming m -+&#x3E; 0 as the critical point
is approached, these same bounds then prove Z -+&#x3E; 0. For Ig, ~ ~ .04 ~ 0,
so again we expect Z,. = 0 and no zero mass particles in the cp3 field theory.
It is expected (up to logarithms) that the exponents are given by their
canonical values in 1,.

Vol. XXI, n° 1 - 1974.
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APPENDIX

REVIEW OF SCALE

AND MASS SHIFT TRANSFORMATIONS

We assume d = 2 in the appendix. The corresponding results for d &#x3E; 2 are easily derived.

SCALE TRANSFORMATIONS. - On Fock space, the scale transformation is a unitary
operator U defined on an n-particle state f ~ by

for ex &#x3E; 0. The free field 03C6m0 of mass mo, and its Hamiltonian transform as

Also the no particle state Qo is invariant.

Furthermore, on Wick monomials, scale transformations map

With an ultraviolet cutoff K and box of length L,

since the Wick ordering constant is invariant under scaling in two dimensions :

The vacuum energy for

is the same as the vacuum energy for

Thus

Thus for a cutoff field theory, scale transformations on Fock space provide a unitary
map between Hamiltonians with different cutoffs, but the same go. Since the vacuum

expectation values converge as K, L -~ oo, we obtain in the limit an isomorphism of
theories with constant go. We may define a unitary transformation

between the Hilbert spaces Jf, of two such theories, where U03A91 = Q2,

and

Theories described  by different values of the parameter 0 are 
’ physically equivalent, and 

in the plane " correspond  to various points on lines of constant go, see 
" Figure " 6.

Annales de l’Institut Henri Poincare - Section A



39CRITICAL POINT DOMINANCE IN QUANTUM FIELD MODELS

MASS SHIFT TRANSFORMATION. - The second transformation arises from a unitary
operator on a Fock space over a finite volume (with e. g. periodic boundary conditions).
In the infinite volume limit, we obtain an isomorphism of free fields of different mass, and
of interacting fields as follows: we define in the Q-representation the scale (Bogoliubov)
transformation,

with -

We note that 8c varies over (201400,00) as m1/m0 varies over (0, oo). Also

where E is the (finite) vacuum energy density

Let ~ be an interaction polynomial for mass mo,

Define J as the transformed polynomial,

and note 03BB(j)0 = (j)0 for j = 2N, 2N - 1. Let Hl and Hl be the respective interaction Hamil- ..

tonians. Then for H(mo, ~,) = + H1(mo, ~.) - E(mo, ~ where E is the vacuum energy,
we have

Vol. XXI, n° 1 - 1974.
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Here

We note in particular that ÀÖ2N) &#x3E; 0 and

so -~ 2014 oo as m1 -~ oo. Thus for mo fixed, 2b2) ranges over (oo, 2014 oo) as m1 varies
over (0, (0).

1. - Given H(mo, ~o)~ there exists a bare mass m1 for which

with~=0. 
_ _.. _

For the /.o : rpmp : + Q : interaction, is monotonic in m1, so the zero is unique.
(More generally, + has a unique zero for large.) Hence with Äo fixed, we
obtain a one parameter family of theories, parameterized by 6, with the interaction

Äo : In our diagram of couplings, this 6 line is horizontal, with its height determined
by ~,o, see Figure 7.

For a pure ~p4 interaction, (A4) becomes

- With the choice = 0, ~.o’ = 6, mo fixed, mi = we then have

Annales de 1’Institut Henri Poincaré - Section A



41CRITICAL POINT DOMINANCE IN QUANTUM FIELD MODELS

Remark 2. - For the interaction, is a differentiable function of 6, bounded

away from zero for Q bounded away from - oo.

Remark 3. - The finite volume may be introduced by periodic boundary conditions.
Within the region of convergence of the cluster expansion, the infinite volume theory is

independent of the choice of boundary conditions.
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