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On momentum states in quantum mechanics
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ABSTRACT. - In the algebraic formulation of quantum mechanics a
class of states, called the momentum states are defined. They correspond
to plane wave and wave packet states of ordinary quantum mechanics.
A uniqueness theorem is proved for this class of states. Furthermore a
purely algebraic proof if given of the fact that in any irreducible represen-
tation of the CCR-algebra the von Neumann algebra generated by all

translations is maximal abelian.

0 . INTRODUCTION

The algebraic formulation of quantum mechanics for a system with
n degrees of freedom consists in defining a dynamical system, given by
the following triplet :

i) the abstract set of observables as the elements of the CCR-

C*-algebra 0394 [1] build on the sympletic space H = R2n and sympletic
form ~ :
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ii) a set of states on the C*-algebra ð,
iii) an evolution for the state (Schrödinger or Liouville equation), we

do not specify more on this point in this work.
We do not elaborate either the notion of such dynamical systems, but

define a class of states, called momentum states. These momentum states
correspond to the plane wave and wave packet states of ordinary quantum
mechanics. The plane wave states are pure state invariant for space trans-
lations, and the wave packet states are integrals over plane wave states.

It is proved that all momentum states with pure point spectrum for the
linear momentum operator are quasi-equivalent with a plane wave state.

. This property yields a uniqueness theorem for momentum states compa-
rable with von Neumann’s uniqueness theorem for Weyl states.

Furthermore it is proved that in any irreducible representation of the
C*-algebra, the von Neumann algebra of all translations is a maximal
abelian von Neumann subalgebra (Theorem 1.6). This property is well
known in Schrodinger quantum mechanics and there the proof is based
on the fact that the spectrum of the momentum operator is the real line.
In our case the spectrum of the momentum operator is not necessarily
absolutely continuous, as can be seen in theorems 1.4 and 1.5. Finally
we stress the fact that the proof of Theorem 1.6 is purely algebraic.

I. MOMENTUM STATES

For a system with n degrees of freedom, consider the real vector space
H = the elements of H are denoted (p, q), p, The space H

has to be looked upon as the classical phase space of the canonical varia-
bles p and q.

Define on H the following sympletic form Q :

h is Planck’s constant and from now on h = 1.

Denote by 0394 the CCR-C*-algebra [1] build on (H, (7): it is the smallest

C*-algebra generated by the functions ~ : H --+ E H, defined by

Addition is that of pointwise addition of functions, the product rule is

defined by

and the involution, indicated by a .*, is given by

For more details see [1].
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293ON MOMENTUM STATES IN QUANTUM MECHANICS

DEFINITION I. 1. A quantum mechanical state or shortly a state is any
positive, linear, normalized form on the C*-algebra.

DEFINITION I .2. A momentum state is any state cv such that the map

q E R" --+ is continuous for each fixed p e R".

Each state cc~ on 1B determines uniquely a representation TIro on a Hilbert
space containing a cyclic vector For reasons of notational conve-

nience we write up the results for 1-dimensional systems. The generalisation
to n-dimensions is trivial.

LEMMA I . 3. - Let M be a momentum state, then there exists a self-

adjoint operator Pro on such that = exp PW is called
the momentum operator.

Proof: For any ç there exists an element

Hence

for q small enough, because co is a momentum state.
Hence the map q --+ is strongly continuous, and by Stone’s

theorem we get the Lemma. 
Q. E. D.

In the following theorems we characterize the momentum states, and
prove properties of momentum states analogous in spirit as in the

uniqueness theorem of von Neumann [2] for the Weyl states on the CCR.

THEOREM I .4. Let c~i be pure momentum states and P~ the corres-
ponding momentum operators on (i = 1, 2). If is not empty
for i = 1, 2 then the states Wt and induce unitary equivalent represen-
tations 03A003C91 and TIro2’

1’roof. 2014 Consider any pure momentum state cc~ on A; let (TI, ~f, Q) be
its GNS-triplet; P the momentum operator; let and the
corresponding normalized momentum eigenvector : = i~~cp~,. Then

Denote 03C6  = then Hence = [?. Since the
state cv is pure, each vector is cyclic, therefore is cyclic, also
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Hence H is generated by the eigenvectors {03C6 | ~R} of P and the state 03C9
is unitarily equivalent to the vector state = ((~ 
x E 4 ; cp~ is the zero momentum eigenvector. Furthermore an easy calcu-
lation shows

Q. E. D.
Denote by 03C9k the state on 1B defined by = It is clear

that is a momentum state for all k E R. It is easily checked that all these
states are pure states [3] and in particular that with the notations of above
(proof of Theorem 1.4) = (03C6k, 03A0(03B4pq)03C6k). These states 03C9k are called

plane wave states [3].
As compared with von Neumann’s uniqueness theorem, remark that in

view of Theorem 1.4 an arbitrary momentum state úJ is not necessarily
a direct sum of copies of the vector state cvo ; e. g. the state

is a state on 0394 which is a direct integral over the state 03C9k which are all

equivalent with 03C90. However what we have is the following result.

THEOREM 1.5. Let cv be a momentum state, such that = 

then co is quasi-equivalent with 

Proof.2014 We have to prove that no subrepresentation 03C0’ of 03A003C9 is disjoint
from 

Let 7T’ be any irreducible subrepresentation of let E be the projection
of such that ~(.) = then I:(EP roE) = and by
theorem 1.4 the representation 7r’ is equivalent with 

Q. E. D.
Theorem 1.4 proves that all pure momentum states with point momen-

tum spectrum induce representation in the Hilbert space the repre-
sentation space of a plane wave state of zero momentum.
For reasonable potentials (tending to zero fast enough at infinity) we

expect that the asymptotic behaviour of the quantum mechanical wave
function is like a plane wave, hence for such systems it may be argued that
the state will induce a representation in 110.
We can write down a configuration representation of ~fo by the following

identification : E 

so the elements are quasi-periodic functions, the scalar product is

determined by the translation invariant mean :
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This is the way in which the usual plane waves of quantum mechanics are
imbedded in 

In the Hilbert space H = I2(Rn, dxn) it is well-known that the von Neu-
. mann algebra generated by the group of unitary translation operators

forms a maximal abelian von Neumann subalgebra of ~(~f). This implies
e. g. all translation invariant operators in ~(~f) belong to this von Neumann
sub-algebra.
As quantum mechanics on ~f = dxn) corresponds to considering

on the algebra A, only Weyl states (i. e. ; continuous with respect to q
and p ; compare with the definition of momentum states (Definition 1.2)
where only continuity with respect to q is required), we generalise this
theorem to all pure states on the C*-algebra A.

THEOREM 1.6. Let OJ be a pure state on the C*-algebra 0 ; Ap the C*-sub-
algebra generated by the elements and 0394q the C*-subalgebra
generated by the elements ERn.

Then and are maximal abelian von Neumann sub-

algebra’s of 

Proof. - We prove that is maximal abelian in therefore

we must prove that njAp)’ = 
The proof for is analogous.
As is abelian c njAp)’ hence

Remains to prove that the sets are equal. Suppose however that 
is strictly greater than then there exists a projection x in 
not belonging to FYJAp)". Let { x }" be the von Neumann algebra generated
by x i. e. {x}" is the set

with arbitrary (x, ~3 E C, then

From (b) and the abelianness of 

From the purity of the state or equivalently the irreducibility of the repre-
sentation 

or :
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hence

From (c) and (d) :

hence

Again as 03A003C9 is irreducible

and (e) becomes

or {x}" == CH contradicting the above assumption.
Hence

_ - 

Q. E. D.

Rem.ark. The proof of Theorem 1.6 constitutes also a purely algebraic
proof of the above mentionned property of the group of translation acting
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