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p. 1-1
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Vol. XX, n° 1, 1974

Section A :

Physique ’ théorique. ’

ABSTRACT. Let J5f be an algebra structure of underlying finite dimen-
sional vector space E; we propose to define a semi-group E of operations
that generalize the Saletan contractions. Many categories of algebras are
preserved by the operations.
The existence of 03A3 implies the one of a lattice of subalgebras of the ini-

tial algebra and every operation determines a lattice of nilpotents ideals
in the transformed algebra.

INTRODUCTION

First recall the Saletan contraction and its principal properties [7].
Let .P be a real Lie algebra, of underlying finite dimensional vector

space E, with the law :

Let E of the form :

such that is regular for t ~ ~ but singular for t = 0.
The Saletan contracted algebra is defined by :

Using the Fitting decomposition of E respect to M;
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2 MAURICE GINOCCHIO

the author shows that the limit (i) exists if and only if :

Under this condition one has a Lie algebra 

The properties given by Saletan are the following ones:
Further contraction by u leads to a sequence of algebras J~), where J~+1)

is obtained by contracting ~(i~ by u. Any algebra in the sequence can be
obtained from any previous one by contraction by a power of u; i. 
can be obtained by contracting by u. This sequence terminates at least
with ~~m), where m is the least integer for which umE = ER.

In every algebra of the sequence the u‘E form a chain of sub algebras.
The subalgebras formed by ER in each of the ~(i~ are isomorphic.
If Ei = Ker u~ for some i, then it forms an ideal in J~+~; ~ = 0, 1, ....

In this paper we define in an algebrical way, an operation that we shall
call « singularization », on certain classes of algebras which are not neces-
sarily Lie algebras.

This operation generalizes the Saletan contraction in the meaning
that it generally needs the extension of the base field and that it leads
with the help of a condition analogous to (i), to a distributive lattice of
subalgebras, that may be peculiarly boolean, and not only to a chain.
As for the « singularizations » themselves, we shall show that they

form a semi-group. We shall finally give three examples in the Lie
algebra sI(3,C): two of them are Saletan contractions, the third one is
of boolean type so the construction is meaning-full.

(See also final remarks).

0 PRELIMINARY DEFINITIONS
1 ) Set :
[K a commutative field of characteristic zero. the ring of polyno-

mials in X; the quotient field, the distributive lattice of poly-
nomials of leading coefficient 1, with the relation order:

a &#x3E; b when a divide b, with a, b E 
a A b = g . t . b(a, b) = l . c . m(a, b) and a V b = t . u . b(a, b) = g . c . d(a, b)

In the next we shall use a sub lattice of n°[x] written [q, 1 ], which is
the set of divisors of q E 

2) Let the set be :

It is obvious that is a subring of !K(X) and that :
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3SINGULAR OPERATIONS ON ALGEBRAS

3) Set a belonging to a finite algebraic extension of IK, that is to say
such that ~(x) = 0 for q E let Xx be the homomorphism of 
on the field defined by : oc.

4) If now E is a K-vector space, one may associate to Xa the homo-
morphism 03C903B1 = I (8) Xa of the Eq(X) = E (8)G( on

the K[03B1]-vector space : E(03B1) ~ E ~K K[03B1].
(I designates the identity on E).
5) At last, let us consider the extension of E : E(X) = E (8) ~ 

An endomorphism u in E (of finite dimension) extends to E(X). Every
element of the ring ~u = g) ~ of the polynomials in u with
coefficients in IK(X), operate in E(X) :

In order to shorten the notation one will write f ~ = J~(u) when /(X) E 

I. ASSOCIATED SINGULAR STRUCTURES

Let J~f be an algebra of underlying space E on IK and J~(X) an extension
of j5f of underlying space E(X).

In the next 2 will designate the algebra as well as the law. One may
define in E(X) a new law 

C being an invertible element of ~u.
The algebra 24Ð(X) is isomorphic to 2(X) by construction.
Let us suppose that u may be such that for one may have :

that is to say : 24&#x3E; operate in 
Let a be such that =0;If(x~ K one has a finite algebraic extension

of IK. If the condition (2) is verified one may apply 03C903B1 to I03A6(x, y) that
which defines a law .p «1) on the space E«1) :

For instance if 2 is real, the operation implies in general the complexi-
fication of 2.

If a E [K, one may have 2«1) not isomorphic to 2 although = E.

DEFINITION. 2014 By means of the condition 2cÐ(X, y) E Eq(X) for x, y E Eq(X)
we shall call « singular algebra associated to 2» an algebra of underly-
ing space the law of which is :

The application J~f --+ 2«(7.) will be called « singularization ».
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II STABILITY OF THE ALGEBRA CATEGORY

Let H an algebra category {Ii}i~I on a space E of finite dimension

on a characteristic zero field IK such that the following homogeneous rela-
tions are satisfied :

for

where :

Gn is the permutation group of n elements.
(i. e. : Associative algebras, Lie algebras, Jordan algebras, ... ).

If

that is to say :

we have, for arbitrary 03BD03C3 and 

Now consider the extended category H(X) obtained by extension of IK

to 

Let : casing I ;

(contravarient transformation).
Then :

(the Jf~ are related to 24&#x3E; as the are related to 2).
By the condition (2), if x~ E Eq(X), all the terms in the second member

of (4) are also in Eq(X).
Therefore, one may apply to the terms in (4) and ~~~) is in the cate-

gory H, or eventually (Space E«1»).
The same fact is true for the subcategory H° of H of the algebras such

that :
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5SINGULAR OPERATIONS ON ALGEBRAS

We may conclude :

PROPOSITION 1. - The categories H«1) and H °~ are stable under the
operation J~f -+ .P «1).

III. FORMULATION OF THE LAWS
AND EXISTENCE CONDITION

FOR THE CHARACTERISTIC ENDOMORPHISM OF u ~ End E

First recall that if u ~ End E, then the characteristic endomorphism X - u
is an unit of in fact : 

, - __.

where m(X) is the minimum polynomial of u (or a multiple).
Now let q be a complemented element of [m, 1] ] that is to say p = m q

be prime with q.
Polynomials a and b E exist such that :

The endomorphisms Q = a q and P = 5p are complementary projec-
tions since p q = m = 0.
On the other hand, one has :

The minimum polynomial of the restriction from u to QE, being p, we
have, in setting uQ = u ~ QE that operates in QE, the inverse of (X - uQ):

Likewise on PE :

Let us set now, in E(X), for v operating in E :

therefore, with C = u - X :

Vol. XX, n° 1 - 1974.



6 MAURICE GINOCCHIO o

Now the condition (2); that allows to apply úJ(1’ from (7)’ and in developp-
ing (9), is equivalent to the condition :

Under the condition (10) one has therefore :

Therefore, the expression of the new law is :

with oc) = which is a polynomial in u and in a since 
is a field.

= 0 one finds again a law of the type introduced by
Saletan [7], about Lie algebras.

IV CONDITION EQUIVALENT TO (10)

Let us set, for E E :

The relation (10) can be written:

Therefore, by obvious recurrence :

and

(If u is regular, u ~’ ~ 6 and ( 12)’ is valid for E Z).
This last relation takes also the form :

On the other hand, in setting this time :

where :
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we obtain :

Therefore, the condition (10) is also equivalent to :

V THE OTHER SINGULAR LAWS ASSOCIATED TO I
FOR u VERIFYING (10)

Henceforth, we shall use an extension of [K that decompose q.
Let be such that :

Let us consider now C = y 2014 X 
y is invertible on E, if and only if y V m = 1 (see (6), appendix) but also

if and only if its minimum polynomial -03B3(X) is not divisible by X.
Therefore, if y =~ 1, one has from (13): divisible by X. 

-

On the other hand, since y V p = 1, y is invertible on Ker p = QE
(cf. (6) appendix); therefore the minimum polynomial V(X) of yQ = y ~ QE
is not divisible by X; therefore :

Therefore, one may apply cvo (that is X -+ 0) in this expression that
figures in the analogous of (9) where y substitutes u. The condition analogous
to ( 10) can be written : PFx,y( y, y, 1 ) = 0 and is verified from ( 12).

Therefore the law on E is : (cf. (9)’ ) :

One " may see 
" that ( 11 ) is not different from ( 14) with y = X - a which

satisfies ( 13 ) : 2«1) = ~u - a. 
More, one " has the property : 2 

’ is homomorphic to 2 y:

which results from ( 14) and ( 12) for a = b = y.

GENERALIZATION. One may see from the expression ( 14) that one may
define a singularization for all y E provided y be prime with p
which is the necessary and sufficient condition in order that y may be
invertible on QE.

Vol. XX, n° 1 - 1974.
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Remarks.

1 ) If y is invertible on E(y V m = 1 )~ ~ is isomorphic to ~f from ( 15).
2) Let us consider I-q and the application invertible on E : A = aQ + P

(where a has been defined in (6), is invertible on QE since a V p = 1).
One has, since: A q = a(aq)q = Q2 - Q.

as one may see it in VI, QE is a I-subalgebra.
Therefore :

which is not different from the Inonu-Wigner contraction with respect
to the subalgebra QE of j~f [6].

VI. STRUCTURAL PROPERTIES

1 ) The condition (10), and therefore ( 12) is valid for J~y.
Let us set :

Taking ( 14) in account :

This expression is void from ( 10), therefore :

2) LATTICE OF SUBALGEBRAS (1).
The relation (17) implies (as in IV) for b E 

On the other hand if, 1m ð ;2 QE that is if and only if ~ on has

peculiarly :

Therefore is a sub-algebra of 
From ( 10) (Appendix, formulas ( 1 ) and (2))

for

Therefore one has :

(’) For the definitions see (10) Appendix.

Annales de l’Institut Henri Poincare - Section A



9SINGULAR OPERATIONS ON ALGEBRAS

PROPOSITION 2. The set of the subspaces Im 5 of E for b divisor of q,
is a lattice of subalgebras of ~,~ what ever may be y E prime with p,
lattice isomorphic to [q, 1 ].

This is true peculiarly for the initial algebra = 1 ), what is a necessary
structure condition of J~f.

3) LATTICE OF (LEFT) IDEALS.

Let y E be such ? ~ y ~ 5 ~ 1 and let it be : ~ E Ker y
therefore -ç = 0 and from ( 14) :

Therefore, taking ( 12) in account.

That is to say : Ker ? is an ideal of 
Then, let them Ç2, ~x, ~k+ 1, ...,?? E Ker 3.
Let us show that :

where one has set = .P(Ç,l1) and analogous.
Let us set :

The result is true for k = 1 what proceeds immediately from ( 14). On
the other hand :

(One took (12) and = 0 in account). Now Let yil ... y~I be the prime
factors of y.
On may write q = q1q2 with ... and ql V q2 - 1.
Therefore :

implies :

are complemented each other with respect to m.
On the other hand - P y is nilpotent on the subspace Ker p q 1 since ð .

exists such that : pq1.
Now Ker p q = Im q2 is a subalgebra of Y from 2°; therefore y ~ Im q2

and from (12) on sees that Ker S is a nilpotent ideal of 
At last, from 10° (appendix, formulas (2) and (3)

Vol. XX, n° 1 - 1974.
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for

Therefore one has :

PROPOSITION 3. - The set of the subspaces Ker S for ~ y  ~ 1
is a lattice of left (or right) nilpotents ideals lattice isomorphic to [y, 1 ].

Let us remark that Ker S is a trivial ideal of and in this case, the lattice
of trivial ideals is isomorphic to [q, 1].

VII COMPOSITION OF SINGULARIZATIONS

One may define from (18), the singularization :

provided one may have ~ prime with P.
From ( 14) one may write :

The two last lines are void from (12), therefore :

or, by setting one has :

Peculiarly, since K splits q :

Let us also remark that y is a homomorphism of I03B303B4 in .P1) from ( 15),
( 18) and (20).
We shall show now :

PROPOSITION 4. - If 03C3 E is prime with p, then is isomorphic
to 

First, let us consider should this happen: 03C3 = qoy with : q  qo  . 1,
y having the same prime factors as qo, and qo complemented in [~, 1].

Let Po be the projection associated to qo.
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One has PPo = PoP = Po and the application: S = Po + y( 1 - Po)
is invertible on E. Indeed, y is invertible on (1 1 - Po)E since one has, in

setting q = q or:

We shall show that S is an algebra isomorphism of Iqo on Indeed,
since P003C3 = P0q003B3 = 0 one has :

On the other hand :

The second term is void for the same reason as (i)

At!ast:

where :

(Recall that PoQ = 0 and (1 1 - Po)E = Im qo is a sub-algebra of ~f
from prop. 2 and y) = 0).
On the other hand :

From ( 12) we have :
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Then :

Therefore, from (i), (ii) and (iii) one has at last :

Secondly, for any ~, but prime with p, one may write :

qa are complemented in [m, 1 ].
q  qa  1; ya having the same prime factors as a = 1, 2 ... r.

q  7o ~ ~ ~ prime with q.
r, being an isomorphism and 03C3 V q = q 1 ... qryo one has :

So, the number of distinct singularizations up to an isomorphism,
is the one of the elements of [q, 1 ].
On the other hand, [q, 1] ] provided with the law : y . 8 = (yq) V q for

y and 03B4 in [q, 1] is a commutative semi-group, with unit, verifying :

Therefore one may state :

THEOREM. Let .P be an algebra on a finite dimensional vector space E
on a characteristic zero field u an endomorphism of E, P a projection
commuting with u, such that one may have :

(ii) The minimum polynomial of up splittable on IK.
Then, a finite polynomial semi-group I, with unit, exists, which is a dis-

tributive lattice E, that depends of u and P so that the application r of E
on the set of the singularizations defined by :

for

as the following properties :
(j) r is an epimorphism.

y(u) is a homomorphism of in 
The is a distributive lattice isomorphic to t,

of subspaces of E which are subalgebras of for any 5 E E.
The set : { Ker ~(M); 5 E E; 5 divides y fixed; y E E ~ is a distributive lattice

of subspaces of E, which are left (or right) nilpotents ideals of 

Annales de l’Institut Henri Poincaré - Section A
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VIII EXAMPLES

Let us consider the Lie algebra J~ = sl (3, C); H a Cartan subalgebra
of basis { h2 ~; ~ e2 ~ e2 ~ the eigenvectors corresponding
respectively to positives and negatives roots of a simple system of roots
relative to H; then :

that achieve a basis of sl 3C (See column I).
We give firstly two examples of Saletan contractions (t is a chain).
EXEMPLE 1. - Set:

R = C { el, e12 ~ abelian subalgebra of J~f.
T 1 = C { Eb E2 } solvable subalgebra of EJ = 2(E1 + E2».
T 2 = C { hb h2, eb e12 ~ solvable subalgebra of J~f.
If E designates the vector space underlying to one has :

Then let Q, P2 be the system of projections to the three sub-

spaces R, T1, T2 and the application :

defined by : th1 = th2 = 0; te1 = E1; te12 = E2
One easily verifies that :

2) N = tP2 is nilpotent : N2 - 0.

are so as :

One has therefore, from ( 10), a Lie algebra ~’, of underlying space E,
and the law of which is : (cf. ( 14)).

(See App. 11 °, column II).
One may notice that :

Vol. XX, n° 1 - 1974.
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Here, one has :

EXEMPLE 2. 2014 Set now :

One has still : E = R 0 Ll 0153 E2 and let Q, n2 be the system of pro-
jections relative to these subspaces and the application :

As previously one verifies that :

2) M = is nilpotent : M2 - 0.
3) v = Q - M and P = n1 + n2 lead, with formulas analogous to exem-
ple 1, to a Lie algebra}¿" (see App. 11 ° column III) such that :

Im v = R E9 Ei is a subalgebra of 2 and 2".

The minimum polynomials of v, v~, etc., are the same as in example l.
In column IV, we gave as comparison the Inonu-Wigner contraction

with respect to ~.
We give now an example, which is not a Saletan Contraction :

EXEMPLE 3. - Set :

which are nilpotent subalgebras of Jzf.

which are maximal solvable subalgebras of 2.
Then let c~, pi, p2 be the system of projections relative to H, Sl and S2 and :

One has still a relation :

Annales , de Henri Poincaré - Section A
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One obtains a Lie algebra 1 the law of which is :

R 1 and R 2 are two subalgebras and S 2 are two abelian ideals

If a = one finds again the Inonu-Wigner contraction with respect to R2.
Here, for one has :

and:

Likewise one may define 22 with ~2 = q + apl (a ~ 1) which is

isomorphic to 2 1 in the present case.
The alone properties of .P which interfere here are :

Ri 1 and R 2 subalgebras of 2, R 1 + R2 = E.

Otherwise, .5f is an unification of R1 and R2 with intersection H [8].
One will see further a generalization of this category of operations,

bound to diagonalizable endomorphisms.
Remarks. 2014 In a more general way, the existence of a boolean lattice

of subalgebras of ;p is necessary, but also sufficient to determine (u, P)
equivalents. Besides one may construct such lattices from subalgebras
given in 2.
The examples I and II proceed from a primitive filtration existence

of sl (3, C). We shall explicit the method in the frame of the simple Lie alge-
bras on the complex filed in an other paper. The structure theorem given
in § VII will be used in order to compute the set S of the endomorphisms
of E which satisfie ( 10) (P given), up to an equivalence.
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APPENDIX

RECALL ABOUT LATTICES [4]
1° DEFINITIONS.

A set L ordered by ~ is called a lattice if for any

exist. 
- _ . _ _ . _ ~ , .., ,

A subset S of L is called a sublattice of L, if it is a lattice for the restriction of ~ to S.
One will use the sublattices [a, b] _ { x; a  x  b } for a, b, x E L in the same way as

If in a set L, one has two laws A and V, each of therm idempotent, associative, commu-
tative, and such that : x 11 (x V y) = x V (x 11 y) = x, then L is a lattice for x ~ y defined

In a lattice a maximum element I, a minimum element O may exist.

20 DUALITY.

If in a lattice L, a property P( V , A, ~) is true, then dual property P* = P( 11, V, ~)
is true.

3° MODULAR LATTICES.

In a lattice L one has:

If in the second member one has the equality, L is called modular.

4° EXAMPLE.

The set !/ of subs paces of a vector space ~ is a modular lattice for ( +, n, ~ ) and more
generally the set of invariant subgroups of a group G is a modular lattice for (., n, c).

50 DISTRIBUTIVE (AND BOOLEAN) LATTICES.

In a lattice L one has :

If one has the equality, L is called distributive.
If for any x E L, an element x E L such that x V x = I and x A x = a exist (complement)

the distributive lattice L is called boolean.

60 EXAMPLE.

The set of polynomials in X, with leading coefficient 1, on a commutative field K
with :

is a distributive lattice with I but without (9.

If L is modular (resp. distributive) a sublattice S is modular (resp. distributive).

7° LATTICE MORPHISMS.

An application 9 of a lattice L in a lattice M is called a morphism iff:

Annale.s ’ de Henri Poincaré - Section A
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One defines also the: epi, mono, iso, endo, auto-morphisms.
A morphism is an isotone application; an isotone bijection the inverse of which is isotone

is an isomorphism.

80 LATTICE IDEALS.

On the contrary of the algebras, there are two sorts of « ideals ».
a) J is an ideal of L iff:

a)* J* is a dual-ideal iff: (dual statement)

One may state various properties relatives to a) (and dual properties relatives to a)*)
b) J ~ 0 ideal of L $&#x3E; (a V bE J p a E J and bE J).
c) If 8 is a morphism of L in M having a minimum clement !?, then

is an ideal of L.

9° CONGRUENCE RELATIONS.

An equivalence relation C in a lattice L, is called a congruence relation iff:

One has the following proposition:
Let J be an ideal of a distributive lattice L.

i) The equivalence relation a - b (mod J) defined exist such that a V h = b V h
is a congruence relation.

ii) The quotient set M = L/(J) is a distributive lattice having a minimum element J.
iii) The canonical projection 7r of L on M is an epimorphism of kernel J.

However we have to note, at the difference of groups and algebras, that if 0 is a lattice
morphism, the congruence relation mod (Ker 0) does not generally determine the con-
gruence relation associated to the morphism 8.

In the example used here, this does not happen.

100 EXAMPLE.

Let u E End E, finite dimensional vector space on characteristic zero field [K.
The ring epimorphism -+- KM defined by a = a(u) for a(X) E admits a kernel

which is generated by a polynomial m(X) (of leading coefficient fixed to 1) called minimum
polynomial of u.

Then let the lattice morphisms, defined on 

Y’*(E) is the lattice where n is the + is the and the order is inverted.
Then one has, for 

Vol. 1 - 1974.
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g . I . b(,~Y’) = = E; e and E have same kernel : the set of multiples of rn, of
leading coefficient 1.

It is obvious that 2014201420142014 is isomorphic to [m, 1], the set of divisors of rn of leading
(Ker O) ,

coefficient 1.
From the last proposition and from (4), the distributive lattices ~, J~ and [m, 1] are

isomorphic.
At last let us note that Ker e = KerE is the set of a(X) E I)(°[X] such that a(u) = 0;

Ker* e = { ~; a E 114°[X]; a V m = 1 } is a dual-ideal of If is the set

of a(X) such that a(u) is regular.

11° EXAMPLES ON Sl(3, C).

I II I 
~ 

III I V V(a = 2)
f£’ f£" f£ 1

h1 e1 
- 2e1 1 0 0 0 - 2e1 1

hl e12 - e12 0 0 0 - e12

h2 el el 0 0 0 el

h2 e12 - e12 0 0 0 - e12

e2 el - e12 0 0 0 0

~2 e12 el 1 0 0 0 2e1 1

el 1 el 1 hi 2e1 - 3e12 + 2e12 + hi hi 0

el e12 - e2 - el + ~12 - e2 - el + 2?i2 - e2 - C2 0

e12 el e2 2e12 + e2 - 212 + e2 e2 2e2
e12 e12 hi + h2 e12 + hi + h2 e12 + hl + h2 0

~1 1 e2 e2 0 0 0 e2

hi e2 - e2 0 0 ~ - e2
h2 e2 - 2e2 0 0 0 - 2e2
h2 e2 2e2 0 0 0 2e2
e2 e2 h2 0 0 0 0

hl el 2e1 4h2 + 3e2 + 3e2 4h2 + 3e2 + 3e2 0 2e1
hi e12 e12 - h2 + 2e2 _ - h2 + 2e2 0 e12
h2 el - 2h2 + 3e2 - 3e2 - 2h2 + 3e2 - 3e2 0 ~~1
h2 e12 e12 - h2 - 6e2 - h2 - be2 0 e12

~e2 _~1 1 0 - h2 - 4e2 - h2 - 4e2 0 0

e2 e12 ~1_ 2h2 + Se2 + e2 2h2 + Se2 + e2 0 0
e2 el 1 - e 12 4h2 + 2e2 + 4e2 4h2 + 2e2 + 4e2 0 - 2e 12
e2 e12 0 - 2h2 - 2e2 - 2h2 - 2e2 0 0

el 1 e 12 0 - 2e1 - 2e12 - 2C1 - 2e12 0 0

Annales de Henri Poincaré - Section A
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