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Harmonic analysis on the one-sheet hyperboloid
and multiperipheral inclusive distributions

A. BASSETTO and M. TOLLER

C. E. R. N., Geneva

Ann. Inst. Henri Poincaré

Vol. XVIII, no 1, 1973,
Section A :

Physique théorique.

ABSTRACT. - The harmonic analysis of the n particle inclusive distri-
butions and the partial diagonalization of the ABFST multiperipheral
integral equation at vanishing momentum transfer are treated rigorously
on the basis of the harmonic analysis of distributions defined on the
one-sheet hyperboloid in four dimensions. A complete and consistent
treatment is given of the Radon and Fourier transforms on the hyper-
boloid and of the diagonalization of invariant kernels. The final result
is a special form of the 0 (3, 1) expansion of the inclusive distributions,
which exhibits peculiar dynamical features, in particular fixed poles.
at the nonsense points, which are essential in order to get the experi-
mentally observed behaviour.

RESUME. 2014 Nous traitons rigoureusement la diagonalisation partielle
de F equation integrale multiperipherique de ABFST a valeur nulle de
l’impulsion transferee et l’analyse harmonique des distributions inclu-
sives à n particules, faisant recours a des resultats mathematiques
concernant l’analyse harmonique sur un hyperboloide a une nappe en
quatre dimensions. Nous donnons un traitement complet des transfor-
mations de Radon et de Fourier sur l’hyperboloide et de la diagonalisation
des noyaux invariants. Le resultat final est une forme particuliere de
developpement selon 0 (3, 1) des distributions inclusives, qui met en
evidence des caracteristiques dynamiques particulieres, notamment
des p61es fixes aux points de « non sens », qui sont necessaires pour obtenir
un accord avec des proprietes bien etablies par l’expérience.

1. Introduction

In the present paper we develop and clarify some mathematical
procedures which are useful for the treatment of multiperipheral models
of the ABFST type ([1]-[3]). These models provide a definite approxi-
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2 A. BASSETTO AND M. TOLLER

mate expression for the N particle production amplitudes. By integra-
ting over all the final states, one gets the total cross-sections; if one

keeps some of the final momenta fixed, integrating over all the other
momenta and summing over the multiplicity N, one obtains the inclusive
distributions ([1], [4]-[7]). It is just in dealing with this last aspect of
the model that the powerful mathematical concepts described in the
following are most useful.

Fig. 1. - A multiperipheral contribution to the two-particle inclusive distribution.
Wavy lines represent off-shell spinless particles and solid lines represent on-shell
particles. On-shell integration is understood for internal solid lines. The upper

part of the graph represents just the complex conjugate of the production ampli-
tude represented by the lower part.

In the simplest version of the model, the production amplitudes are
given by the multiperipheral graphs of a q3 field theory. In this case

in computing a two-particle inclusive distribution we find, for instance,
an integral of the kind described by the graph in figure 1. It has the

general form

where PA stands for PA2, ... and PB has a similar meaning.

For instance, in the example of figure 1, we have
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3HARMONIC ANALYSIS ON THE ONE-SHEET HYPERBOLOID

One can easily realize that also other contributions to the inclusive
distribution in the c~ model have the form (1.1) with more complicated
forms for the functions fA and fB when the observed particles are ~more
" internal " in the multiperipheral chain.

Also more general multiperipheral models give rise to contributions
of the form (1.1). For instance, every term K could describe the produc-
tion of a cluster of final particles ([1], [8], [9]). The only limitation
of the present treatment is that the wavy lines in figure 2 must represent

, /

Fig. 2. - A multiperipheral contribution
to the r + s - 2 particle inclusive distribution.

spinless off-shell particles. A further generalization leads to the Reggeized
multiperipheral models ([10]-[13]), which require more powerful mathe-
matics. Nevertheless, most interesting features appear already in the
simpler class of models we are considering.
Our treatment uses only some very general assumptions on the quan-

tities K, fA and f~. From the example (1.2), we see that in general
they are Lorentz invariant positive distributions, i. e., Lorentz invariant
measures. The integral (1.1) is not necessarily meaningful for every
choice of these measures. We shall discuss later how and under which
conditions we can give a meaning to this expression.
An essential use will be made of the support properties of these distri-

butions. As Q,+i 2014 Q; is just the total four-momentum of a cluster
of produced particles, the support of K (Q,+,, Qi) is necessarily contained
in the region

where M is the sum of the masses of the particles produced in the cluster.
In a similar way we see that the support of fA (PA, Q1) is contained

in
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4 A. BASSETTO AND M. TOLLER

and the support of fn (PB, Qn) is contained in

where MA is the sum of the masses of the observed and the unobserved

produced particles taken into account by the term fA, and MB is defined
in a similar way. All these inequalities restrict the region of integration
in equation (1.1) to a compact set ~~.
We call 1 and mB1 the masses of the incoming particles and we

make the assumption, valid in the most interesting cases,

Excluding the case in which all the three relations are equalities, a
simple resoning shows that in the set JC we have

and we can introduce the variables

The four-vectors xi span the one sheet hyperboloid r defined by

If we introduce the Lorentz invariant measure on r :

equation (1.1) takes the form

We remark that perhaps the most important application of multi-
peripheral models is the study of Regge-like limits. In our case this

means ([14]-[16]) to study the dependence of the quantity

on the element a of the Lorentz group acting on all the four-momenta
PB ;, while the four-momenta PA are kept fixed. It is just in the limit
of large a that the separation of the observed particles into two sets A
and B becomes natural and unambiguous.
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5HARMONIC ANALYSIS ON THE ONE-SHEET HYPERBOLOID

Therefore we are led to consider integrals of the kind

where the dependence on the variables u; is understood and the corres-
ponding integrations are supposed to be performed later. We are

assuming that the kernel K is defined as a Lorentz invariant distribution
in for any positive values of u;+i and Ui. From now on, the

variables ui are considered as fixed and we concentrate our attention
on the " angular 

" variables ~.

From equation (1.3), one can see that the support of the kernel
K x1) is contained in the set

while from equations (1. 4) and (1. 5) we see that the supports of f A (Xi)
and fB are contained in the sets

and

respectively.
These are the support properties on which we rely in the following.

Though only positive measures appear in the physical problem, from
a mathematical point of view it is natural to deal with arbitrary dis-
tributions with some limitation on their rate of increase. This is the

point of view we shall adopt.
We shall show in Section 9 that if K, fA and fB have the support pro-

perties mentioned above, the integral (1.13) can be interpreted as a
ditribution on the Lorentz group. Assuming some limitation on the
rate of growth of these distributions, we shall give an expansion of the
quantity (1.13) in terms of matrix elements of irreducible, not necessarily
unitary, representations of the Lorentz group. This expansion has not
exactly the form proposed in [17] and it exhibits some peculiarities
hitherto unexplored, as the existence of fixed poles at the " Lorentz
nonsense " points. The existence of these poles is essential for a correct
approach to the transverse momentum dependence of the inclusive
distributions [7].

ANNALES DE L’INSTITUT HENRI POINCARE



6 A. BASSETTO AND M. TOLLER

We shall get these results following the classical procedure of distri-
bution theory [18]. First we perform the harmonic analysis of a function
belonging to the space O (r) of the infinitely differentiable functions
of compact support on the hyperboloid r. This can be done by means
of the elegant method developed by Gel’fand and collaborators [19].
Unfortunately in [19] only functions with the symmetry property

are treated and the extension to the general case is not trivial. The

general treatment of the Fourier transform is given in Sections 2 and 3,
where we introduce also the usual basis labelled by the angular momentum
indices j, m. Some useful properties of the " hyperbolic harmonics 

"

in this basis are given in Section 4. The inverse formula for functions
in Ud (r) is given in Section 5.

In Section 6, we introduce some new spaces of test functions and
of distributions on the hyperboloid r and we define the Laplace transform
for a large class of distributions on r, in perfect analogy with the Laplace
transform of a distribution on the real line [18]. In Section 7 we consider
invariant distribution kernels, which have the property of mapping
into themselves some spaces of test functions and of distributions on r.
We show also that when one of these kernels operates on a distribution
on r, its Laplace transform is changed by a scalar factor; this is just
the diagonalization of the kernel. In Section 8 we study the regulari-
zation of a distribution on r by means of the convolution with a smooth
function on the Lorentz group and the corresponding change in its

Laplace transform. All these results are applied in Section 9 to derive
an 0 (3, 1) representation for the inclusive distributions.

In our effort towards a systematic treatment, we partially overlap
with previous work. The " hyperbolic harmonics 

" in a somewhat
different form are discussed in [20]. The diagonalization of invariant
kernels is treated in ([21], [22]); an extension to spinning particles is

given in [23]. These treatments are not based on the harmonic analysis
of functions on the hyperboloid, which in our opinion is the most natural
and clarifying starting point.

It is also interesting to compare the diagonalization procedure for the
multiperipheral equation (giving the absorptive part of the amplitude)
with the analogous treatment of the Bethe-Salpeter equation at fixed
four-momentum transfer (which gives the whole amplitude). For

spacelike four-momentum transfer, the 0 (2, 1) projection of the Bethe-
Salpeter equation was performed in [24] (see also [25], [26]). Of course,
in this case one has no support conditions of the kind (1. 3)-(1. 5). Instead
one has a symmetry with respect to time reversal, which is incompatible
with the mentioned support conditions. In this situation, it is una-

VOLUME A-XVIII - 1973 - N° 1



7HARMONIC ANALYSIS ON THE ONE-SHEET HYPERBOLOID

voidable to obtain a Laplace transform which has a symmetry property
in the I plane which prevents this transform from being analytic in a
half plane. This feature complicates somehow the discussion of the
inverse formula, which is nevertheless perfectly justified, at least when
only poles are present in the 1 plane. If one tries to extend this formalism
to the Bethe-Salpeter equation at vanishing four-momentum, one runs
into difficulties whose origin will be clear in Section 7.

2. The Radon transform

Our first task is to define the Fourier transform of a function f (x)~
belonging to the space O (f) of the Coo functions with compact support
on the hyperboloid r defined by equation (1.9). We follow the method
of [19], where this problem is solved for functions which satisfy the sym-
metry condition (1.17). For some details and for geometrical moti-
vations, [19] should be consulted.
The first step is to define the Radon transforms

where the four-vector ~ belongs to the half cone

and

where

The invariant measure dr is defined by equation (1.10).
The function (2.3) has the property

The Radon transforms h (03BE) and 03C6 (b, 03BE) are infinitely differentiable.
h (~) vanishes in a neighbourhood of the origin and h (t ~) has at infinity
an asymptotic expansion in terms of negative integral powers of t [19J~
Now we want to reconstruct the function f (xj starting from its Radon

transforms. We consider the integral [19] :

ANNALES DE L’INSTITUT HENRI POINCARE



8 A. BASSETTO AND M. TOLLER

where the distribution [t]~ is defined by

Then from equation (2.1) we have (1) :

The function (2.6) has been computed in [19], and, if we put

we have

(1) The integral (2.6) and the integral in the right-hand side of equation (2.8)
are not absolutely convergent for large ~. They have to be regularized by analytic
continuation from the region where b and x’ respectively are timelike [19].

VOLUME A-XVIII - 1973 1



9HARMONIC ANALYSIS ON THE ONE-SHEET HYPERBOLOID

Both sides of equation (2.8) have a pole at jjL = - 3. Using the
equations [18] :

we see that the residue of the right-hand side is

In order to compute the residue of the left-hand side of equation (2.8),
we treat separately the regions of integration where equations (2.10)
and (2 .11 ) respectively hold. In the first region the singularity comes
from a divergence of the integrand at k = 1. From equation (2.10)
we have

We remark that the second term in the left-hand side of this equation

is essential in order to cancel a term of the order (k2 - 1) ~ which
would also be divergent in the limit ~. -~ 2014 3.

We choose a frame of reference in which

and using the formula [18] :

we can write the contribution of the region k &#x3E; 1 to the residue in the
form

The contribution to the residue of the region k (  1 is

ANNALES DE L’INSTITUT HENRI POINCARE



10 A. BASSETTO AND M. TOLLER

Remark that this integral has to be regularized. We perform the change
of variables

and the integral (2.19) takes the form

We have used equation (2.3) and we have put

In order to write equation (2 . 22) in invariant form, we remark that
the argument b depends only on ) and cos 0. If we introduce the diffe-

rential form on the cone

the integral (2.22) can be written in the form

This can easily be shown if y is the intersection of the cone with the

plane ~o = 1. On the other hand, using equation (2.5) one can show
that the integral does not change if y is deformed in such a way that it
still cuts all the generators of the cone.

In conclusion, equating the residues at [Jw = - 3 of the two sides

of equation (2.8), which have been computed in equations (2.14), (2.18)

VOLUME A-XVIII - 1973 2014 ? 1



11HARMONIC ANALYSIS ON THE ONE-SHEET HYPERBOLOID

and (2.25), we get the result
PROPOSITION 1. - If f (x) E O (f), its Radon transforms (2 .1) and (2 . 3)

can be inverted by means of the formula

where the four-vector b is determined up to the addition of an irrelevant
four-vector proportional to  by the conditions

A further ambiguity is due to the fact that the condition (2 . 27) is quadratic.
It has to be eliminated by means of an arbitrary but continuous choice.

Of course, as these formulae are written in a Lorentz invariant form,
they hold also if x’ has not the special form (2.16).

3. The Fourier transform

We assume that the element a of SL (2 C) acts on the function f in
the following way (2) :

The matrix L (a) is defined in such a way that the relation

is equivalent to

It follows that the functions defined in equations (2.1) and (2.3)
transform in the following way

(~) For simplicity of notation we indicate by the same symbol U (a) the repre-
sentation operators which act on all the function spaces we shall define.

ANNALES DE L’INSTITUT HENRI POINCARE



12 A. BASSETTO AND M. TOLLER

If we put

where

the transformation property (3.4) becomes

where

The function (3.6) has the symmetry property

We introduce the new functions

which have the homogeneity property

for arbitrary complex a. The integral (3 .11 ) converges for &#x3E; 0

and, using the asymptotic expansion of h (~), it can be analytically
continued in the whole complex h plane apart from poles at À = 0,
- 1, - 2, ....

In ([19], [27]), the irreducible representations Tn1n2 of SL (2 C) are
defined as operators acting on a space of homogeneous functions of
zi, Z2. We shall use the slightly different notation @M À where

Comparing the formulae given above with the definition of ([19], [27]),.
we see immediately that if f (x) undergoes the transformation (3.1),
the function fi’ (zi, Z2) transforms according to the representation ~B

It is also useful to consider these representations as operators acting
on a space of functions on the group SU (2). We put

From equations (3.6), (3.7) and (3.11), we get

VOLUME A-XVIII - 1973 - N° 1
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where

Introducing equation (2.1) we obtain

The transformation property of the function (3.14) is just the one
described in ([27]-[29]). As in these references, we introduce in the
space of the functions on SU (2) the basis

where Rim (u) are the rotation matrices as defined in [30]. We define
the projections

Remark that only basis functions with M = 0 appear. Taking into
account equation (3.17) we get

where

Remark that if À is pure imaginary, we have

In order to compute the " hyperbolic harmonics " (3.21), we introduce
angular variables putting

Using the invariance of the measure d3 u and the definition [30] :

of spherical harmonics, we get

where

ANNALES DE L’INSTITUT HENRI POINCAR~



14 A. BASSETTO AND M. TOLLER

This integral can be performed by means of equation (3.7.30) of [31]
(hereafter called HTF) obtaining

In order to Fourier analyze the function (2.3), we consider the function

where

If we put

using the property (2.5), we see that

In particular, we see that (a) depends only on

and if we define

we have

Clearly the transformation property is

where zi and z~ are given by equation (3.9).

If we introduce the functions

they satisfy the covariance property

and therefore they transform according to the representation 

VOLUME A-XVIII - 1973 - NO 1



15HARMONIC ANALYSIS ON THE ONE-SHEET HYPERBOLOID

Also in this case we introduce the functions defined on SU (2) :

Using equations (2.3) and (3.28) we obtain

Also in this case the transformation properties of this function are
just those given in ([27]-[29]). Projecting it on the basis (3.18) we
get

We remark that we must 

It is useful to write

Using Equations (3.29) we have

Introducing the polar variables (3.23) and using the representation
property of the rotation matrices, we get after some calculation

where

that is

ANNALES DE L’INSTITUT HENRI POINCARE 2



16 A. BASSETTO AND M. TOLLER

In conclusion we have

PROPOSITION 2. - If the function f (x) betongs to D (f), we can define
its Fourier transforms

If the function f (x) undergoes the Lorentz transformation (3.1), these

quantities trans form as follows

where (a) are the matrix elements of the irreducible representations
of SL (2 C) in the basis (3 . 18). Expticit expressions for these quantities
are given for instance in [29]. The equations (3.47) and (3.49) hold for
arbitrary complex 7~ with the exception of the non-positive integers. When

À = 0, equation (3.47) can be written as

4. Properties of the functions B)~ (x) and (x)

In this Section we exhibit some properties of the functions defined
by equations (3.25), (3.27), (3.44) and (3.46). From equations (3.27)
and (3.46), using the formulae (3.4.14) and (3.4.17) of HTF [31], we
get

Using the formulae (3.9.8) and (3.9.9) of HTF, we get the asymptotic
behaviours

VOLUME A-XVIII - 1973 - N° 1
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The function b) (a) is analytic in the whole a plane apart from poles
at the integral points ~ = 0, 1, 2, ..., j. We call them the " Lorentz
nonsense points ". The residues are

Besides we have the identity

Comparing these identities with the definitions (3.47) and (3.48),
we see that

PROPOSITION 3. - the function an alytic in
the whole complex À plane apart from simple poles at the points À = 0,
- 1, - 2, ..., - j with residues given by

Moreover, we have the identities

We shall also use the majorizations

Equation (4.11) can be obtained from the integral representation (3.26)
after an integration by parts. Equation (4.12) follows using
equation (4.1). Equation (4.13) is a consequence of the definition (3.46)
and of equation (3.7.30) of HTF [31].

ANNALES DE L’INSTITUT HENRI POINCARÉ



18 A. BASSETTO AND M. TOLLER

Now we want to study the behaviour of our functions under infini-
tesimal Lorentz transformations. We introduce the differential operators
(generators) :

where az (~) means a boost along the z axis with rapidity ~. The other
four generators can be obtained by rotation of the indices. In the
last expressions in equations (4.14) and (4.15) we have to consider
an arbitrary Coo extension of f (x) outside the hyperboloid.
The action of the infinitesimal rotations can be obtained from well-

known properties of the spherical harmonics [30] and is

Exactly similar formulae hold for (x).
The action of 1~ can be found by direct calculation using the

formulae (3 . 8 .19) and (3 . 8 .12) of HTF and we get

The generators Lx and Ly can be obtained from the commutation relations

By repeated use of these relations one gets

VOLUME A-XVIII - 1973 - NO 1



19HARMONIC ANALYSIS ON THE ONE-SHEET HYPERBOLOID

Now we consider the equations (3.47) and (3.48) and we apply several
times to their integrand the equations (4.17), (4.21) and (4.22). As

f (x) is and has compact support we can integrate by parts and using
the bounds (4 .11 )-(4 .13) we get the following result

PROPOSITION 4. - If f (x) is Coo and has com pact su p port, the quantities
defined in equations (3 . 47) and (3 . 48) satisfy the bounds

where p and q are arbitrary integrers and the function k (p, q, a.e À) is

continuous in 8e h. 0 f course the functions k depend on f (x).
Another useful result can be obtained by remarking that a generator

applied to a function B)m (x) [respectively (x)~ gives rise to a finite
sum of functions of the same kind with different values of j and m multi-
plied by coefficients which can be majorized by a polynomial in j and |03BB|
(respectively by a polynomial in j). From this remark, from the bounds

(4.11), (4.13) and from equation (4.1), we get

PROPOSITION 5. - If P is a polynomial in the generators, we have

where Q ( j, 7~ ~ ) and Q ( j~ are polynomials which depend only on the poly-
nomial P and in the last case on M.

5. The inverse formula

In order to reconstruct the function f (x) starting from its Fourier
transforms (3.47), (3.48), we start from the inverse Radon transform
(2.26). The first term of this formula can be written in the form

ANNALES DE L’INSTITUT HENRI POINCARÉ



20 A. BASSETTO AND M. TOLLER

where ( is defined in equation (3.16). Inverting the Mellin transform

and substituting into equation (5.1) we get

In order to treat the second term of equation (2.26), we consider
the equation

which follows from equations (3.28) and (3.38).
If we parametrize the rotation u as

the angles ~ and [.L are just polar co-ordinates for the vector e. The

angle v is determined by the condition (2.27) which takes the form

If we put

equation (5.6) takes the form

Due to the ~ function which appears in the second integral of

equation (2.26), we must require

and therefore

As a consequence, equation (5 . 8) takes the general form

and we can write

VOLUME A-XVIII - 1973 2014 ? 1
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Remark that 5 depends only on the parameters ~ and ~., as 7 is deter-

mined by the condition

Using equation (5.4) and the covariance condition

which follows from the definition (3.38), we can write the second term
in equation (2.26) in the form

where

In order to compute this integral, which is singular, we have to remember
how equation (2.19) was derived starting from equation (2.11). We see
in this way that it has to be interpreted as the analytic continuation in
p = - 3 of the integral

After some calculation we get

In conclusion, we have

PROPOSITION 6. - I f f (f), the Fourier transforms (3 , 1 7) and
(3 . 39) can be inverted by means o f the formula

where the rotation fi is defined in terms of the rotation u by means of equa-
lions (5.12) and (5.14).

ANNALES DE L’INSTITUT HENRI POINCARÉ



22 A. BASSETTO AND M. TOLLER

If we introduce the basis (3.18), from equations (3.19) and (3.40)
we get

Using equation (5.21) and the definition (3.21), the first integral
in equation (5.20) takes the form

In order to treat the second term in equation (5.20), we introduce
the polar co-ordinates

and the new rotations

Then the second integral in equation (5.20) takes the form

and the condition (5.14) becomes

We can perform the integral (5.28) using the 0 function. We have,
also from equation (5.29),

and equation (5.28) takes the form

VOLUME A-XVIII - 1973 - N° 1



23HARMONIC ANALYSIS ON THE ONE-SHEET HYPERBOLOID

Using the symmetry properties (4.3) and (4.10), we can restrict
the sum over M to positive values and we get the final result

PROPOSITION 7. - If f ~ D (r), the Fourier trans forms (3 . 47) and (3 . 48)
can be inverted by means of the formula

Here and throughout this paper the sums over j and m are always extended
to all the integral values of these indices such that j ~ ~ M ~ I and 1m! ~ j.

If we multiply equation (5.32) by a function fc (x’) belonging to

~ (f) and we use equations (3.47) and (3.48), we get the Plancherel
formula

6. The Laplace transform on the hyperboloid

In the preceding sections we have studied the Fourier transformation
of functions on the hyperboloid belonging to the space @ (F). We have
seen that only pure imaginary values of a,, corresponding to unitary
representations, are involved in the inverse and in the Plancherel for-
mulae. These results can be generalized to arbitrary L2 functions on
the hyperboloid. However, in order to expand functions of a more

general kind, we have to consider values of 03BB which are not purely
imaginary. The situation is very similar to the one we find in the two-
sided Laplace transform of a function defined on the real line.
We start from equation (5.33), in which f and fc belong to O (r).

Using the bounds (4.23) and (4.24), we see that it is possible to shift
the integration path on the line = L, where L is an arbitrary real
non integral number. In doing this, we cross some poles and, using
equations (4.8) and (4.9), we see that their contribution cancels exactly
some terms of the series in equation (5.33). We get in this way

ANNALES DE L’INSTITUT HENRI POINCARE
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Now we want to extend this formula to the case in which fc is a distri-
bution with suitable properties. It is convenient to define a space ~ (T)
of test functions which are infinitely differentiable and have the following
fast decrease property : for any polynomial P in the generators M~, ..., L~
with constant coefficients and for any integer q we have

The semi-norms (6.2) define, as usual, the topology of S (f). This

is a natural generalization of the space (Rn) of test functions in Rn.

Also in this case we can introduce a corresponding space ’$’ (r) of
" tempered " distributions [18].
We consider first a distribution fc (x) with support in the part of the

hyperboloid defined by a &#x3E; a1 and such that

This means that the distribution fc can be applied to the C’° function f (x) if

where 8E (t) is a regularized step function equal to one for t ~ 0 and to
zero for t ~ 2014 s.

Using the Lemma of Appendix A, and the bounds (4.26)-(4.28), we see
that the functions (x) satisfy the condition (6 . 4) for

while the functions (x) have this property for

If the conditions (6.5) and (6.6) are satisfied, the integrals (3.47)
and (3 . 48), in which the distribution fc takes the place of the function f,
have a meaning in the sense of distributions. Moreover, due to the

continuity property of distributions, the integral (3.47) is majorized
by a finite sum of semi-norms of the kind

while the integral (3 . 48) is majorized by a finite sum of semi-norms of the
kind
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Then, using the Lemma of Appendix A and the inequalities (4.26)-(4.28),
we get the bounds

where k, p and q depend on L, but not on j, m and Jm À, while k’ and p’
do not depend on M, j and m.
Now we can show that equation (6 .1 ) can be extended to the case

in which (r) and fc is a distribution of the kind we are considering.
First of all, we remark that the bounds (6.9), (6.10) and (4.23)-(4.25)
ensure the convergence of the sums and the integrals which appear in
the right-hand side of equation (6 .1). Then we consider a sequence }
of functions belonging to (1J (r) such that

in the topology of ’~-’)’ (r). From a general property of distribution
spaces [18] we have that the distributions which appear in equation (6.11)
are equicontinuous functionals in (r). It follows that the Laplace
transforms of the functions fc satisfy bounds similar to equations (6.9)
and (6.10) with the right-hand side independent of i. We write equa-
tion (6 .1) for the functions f and fc and the result we need is obtained
by performing the limit i - oo. This procedure is justified by the bounds
derived above.
A similar treatment can be given for distributions which have support

in the part of the hyperboloid defined by

and such that

Then equation (6.1) holds for L  L2.

In conclusion we see that equation (6.1) holds whenever the distri-
bution fc satisfies both the conditions (6.3) and (6.13), provided that

In fact in this case the distribution fc can be decomposed into the sum
of two distributions of the kind considered above.
Now we want to get a further extension of equation (6.1) in the case

in which
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It is easy to show that under this conditions H)m is defined for

1Re h = - L is defined for M ~ L . . Moreover, these func-
tions satisfy inequalities similar to equations (4.23)-(4.25). These

inequalities ensure the existence of the right-hand side of equation (6.1),
which can again be extended by means of the procedure used above.

In conclusion we have

PROPOSITION 8. - 1 f the distribution fc (x) satisfies the conditions

its Laplace transforms, given by formulae similar to equations (3.47)
and (3.48), are defined for

and under these conditions satisfy the bounds (6.9) and (6.10). If the
function f (x) satisfies the condition (6 .15), its Laplace trans forms are

defined for

and satisfy the bounds (4.23)-(4.25).
Under lhese conditions, and if equalion (6.14) is satisfied, the

formula (6.1) holds.

7. Invariant kernels

By invariant kernel we mean a function or a distribution K (x, x’)
with the property

where x and x’ are points of the hyperboloid and a is an element of SL (2 C).
The action of a kernel on a function f (x) can be written formally as

This definition is meaningful only if the kernel and the function satisfy
some conditions. We are interested in studying some class of kernels
which transform some well-defined function space into itself.

We consider first kernels which are continuous functions and we impose
that the integral (7.2) is absolutely convergent. Then if K transforms
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a function space into itself, the iterated kernel

must exist.

It is easy to show that K can depend only on the quantities

and that it can depend on z- only when z i 1 and only when
z .~ - 1.

One can easily realize that if the kernel K depends only on z but not
on z=t=’ the integral in equation (7.3) cannot be absolutely convergent.
This is the origin of the difficulties one finds in the group-theoretical
treatment of the Bethe-Salpeter equation at vanishing four-momentum.
Therefore, we restrict our investigation to kernels of the form

where

which are just of the kind which appears in the multiperipheral models.
Three other classes of kernels can be obtained just changing the sign
of x or x’ and can be treated in a similar way.
We consider the space OJ+ (r) of the infinitely differentiable functions

on r which vanish for zo smaller than some constant (which depends
on the function). One can develop a mathematical treatment of this
space in close analogy with the treatment given in [18] of the space @+
of the C°° functions of the real line which vanish for sufficiently small
values of their argument. In particular, one can introduce a suitable
topology on v?+ (f) and show that the dual of @+ (r) is the space Ol (f)
of the distributions vanishing for sufficiently large xo. In a similar way
we introduce the space (r) of the Coo functions vanishing for suffi-
ciently large xo and the corresponding dual space G~+ (r) of the distri-
butions vanishing for sufficiently small x~.
Now we assume that

where k is a distribution with support in the half line (3 ~ f30 &#x3E; 0.
Under this condition, it is easy to show by means of suitable changes
of variables, that K (x, x’) is a distribution in the two variables x, x’.
Moreover, for fixed x’ it is a distribution in x belonging to *) (f) and
for fixed x it is a distribution in x’ belonging to (f).
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To be more specific, if (r) and we put

we have

It is easy to show that the function [KT f] ] (x’) defined in equation (7 . 9)
belongs to 10- (r). In a similar way one can show that if f E ~+ (f),
the function [K f] (x) defined in equation (7.2) belongs to OJ+ (r). In this

way we have defined two linear mappings KT and K, respectively in 6J- (r)
and in ~+ (F), which can be shown to be continuous.

If (F) and fc E 10+ (f), we have

We remark that the right-hand side of this equation is meaningful also
when f~ (f). Therefore equation (7.10) can be used to define

[K fc] (x) as a distribution of *) (r).
In conclusion, we have

PROPOSITION 9. - A kernel o f the form

where k (fi) is a distribution with support in the open half line ~ &#x3E; 0,
trans forms the spaces ~+ (f) and ~+ (r) continuously into themselves.
The transposed kernel KT trans forms the spaces C~_ (r) and C~’_ (r) conti-
nuously into themselves.

In order to introduce the Laplace transforms, we have to restrict.
the space of distributions on the hyperboloid imposing the condition (6. 3)
and to impose also some conditions on the kernel in such a way that it.
maps this more restricted space into itself.

First we consider equations (7.8) and (7.9) assuming that

and

Then from the majorization (B 11 ), we see that the function (7.8) has
the property
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Therefore the right-hand side of equation (7. 9) is meaningful if the distri-
bution k (j3), besides having its support in j3 f3o, satisfies the condition

Moreover from equation (B 11) and the continuity property of the distri-
bution (7 . 15), we get the inequality

where c~ is a semi-norm continuous in ~ (r) of the function (7.13).
From the Lorentz invariance of the kernel K we get

where P is an arbitrary polynomial (with constant coefficients) in the
generators of the Lorentz transformations. It follows that f ] ~x’)
satisfies a bound similar to equation (7.16). In conclusion, we have
shown that the function

belongs to ’é1.J (f) and depends continuously on the function (7.13).
Introducing this result in equation (7.10), we see that if the distribu-

tion fc (x’) has its support in xo &#x3E; sand

In conclusion, Proposition 9 can be precised as follows
PROPOSITION 10. - Under the conditions of Proposition 9, if k {~3) satisfies

the condition (7.15) with L1 &#x3E; 0, the kernel K trans forms into itself the
space of the distributions of u~+ (r) which have the property (7.19).
We remember that the functions (x) and (x) satisfy the condi-

tion (6.4) if the parameters ~ and M satisfy the conditions (6.5) and (6.6).
Then these functions can be decomposed into the sum of a function
belonging to O- (r) and a function satisfying the conditions (7.12)
and (7.13). Therefore, if equation (7.15) is satisfied, we can apply to
them the kernel KT.

It is a simple calculation to show that, if we put in equations (7 . 8)
and (7.9) f (x) = B-03BB00 (x), we have
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and therefore

where

Using equations (4.16), (4.18) and (7.17), we see that this equation is
also valid for a general function of the kind (x). From equation (4. 7)
we get

Introducing these results into equation (7. 10), we get

PROPOSITION 11. - If fc is a distribution of ~+ (r) which satisfies the
condition (7.19) and the kernel K is given by equation (’l.11) where k (fi) is
a distribution with support in the open half line 03B2 &#x3E; 0 which satisfies the
condition (7.15) with L1 &#x3E; 0, we have the following connection between the
Laplace trans forms of fc and of K fc :

where k (À) is defined in equation (7 . 23).

8. Regularization of a distribution on r

Now we consider a function g (a) defined on the group SL (2 C),
infinitely differentiable and with compact support, that is an element
of the test function space O (SL (2 C)). Its Laplace transform is given
by

where d6 a is the invariant measure. One can show that it satisfies

inequalities of the kind

where p, q, q’ are arbitrary non-negative integers.

VOLUME A-XVIII - 1973 - N° 1



31HARMONIC ANALYSIS ON THE ONE-SHEET HYPERBOLOID

If f (x) belongs (F), we can consider the new function

which also belongs to ~9 (r).
Using the results of Proposition 2, we see that the Laplace transforms

of the function fn are given by

Equation (8.3) can be extended to the case in which f (x) is a distri-
bution. We have in this case the following results which can be proved
by means of standard procedures.

PROPOSITION 12. - If in equation (8 . 3) f E ~’ (r), fD (x) is an infinitely
differentiable function, i. e., it belongs to 6 (r). In particular, the trans-
formation (8 . 3) maps @~ (r) into *+ (r), and ~’_ (r) into ae- (f). If f (x)
satisfies fhe conditions (6. 16), the function fD (x) satisfies the conditions

and its Laplace trans forms are given by equations (8 . 4) and (8 . 5).

9. The Laplace transform of inclusive distributions

In order to define the expression (1.13) as a distribution, we consider a
test function g (SL (2 C)) and we write

If (F), fB E (r) and the kernel K has the form (7.11), from
Propositions 9 and 12 we see that the right-hand side of this equation
is meaningful. If moreover we assume

the Laplace transforms and k (À) are defined for R e À &#x3E; Lh
while the Laplace transforms and are defined for M &#x3E; Lt.
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Using the Propositions 8, 11 and 12, we can write the expression (9.1)
in the form

where

We remember that in the right-hand sides of equations (9.4) and (9.5)
one should take into account the variables ui and the corresponding
integrations, which were understood in equation (1.13). In particular,
the expression ~k (~)~’~-1 has to be interpreted as a kernel iterated n - 1
times.

In order to sum over n to get the inclusive distribution (1.12),
we assume that, as it happens in the physically interesting cases, the series

converge for (R e À &#x3E; and M &#x3E; L in such a way that the sum
under the integration sign can be performed in equation (9.3). We obtain

in this way

If ~ (a) is a sufficiently regular function, equation (9.7) is equivalent
to the simpler formula
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If the function can be continued analytically for 
one can get in the usual way the asymptotic behaviour of :J (a) from the
singularities of this function. The standard way to obtain this analytic
continuation is to write

where h is the solution of the multiperipheral integral equation

If the kernel X is Fredholm, the kernel h is meromorphic in the half

plane CZ. e ?~ &#x3E; L1 and its poles are just the Lorentz poles.
We remark that equations (9.7) or (9.8) can be interpreted as an

harmonic analysis of the distribution J (a) on SL (2 C). From a general
point of view, if J (a) is an arbitrary distribution one can only write [17] :

where F is a linear functional on the space of the analytic func-

tions GM, ;~ m~. Equation (9 . 7) gives a particular explicit expression for
the functional F, which is valid for functions of the form (1.13) and
therefore contains some dynamical information that follows from the
model we are considering. Remark that this functional is not written
in the same form as the one assumed in [17].
At this point, we analyze briefly the dynamical information contained

in equations (9.7) and (9 . 8). We remember that the square of the centre-
of-mass energy is given by

and therefore the limit of large a is equivalent to the limit of large s.
In this limit the series in the right-hand side of equation (9.8) is of the
order S-1 and therefore can be lumped in the " background integral ".
The contribution of a Lorentz pole at À == X &#x3E; 0 behaves asymptotically
as sI -1. Remark that in this class of models only Lorentz poles with
M = 0 can appear.
From Proposition 3, we see that can have poles for À = 0,

1, 2, ..., j’, which in general appear also in the expression (9 . 9). These
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are fixed poles at the nonsense points in the Lorentz plane. The matrix

elements ~~;n j~‘,n~ (a) have simple zeros for a = j -)- 1, j + 2, ... , j’
(if j’ &#x3E; j). Therefore the integrand in equation (9.8) has poles at the
" nonsense nonsense " points À = 1, 2, ..., min ( j, j’). The contribu-
tions of these poles have the same nature as the terms of the series in
equation (9.8), due to the identity

and therefore can be asymptotically included in the background integral.
A more interesting situation occurs when a Lorentz pole is present

for integral ~. Then the function has a double pole if j’ ~ h.
We remember that the coefficient of the leading term of (a)
has a simple zero for À = 0, 1, 2, ..., j’, so that, for any fixed j, j’, the
integrand in equation (9 . 8) has, in general, a simple pole, as far as the
leading term is concerned. In conclusion, we see that the fixed poles
have the effect of compensating the nonsense zeros.

This mechanism is physically very important if one assumes that the
Pomeron is a Lorentz pole at 03BB = 2. In fact, if we consider the one-

particle inclusive distribution for the process A + B - a + anything,
and we call q and 6 the momentum and the production angle of the
observed particle in the rest system of the particle B, the inclusive distri-
bution is given by ([7], [32]) :

where ~ is the position of the leading pole. Using the asymptotic pro-
perties of the representation matrix elements, we get [29] :

If  = 2, the sum over j’ has only the first two terms giving rise to
a linear behaviour in cos e, which is incompatible with the observed

VOLUME A-XVIII - 1973 - NO 1



35HARMONIC ANALYSIS ON THE ONE-SHEET HYPERBOLOID

damping in the transverse momentum

It is easy to realize that the presence of the fixed pole at ~ = 2 permits
to avoid this unwanted conclusion.

APPENDIX A

We prove the following result :

LEMMA. - I f f (x) is a C°° function on r, the two sets o f semi-norms

and

where P indicates an arbitrary polynomial in the generators (with constant
coefficients), are equivalent in the sense that each semi-norm of the kind (A 1)
is majorized by a finite sum of semi-norms of the kind (A 2) and vice-versa.

Proof. - First we show that, if P is a polynomial in the generators

This inequality follows from the fact that if P is of degree n, we can
write

This formula holds clearly for n = 0 and can be proved by induction
starting from the definitions (4.14) and (4.15) of the generators.

It follows that

By means of the substitutions exp (L a) f (x) - f (x), L - - L, we get
also

and the Lemma follows immediately.
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APPENDIX B

In this Appendix we study some properties of the f unction ~ (x’, (3)
defined by equation (7.8). By means of a rotation, we can choose a
system of co-ordinates in which

and equation (7.8) takes the form

where

If we keep zi, X2, and a’ fixed, from equation (B 3) we get

where Lz is the generator of the boosts along the X3 axis. From a repeated
use of this equation, we obtain

where Ani is a polynomial of maximum degree n in each of its two variables
and therefore satisfies an inequality of the kind

Therefore from equations (B 2) and (B 6) we have the inequality

Now we assume that f has the properties (7.12) and (7.13). Then,
from the Lemma of Appendix A, we have
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where Cnq is a semi-norm continuous of the function (7.13).
Introducing this inequality into equation (B 8), we get the majorization

and therefore
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