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Section A :

Physique théorique.

ABSTRACT. - Misner and Wheeler [1] have shown that unquantized
charge may be regarded as a manifestation of a suitably chosen geometry.
It will be proved that, under appropriate restrictions, quantized charge
may be considered as a manifestation of some curved space-time geometry
as well.

I. INTRODUCTION

In their fundamental paper, « Classical physics and geometry », Misner
and Wheeler [1] regarded classical physics as comprising gravitation,
electromagnetism, unquantized charges and masses ; all four concepts
described in terms of empty curved space. In particular, unquantized
charge appears in such a geometrical model as being a manifestation of
lines of force trapped in a multiply-connected topology, as shown in the
adjacent symbolic representation. This un-

quantized charge is described in terms of the
source-free Maxwell equations

and
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One is therefore led to assign a new interpretation to charge in terms of
electromagnetic fields that are subject to source-free Maxwell equations (1)
and (2). This can be naturally done by considering the net flux of lines
of force, as shown in the figure, through the « handle » of some suitable
multiply-connected topology. I. e., it can be proved [1] (refer to section II)
that this flux is conserved, thus justifying its identification with charge.
Consequently, the two holes of the figure exhibit equal and opposite
charges. One therefore obtains the familiar pattern of an electric dipole,
which is consistent with the equation div E = 0. This provides an a pos-
teriori justification that the divergence-free field equations ( 1 ) and (2)
permit the existence of electric charge within a suitable geometric frame-
work.

The purpose of this paper is to provide a description of quantized charge
in terms of pure geometry, aiming thus ultimately at a description of
quantum theory of electricity and general quantum field theory in terms
of fields which may be derived from geometry and not added to it.

II. STATEMENT OF THE PROBLEM

In order to define unquantized charge as a manifestation of geometry,
one may proceed, according to [7], as follows: Let M be some suitable
Ck-manifold as specified below and let FP = FP(M) denote the real vector
space of all exterior p-forms on M. Then we introduce the operator

(d denotes the exterior derivative, p = 0, 1, 2...).
The kernel of d, Ker d, in each dimension is the space

of closed forms. The space

which constitutes the image of d, is the space of exact forms. Clearly,
according to Poincare’s Lemma d(dw) = 0, Vco, one has :
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The quotient space

denotes the pth de Rham cohomology group of M. Homology is intro-
duced in the same way: let

where

denotes any singular p-simplex in M (sup c R" stands for the Euclidean
standard p-simplex [2]).
Upon introduction of the notion of boundary operator ~ which acts

linearly on the chains c = ~ that is

one has:

constituting the vector space of p-cycles (closed chains). I. e. a cycle is
a chain whose boundary vanishes. In particular, a bounding cycle or
boundary b is a chain which is the boundary of a chain of one higher
dimension, b = ac, that is

represents the vector space of bounding cycles. Since for each p-chain c,
= 0, each boundary is a cycle, i. e.

and therefore

The quotient space of homology classes is then given by
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Now define a real bilinear mapping as follows:

For some fixed a) this entails the existence of a homomorphism

which is referred to as the periods of the closed form m. Otherwise stated :
to each p-cycle c on M corresponds a period

of w. 
’ 
"’

Since unquantized charge is described in terms of source-free Maxwell
equations, the two 2-forms

= 1 2! ~ 03BD03C103C3 F03C103C3 represents. the dual Maxwell tensor) are closed, i. e.

in charge-free space the Maxwell equations take the form

Consequently charge may be defined by means of the following periods :

that is, e and g* represent the electric and magnetic charge of c2 respecti-
vely. The definition of charge according to (20) receives its a posteriori
justification by the fact that it generalizes Gauss’s law (refer to remark 7)
and by showing that charge defined in this way represents a constant of
motion, as displayed by the following

THEOREM (Misner-Wheeler [1]). - Unquantized charge regarded as

lines of force trapped in a multiply-connected topology stays constant
with time.
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Proof - This is readily verified by using the following property of

periods: periods take the same value on homologous cycles. Indeed:

where c’ - c"= oe =&#x3E; c’2014 c" (which means that c’ and c"e are

homologous).
From this property we infer:

which yields the required conservation law, i. e. this constant of motion

represents the unquantized charge. ,

Remark 1. - There is a possibility of associating unquantized charge with
a topology as represented in our figure, since the holes are connected by
a handle. This ensures that these cycles are homologous and that the
above-mentioned theorem applies.

Remark 2. - Misner and Wheeler have classified spaces permitting
charge. Such spaces may be represented by differentiable manifolds

such as

(21) R x Wk (where Wk denotes a k-pierced sphere, i. e. spheres which
are obtained by drilling k non-intersecting holes)

or

(22) I~ x T3 (T3 represents a 3-torus).

It turns out that the class of spaces permitting charge must display
the property that its second Betti-number be 03B22  1.

Remark 3. - The lines of force of the flux given by (20), which defines
unquantized charge, may be continuously shrunk to extinction in the case
where the underlying topology is simply connected. Indeed, by Stoke’s
Theorem, one has:

ANN. INST. POINCARÉ, A-XV-3
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for Maxwell’s equations in charge-free space. Thus source-free Maxwell

equations do not yield any definition of charge in terms of a simply-
connected topology.
The problem which now arises is : which geometry has to be associated

with the concept of quantized charge? In order to answer this problem,
we must first analyze some properties of chains.

Chains are in duality with exterior forms, which means that to each
property of exterior forms there corresponds a dual property of chains
(refer to [3]). To the notion of an integral on a manifold there corres-
ponds the dual notion of the Krobecker-index [2], [3], [4]. This index

provides a relationship by means of which point charges may be associated
with some appropriate topology. This will be explained in our sub-
sequent discussion.

Consider 0-chains, which are by definition linear combinations of a
finite number of points, i. e.

Then the Kronecker-index is defined as being a linear functional on Co(M) :

and has all properties of an integral [3]. Then the following Theorem
holds :

THEOREM OF PoiNCARE ([2], [3], [4]). - The necessary and sufficient

condition for a p-cycle to be homologous to zero is given by

This constitutes the counterpart of de Rham’s first theorem for closed
forms.

Remark 4. - The composition law cp.c"-P in (25) represents the set-
theoretical intersection and the orientation of the chains cP and 

Concerning the dimension of this intersection, the following rule holds [3] :
given any n-dimensional manifold M", two chains of dimension PI and p2
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of this manifold intersect along a chain of dimension (pi + p2 - n).
pi + p2  n yields no intersection at all.

Poincare’s Theorem entails [3] that one can associate with every closed
p-form an (n - p)-cycle cn - P according to the following relation-
ship:

If one considers in particular a fundamental system of p-cycles

c l, c2, ..., cPp PP pth Betti number,

then (26) becomes in terms of the f3p fundamental cycles :

III. QUANTIZED CHARGE AND GEOMETRY

Our next task is to define a space-time geometry M4 such that quantized
charge can be regarded as a manifestation of this geometry.

Let M4 be a differentiable manifold of dimension 4 which represents
the space-time continuum. M4 is supposed to be endowed with a pseudo-
Riemannian structure, the metric of which is of the hyperbolic type. Special
relativity is taken into account by means of the principal fibre bundle E(M4)
over the base space M4. E(M4) is defined as follows:

With respect to the set of orthonormal frames px = { E(M4),
k = 1, 2, 3, the metric can be written on an open neighbourhood of M4

where the ek denote Pfaffians. The structural group of E(M4) is the com-
plete Lorentz group L(4).
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The underlying topology of this space-time must display appropriate
properties in order to exhibit quantized charge. This may be formulated

by means of the following.

Assumption. - The space-time topology M4 has a structure such that
point charges ei, e2, ..., en distributed over the points P 1, P2, ..., Pn E M4
and satisfying

appear as a manifestation of this geometry.
The topological properties which M4 must have in order to be consistent

with this assumption, follow from our subsequent Lemmata.

LEMMA 1. - Let E be a space permitting unquantized charge, then there
exists a Ck-diffeomorphism 1).

such that the mapping

induced by 4&#x3E;, satisfies the following condition:

where Cj E C2(E) are fundamental cycles (j = 1, ..., and ei (i =1, ..., n,

n  denote point charges located in Pi E M4.

Remark 5. - According to (31), the modulhomomorphism ~* maps
cycles into cycles. Indeed, by virtue of the following general commuta-
tive diagram (33), we have:

Proof of Lemma 1. Consider the following modulhomomorphism /J*
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which is naturally induced by the mapping (30). The adjacent commu-
tative diagram (35) expresses explicitly relation (34):

where 5 and represent the electromagnetic field tensor in

different coordinate frames. The 3-form y stands for the charge density

Thus diagram (35) is consistent with our aforementioned assumption
about the structure of the space-time topology M4. That is, (35) accounts
for the conventional as well as for the source-free Maxwell equations, the
latter being associated with spaces permitting charge, i. e.

On account of the definition of an integral on a manifold [2], one obtains
by virtue of diagram (35) :

The condition (38) is necessary for a distribution of charges according to
assumption (23’). Indeed, let

There always exists a linear Kronecker functional I, such that

i. e. there exists a such that, for every Pi E M4 which carries some point
charge ei, one has
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Furthermore, Pi E n where denotes a cycle with the properties

in particular : n = 4, p = 2, n - p = 2.
By ?virtue of (39) and (41) one obtains relationship (32). This entails that

r w constitutes a generalization of Gauss’s law j jc2 403C0e (e denotes

any point charge, c2 is a closed surface) within a suitable space-time geo-
metry M4 (refer to [1] and our subsequent remark 7). The aforementioned
formulae from (39) to (41) inclusive relate physics to geometry.
Thus we have proved the implication (23’) =~ (32). The converse is

also true, as can be checked easily.

Remark 6. The demonstration of Lemma 1 is based upon the equi-
valence between the assumption (23’) and relationship (32).

Remark 7. - Consider the affine tangent space Tx according to (28)
which admits a structure of Minkowski space, and let xo, xl, ...,x~
be the time and space coordinates of T~. Then we set

where Ei 1 and Hi 1 denote the 6 components of the electromagnetic field
tensor F~(x~). Performing the integration of (32) over the 2-cycle

E C2(M4) in a hyperplan x° = constant, this yields :

Remark 8. - The flux integral (32) is induced by the modulhomomor-
phism "" 

as well as by (20) and (38). Thus, quantized charge, which is associated
with the topology of M4, is determined by unquantized charge and its
corresponding topology. This yields that the geometry which is associated
with unquantized charge must determine partly the properties of the geo-
metry of M4 which gives rise to point charge (refer to the proof of Lemma 3).
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Remark 9. - The conjunction of equations (39) and (41) is different from
statement (27), since 5 is not closed. Nevertheless, one can find a 2-cycle
c~ = for which equation (41).becomes meaningful. Furthermore, it

should be noted that (5 does not represent any de Rham period,
since 5 is no closed differential form. This integral therefore cannot
represent any flux for unquantized charge of the kind displayed in [1].

LEMMA 2. - A necessary condition for the occurrence of quantized
charge associated with the topology of M4 is given by

where y stands for the charge density (36).

Proof - Let y E F3(M4) be the 3-form given by (36). This form must

satisfy the continuity equation div T + ap - at = 0, i. e. dy = 0 E F4(M4), which
means that y is closed, i. e. y E :f3(M4). Hy(M4) = 0 means that Vy :
y is an exact form, that is ~03B2 E F2(M4) such that y = df3.
Our assumption (23’) about the charge distribution associated with

the geometry M4 and the diagram (35) ensures the existence of such a ~,

since, by virtue of the Maxwell equations (37), we have ~= 20145.
4n

A further property to which M4 is subject, in order that M4 may be
associated with point charges, is given by the following

LEMMA 3. - A sufficient condition for the geometry M4 to give rise
to quantized charges is that

holds.

constitutes the second homotopy group of M4. This group,
or more generally the k-th homotopy group of M4, is defined by

The elements of this group are homotopy classes of maps of the k-th
sphere Sk into M4 (see reference [5]). In particular, [0] is represented by
the constant map fo(Sk) = P E M4 ( P denotes any point of M4). That is,
’dg E [0] : P means « homotopic to »).
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Proof of Lemma 3. - = 0 means obviously that each

Jj E [ f] e TI2(M4) is homotopic to a constant map. Let { c;: i =1, ..., 
be {32 fundamental 2-cycles of C2(E). Some of these constitute cycles in
the sense of equation (20). According to [1] and remark 2, these 2-cycles
are homeomorphic to 2-spheres, that is, one has (by identifying these homeo-
morphic spaces)

and therefore there exists some f E [/] e TI2(M4) with the property

The condition (44) then amounts to saying that c2 is continuously defor-
mable to the point pt E M4, that is :

where

Therefore, any 2-cycle c? E C2(E), which accounts for unquantized charge
and which satisfies the side condition (39), is mapped into a 2-cycle

E C2(M4) which may be continuously deformed to a point. This point
carries the quantized charge in question.

Remark 10. - It is seen in Lemma 3 that a comparison between the
geometries of the quantized and the unquantized charges, i. e. E and M4
is indispensable in order to obtain the property (44) which must be imposed
on the space-time M4. According to (30), i. e. (33), homologous 2-cycles
E C2(E), which represent unquantized charge, are mapped into one 2-cycle
E C2(M4), which represents the corresponding quantized charge. This

corresponds to the passage from equation div E = 0 to equation
div Ë = 4np.

Remark 11. The condition = 0 obviously implies the relation-

ship a) = 403C0ei to hold (by means of the generalised Gauss’s law).

But, by virtue of remark 6, this amounts to saying that (44) entails the
assumption (23’). Therefore, our assumption about the distribution of
point charges receives its a posteriori justification through (44). Further-

more, the condition is not necessary for the existence of quantized charge.
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Indeed there exist linearly independent cycles cf E é2(E) other than the
cycles with property (20), to which correspond 2-cycles = 

which need not be homotopic to a point. This entails the existence of

maps f E such that f ~ [0].

Remark 12. In the sequel, we make use of the following definition :
the space M4 is said to be k-connected for k  0 if and only if it is path-
connected (= 0-connected) and the k-th homotopy group TIk(M4) is

trivial. This definition of k-connectedness and Lemma 3 yield that, if

M4 is 2-connected, this space admits quantized charges. In this case,
the 2-connectedness of M4 and the existence of an isomorphism between

and [6], entail the condition

which yields by de Rham’s first theorem that each closed one-form on M4
is exact. Moreover, 2-connectedness of M4 would entail the relation-
ship (51) to hold:

Thus, we infer by Hurewicz’s Theorem [6] : H3(M4) # 0 or equivalently
H3(M4) =1= 0.
Lemma 3 is consistent with Lemma 2, since H;(M4) c H 3(M4).
Thus we may summarise our results as follows:

THEOREM. - Let the space-time geometry M4 be associated by means
of a Ck-diffeomorphism 1) ~ : E - M4 with the topological space E
permitting unquantized charges. Conditions for the space M4 to exhibit
quantized charges as a manifestation of its topology are given by the
necessary conditions

and

and the sufficient condition ll2(M4) = 0.

Remark 13. - Magnetic monopoles do not exist in a fully classical
geometrical theory, as has been pointed out by Misner and Wheeler [1].
Indeed, if the electromagnetic field is derived from a vector potential



202 C. V. WESTENHOLZ

x e F’, then there is a zero net flux through every surface c~
~

that is closed, and, according to (20), we have:

That is : the existence of a vector potential implies that there is no magnetic
charge.
The picture of quantized charge which is associated with space-time,

as described in this paper, should be referred to as a semi-classical picture.
Indeed, all charges in such a theory must be integral multiples of a unit
charge e. However, the reason for this way possibly only be explained
within a framework of magnetic monopoles. In such a theory all charges
would be integral multiples of e connected with the pole strength g of

magnetic poles by the formula e.g = n ~ h, n = 1, 2, ..., h = Planck

constant, as exhibited by Dirac [7]. A geometrical theory with mono-
poles therefore provides a full quantization of electricity. It should be

noted [8] that such a geometrical picture would require that the conventio-
nal Maxwell equations

which display a lack of symmetry, be remedied through the replacement
of (53) by (53’): = 4n*y where *y represents a conserved magnetic
current.
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