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Generic Feynman amplitudes

E. R. SPEER M. J. WESTWATER

Institute for Advanced Study. Princeton. New Jersey 08540

Ann. Inst. Henri Poincaré.

Vol. XIV. n° 1. 1971. p. 1-55.

Section A :

Physique théorique.

ABSTRACT. - We introduce certain complex parameters into a Feyn-
man amplitude of quantum field theory to define a new function called
a generic Feynman amplitude. These amplitudes have the same singu-
larities in the invariant variables as the usual amplitudes, but with different
local behavior; we investigate this behavior for singularities associated
with contracted graphs of a type we call normal. Some consequences of

these results for the problem of characterizing the analytic behavior of
the amplitudes are pointed out.

RESUME. - Nous introduisons certains parametres complexes dans
une amplitude de Feynman de la theorie quantique des champs. La nou-
velle fonction determinee ainsi s’appelle une amplitude de Feynman gene-
rique. Ces amplitudes demontrent les memes singularites dans les variables
invariantes que les amplitudes habituelles, mais le comportement local est
different. Nous examinons ce comportement pour le cas des singularites
qui sont associees avec les graphes quotients d’un type que nous appelons
normale. Quelques consequences de ces résultats pour le problème de
caracteriser la structure analytique des amplitudes sont indiquees.

1 INTRODUCTION

This paper is a contribution to the study of Feynman amplitudes, with
the general aims announced in the introductory section of [7].

In [2] T. Regge suggested that the qualitative behaviour of a Feynman

(*) Research sponsored bv the National Science. Foundation. Grant No. GP-16147.



2 E. R. SPEER AND M. J. WESTWATER

amplitude, which is given by its monodromy group, could be computed
from the structure of the fundamental group of its domain, and certain
local conditions on the monodromy representation (obtained from the
Picard-Lefqchetz theorem and its generalizations). He was able to sup-

port this conjecture with calculations for the self energy graphs with two
and three lines. Since then Regge has obtained further evidence for the
conjecture in calculations carried out in collaboration with G. Ponzano [3],
with G. Ponzano and the present authors [1] [4], and with the present
authors [5] (1). In Section 6 of this paper we give a discussion of the
ways in which the conjecture may be precisely formulated for a general
amplitude and compare these formulations with the procedure actually
followed in the calculations mentioned above.

Our main concern in this paper will be with the local representation
conditions. As in [1] [4] [5] we consider a’ generalization of the customary
Feynman amplitudes. The generalized amplitudes we refer to as generic.
They are defined in Section 2. This generalization is considered for two
reasons : first, we are thereby able to avoid divergence difficulties; second,
certain degeneracies which occur in the monodromy representation of a
Feynman amplitude are removed when one passes to the corresponding
generic amplitude (for example the occurrence of singularities with local
behaviour of logarithmic type). It should be noted that we allow the

possibility that the masses of some of the intermediate particles should
be zero, despite the fact that it is in building a theory of strongly interacting
particles that we hope our results will be useful. This is because the struc-

ture of the monodromy ring for an amplitude with some zero masses is
embedded into the monodromy ring for the corresponding amplitude
with non-zero masses (see Section 3 and 6). The device of introducing
generic amplitudes enables us to avoid difficulties with infrared diver-

gencies. The analytic behaviour of the customary ampiitudes may be
obtained by suitable specialization.

In Section 4 we introduce the concept of a normal graph Q-defined
roughly as a graph which has a leading Landau variety, which for suitable
values of the masses, appears as a singularity on the physical sheet of the
amplitude for any graph G which admits Q as a quotient. We then prove
a local decomposition theorem for the physical sheet of the amplitude
for G into a sum of a non-singular part and a singular part with definite
local power behaviour in the neighbourhood of such a singularity. The

relation of this theorem to the Picard-Lefschetz theorem, and its implica-

(1) A summary of Regge’s present point of view is given in [29].



3GENERIC FEYNMAN AMPLITUDES

tions for the local representation conditions are discussed in Section 6.

The formal idea which is used in the proof of the local decomposition
theorem of Section 4, and the theorem itself, are not new. Derivations

of the corresponding result for the customary (i. e. non-generic) Feynman
amplitudes, of varying degrees of completeness, have been given previously
by a number of authors [6] [7] [2], beginning essentially with the original
paper of Landau [8~. What is new in our treatment is the careful discussion

of the crucial condition, the nonvanishing of the Hessian.
Section 5 is devoted to a discussion of the concept of normality, and to

a proof of certain combinatorial criteria which suffice to decide that a

large number of graphs are normal.

2. THE GENERIC INTEGRAL

2. 1 . Graph theoretical preliminaries

In this section we establish the terminology we will use in discussing
.Feynman graphs. We also give some simple results about the Symanzik
polynomials associated ’with a graph; these are applied in Section 4.3.

DEFINITION 2.1.1 : A graph G consists of a set of lines { E Q }
and a set of vertices {Vk|k E O }, together with a mapping

For j~03A9, il( j) and i2( j) are called the initial and final vertices respectively,
of the line collectively they are called the end points of l~. We write

N = = A. tadpole is a line lj of G such that il( j) = i2( j);
a multiplet ( c Q, ;~ I &#x3E; 2 } is a set of lines of G such that

for all j, k E X. The star of a vertex Vk, k E 0, is defined by

The graph G has an obvious topological realization (say in 1R3); we let
c denote the number of connected components in such a realization.

Finally, we let h = N - n + c denote the number of loops in the graph.
When several graphs are under consideration, we distinguish quantities
related to G by writing QG, and N(G), h(G), etc. (similarly for other
quantities defined in this section).
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A Feynman graph is a graph G as in Def. 2 .1 1

together with partitions Q = S2° u 0 = 0~. A line 

is called a massless (massive) line; a vertex Vk, k E is called an

external (internal) vertex. We write nE = etc. (We usually refer
to this Feynman graph simply as G). G is massive if G is exter-

nally complete if OE = e. If G is a connected Feynman graph, we define G~
to be the graph (in the sense of Def. 2 .1.1 ) with

and

that is, Gx consists of G with one additional vertex V~, which is joined
to each external vertex of G.

Note that a Feynman graph, for us, is oriented. This is for convenience;
the Feynman amplitude is independent of this orientation. Note too

that we do not attach external lines to the external vertices of a Feynman
graph (except in the graph 

DEFINITION 2. 1.3 : Let G be a graph. A subgraph H of G is a graph
as in Def. 2.1. 3 such that QH c 0H c 0G, and iH = iG n (note this
implies 8H). H is a full subgraph if

If X c Qa, we write for the minimal subgraph of G with x c 
If G is a Feynman graph, a subgraph H of G is considered to be a Feynman
graph with

that is, Vk E 8H is external if it is external in G or if it is an endpoint of some
line of G not contained in H.

DEFINITION 2.1.4: 1 Let H be a subgraph of G, with components
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Define the quotient graph Q = G/H by

If G is a Feynman graph, so is Q, and we take

DEFINITION 2.1. 5 : Let G be any graph. G is k-connected 9, p. 205],
where k is a positive integer, if for any subset 03C8 c eG the

(unique) maximal subgraph H of G with 8H = is connected.

A path y of G is a sequence ..., ly(r) of lines of G such that is not a

tadpole and y(i) # y( j), 1  i ~ j  r, and 1) have precisely one
common endpoint i  r), and, if Wo # WI and Wr =1= Wr-l 1 are

endpoints of and respectively, the vertices Wo, Wi, ..., Wr are
all distinct. y is then called a path from Wo to Wr, which passes through
Wo, ... , Wr.

LEMMA 2.1. 6 : If G is k-connected, and i, i’ E eG, there exist k paths
in G from VI to V;’, such that no two paths pass through a common vertex
other than Vi, VI.

Proof : See [9, p. 205].

DEFINITION 2.1.7: Let G be connected. A subset Tr c Q~ is an r-tree
in G if = 0, = r. A co-r-tree is the complement (in Q)
of an r-tree; a tree is a 1-tree (similarly for a co-tree). Note that this is

not the standard definition of a tree since, for us, every vertex of G is the

endpoint of some line in a tree.
We now construct the Symanzik polynomials associated with a con-

nected graph G.

DEFINITION 2.1.8 : Let a be a point in and write

for any X c Q. Suppose ..., c 8. Then
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where the sum is taken over all r-trees of G such that, for

there is a path in H(T,) from Vi to Vl- iff i, i’ for some j, 1  j  r.
Note that = 0 if l/Ji # 0, for some i # j. is

independent of so we write

We now wish to relate the Symanzik polynomials to the minors of a
certain matrix associated with G. The incidence matrix of G is defined by

Taking a E CN(G) as above, we define the symmetric matrix

The (signed) minors of A are denoted A(~), A(} f), etc; by convention,

the sum running over all permutations n of { 1, ..., r}, with a(n) the sign
of the permutation. 

’

Proof : We give only a brief sketch of the proof. Since both sides of

(2 .1.11 ) are antisymmetric in fi, ... , iT and jl, ...,~, we may assume
i 1  ... 1  ...  ~. Let X c Q be any set of h(G) + r - 1 lines

of G : and let denote the (unsigned) minor of e :
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We observe that

where Tr is some r-tree such that there is no path in H(T,) joining Vij to Vik,
1  j  k  r. This is proved in [10, Appendix A] for r = 1, and is

immediately extended by applying the r =1 result to the graph G’ obtained
from G by identifying the vertices V... V.. Now suppose 0

and e~~- ~r~ ~ 0; then it is easily verified that

where n is the permutation of { 1, ..., r} such that there is a path in
H(Tr) from ik to Then we write A = BTC,

where

and apply the Cauchy-Binet theorem to calculate (see [10,
Lemma A. 9]).

2.2. Definition of generic Feynman amplitudes

Let G be a Feynman graph as in Section 2.1. Let m be a positive
integer. Denote by em the vector space of dimension m over the field ~
of complex numbers and suppose that a scalar product a, b is given on em
whose associated quadratic form a, a = a2, is positive definite when

restricted to the real subspace IRm of If G is connected define

We refer to Xg as the space of (external) momentum vectors for the graph G
in a space time of dimension m. If G is not connected define

the product being taken over the connected components GS of G.
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Suppose G connected. From the momentum vectors pI, we

may form invariants

X a non-empty proper subset of OE. These invariants satisfy the linear
identities

In (2.2.4) /~ ~2, %3 are non-empty proper disjoint subsets of If

m &#x3E; (nE - 1 ), the relations (2.2.4) are all the relations which the s{y)
must satisfy by virtue of their definition (2.2.3). Note that the rela-
tions (2.2.4) are independent of m. This motivates us to define the space
of external invariants SG of G to be the space of complex variables s(/),
labelled by non-empty proper subsets of which satisfy (2.2.4). Note

that (2.2.4) may be used to express any in terms of the invariants

where io is some fixed index in 0~ and that these invariants are linearly
independent.

Before we can define the generic amplitude F~ for G, we must introduce
two further sets of variables associated with the lines of G. For each

massive line of G we introduce a complex variable zi, called the squared
mass for that line, and denote by the space of these variables.
Next for each line of G we introduce a complex variable ~,~. Finally we
introduce a complex variable v, called the space-time dimension, whose
relation to the m of the preceding paragraph will be explained presently.
The variables i i, ~~ will be referred to as parameters and the space of these
variables denoted by A~. We define W~ = SG x ZG, the space of inva-
riants for G, and T~ = W~ x AG. T~ will be the domain of the generic
amplitude F~.

Formally F~ is defined by the integral representation

In (2.2.5) the integration space is the (N - 1 ) dimensional projective
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space (x1. are homogeneous coordinates in this space
and the integration contour ;y is the simplex

(N - 1)

~ is the fundamental projective differential form of degree (N - 1 ) [11].
is the Symanzik polynomial defined in Section 2.1 and s, ~ )

is given by

The exponents /.o and p are given by

The normalization factor r), which is introduced for future conve-

nience, is given by the following product of gamma-functions

where

In (2 . 2 . 5) and elsewhere in this paper ab, a, 0, will stand for

exp [h log + a]. log +a, the principal value of log a, is defined by

arg +cr being the value of arg a in the interval [- n, + n]. Note that

(2.2. 5) is not our final definition because the domain in TG in which the
integral is convergent may be empty.
For r = m a positive integer (2.2.5) reduces to the parametric repre-
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sentation of the Feynman amplitude for the graph G obtained by taking
momenta p! from a space of dimension m with invariants given by (2.2.3)
and by taking as the propagator for the line lj

and otherwise following the Feynman rules. Thus the generic ampli-
tude F~ differs from the amplitude introduced in [10] in order to define
the method of analytic renormalization only in the replacement of the
space-time dimension m by the complex variable v. The motivation

for the introduction of a complex v, which was suggested to us by T. Regge,
will be given in Section 6.

In the definition (2 . 2 . 5) G is supposed connected. If G is not connected

we write the domain T~ for FG as a product

in the obvious way and define

In order to understand the role of the various variables in (2.2.5) the
mathematical reader is advised to compare the equation with the standard
integral representation for the hypergeometric function

cf. [12] or [13]. (The discussion of the monodromy representation of
F(a, b, c, z) to be found in these references is also a useful background
for the corresponding discussion for F~ which we give in Section 6).

Define the Symanzik region R~ c W~ by

V nonempty proper subsets X of 0~ }. (2.2.17)

We will rewrite (2.2.5) as a sum of terms each of which is well defined

for (s, z) E Re and for (/., v) in a certain region of A~. The (~, v) regions
for different terms may have empty intersection. However, each term
can be analytically continued in (i, v) to give a function meromorphic in
(i, v). The sum of these functions will then be taken to define z ; ~, v).
To obtain the splitting of (2.2.5) we proceed as in the theory of renor-
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malization ([10] [14]) and define for each 1 - 1 mapping p of { 1, ..., N }
onto Q a sector

In we may normalize the homogeneous coordinates a; by setting
= 1, and we may introduce new variables

LEMMA 2.2.20 : The integral

may be rewritten in the form

where 5 == {(x)~0 ~ x~  1, 1  i  N - 1 } and g(x, s, z, )B" v) is a Coo

function of x in ð which is holomorphic in s, z for (s, z) E R~ and entire
in ~,, v. (The exponents Li are functions ofx, v which will be given explicitly
in the course of the proof). The integral, convergent for Li &#x3E; - 1, defines
a function which is analytically continuable to a function Fb(S, z ; ~, v),
holomorphic in (s, z) E RG and meromorphic in v.

of G (cf. (2.1. 3)) and define inductively a tree T~ c G~ by

Define also integers ip, jp, kp



12 E. R. SPEER AND M. J. WESTWATER

and the variable

where Zp is the set of external vertices lying in (either) one of the two com-

ponents of T) - ~.
We now assert that for 03B1~PN-103C1 and x(a) given by (2 . 2 .19)

where 61(x), 62(x, s, z) are sums of monomials in the xi with positive
coefficients for (s, z) e R~.

Proof .~ Let T be any tree in G. Then for each i, 1  i  N - 1 the

corresponding cotree T’ = Q - T intersects G~ in at least h(Gp) lines
(otherwise we should have h(T n G~) =t= 0). The cotree product a(T’),
when expressed as a monomial in the x~, is therefore divisible by

T’ intersects G~ in precisely h(Gp) lines for each i, 1  i  N - 1, iff

T = T~. This completes the proof of (2 . 2 . 23).

z) = s) + z)

Each term in DS is defined by a 2-tree T2 each of whose components has a
non-empty set of external vertices (2.2.8) and (2.1.7). The correspond-
ing co-2-tree T~ == Q 2014 T2 intersects Gp, for each i, 1  i  N - 1, in at
least h(GP) lines since h(T2 n G~) = 0. Further for i &#x3E;_ jP T; intersects
G~ in at least h(Gp) + 1 lines since the external vertices all lie in the same

component of G~ but are separated in G~ n T2. The co-2-tree product
x(T ~), when expressed as a monomial in the Xi’ is therefore divisible by
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It is equal to this product iff T 2 = T) - h. Each term in D‘ is by (2 . 2 . 9)
and (2.2.23) evidently divisible by

and the quotient is independent of x iff the term is By compar-
ing the dominant therms in DS and DZ we evidently obtain (2.2.24).
The transformed integral (2.2.22) is obtained directly from (2.2.23),

(2.2.24) and the transformation equations (2.2.19). Explicitly

The final statement of the lemma is immediate from (2 . 2 . 22), and the
result of Gel’fand-9ilov [15] that xT as a distribution is a meromorphic
function of i, with simple poles for i a negative integer.
We are now ready to give a precise definition of the generic Feynman

amplitude FG.

DEFINITION 2 . 2 . 28 : For (s, z) E Ro and (x, v) E A~ the physical sheet
of F~ is the single valued function, holomorphic in sand z, meromorphic
in i, v defined by

the summation being over the 1 - 1 mappings p of { 1, ..., N } onto Q.
The generic Feynman amplitude FG is the multi-valued analytic function
defined on TG = W~ x AG by analytic continuation of .

The definition 2.2.28 is not convenient for the investi-

gation of the analytic continuation of F~ in (s, z). ~ For generic )., ~’ it is

possible to obtain a representation for F~ as an integral over a closed
contour, to which the methods of [16] are applicable. From this represen-
tation it follows that the singularity set of F~ is an algebraic variety z)
(which does not depend on i, v) together with the poles in i, v noted already.

DEFINTION 2.2.31 : Lc is the Landau variety for G.
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- Remark ? .2. 32 : The information about the poles of FG in /., v given by
(2.2. 29) and the formulae (2.2.25), (2-.2.26) is not the best possible i. e.

Not every pole of one of the distributions xt used in the proof of Lemma
(2.2.20) is a pole of F~. The problem of obtaining the precise set of
poles in /., v of FG is essentially the problem of investigating the conditions
under which a Feynman integral has ultraviolet or infrared divergences
(recall that we allow zero masses for any or all of the lines of G). For the

ultraviolet divergences the reader may consult [10], where the minimal
poles are obtained in the case of a massive graph and for the infrared diver-
gences [17]. The following lemmas will be of use to us.

LEMMA 2.2.33 : Let G be a connected Feynman graph, x c Q a set of
lines, non one of which is a tadpole, such that h(H(Q - x)) = h(G) - 

is called compatible with 03C0 if

Then there is a region A, c AG such that for (s, z) E RG, (2, v) E A,, and p
compatible with n, the integral of the form (2.2.22) which defines

z ; ~, v) is absolutely convergent.

Proof : The integral (2 . 2.22) is absolutely convergent iff the complex
numbers Ti( = ip) satisfy Re Tf &#x3E; - 1, 1  i  N - 1. According to

(2.2.25), (2.2.26) these conditions are explicitly

We choose the region A, to be the set of all ~,, v satisfying
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for suitably chosen small positive E. Conditions (2.2.34) and (2.2.35)
then follow by noting

We note that i~, v E Ax also satisfy

LEMMA 2.2.38 : If G is a massive connected Feynman graph, there exists
a region A° c AG such that the integral (2.2. 5) is absolutely convergent
for all (h, v) E A°, (s, z) Further, we may choose A° such that for

any quotient graph Q = G/S for which N(Q) &#x3E; 1,

Proof : Omitted, comparable to 2.2. 33.

2.3. Multiplets of massless lines

Let G be a Feynman graph, and be a multiplet in G such
that X c Let G’ be the Feynman graph obtained from G by replacing
the lines ~ ~ E x by a single massless line la. In this section we relate the

Feynman amplitudes of G and G’.

THEOREM 2 . 3 .1. - Let g : AG --+ Ac be defined by v) = (//, v’),
where

(Note that (2. 3.4) is equivalent to Va = v~). Then

x

Proof. - If the lines Lj, j~~, are tadpoles, both sides of (2 . 3 .-5) vanish ;
we may therefore exclude this case. We also assume x ~ - 2 c}),

ANN. INST. POINCARE. A-XIV-I 2
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since repeated application of this case may be used to prove the theorem
for any value of !/~. Now let n: { 1, ..., N - 2} - Q - X be 1 - 1.

By Lemma 2 . 2 . 33 there is a region Ax c AG such that (i., v) E Ax implies
that the integral (2.2.5) is absolutely convergent when integrated over
the region

-- n ~ - -

(Actually, Lemma 2.2.33 does not apply unless the graph X)
is connected, but, if it is not, a separate proof of the existence of Ax is easily
given). Thus (normalizing oc~-2) = 1) we may define

and continuing FG out of the region A,,

Now in (2 . 3 . 7) we make the change of variables

Then (2.3.7) becomes

since

The T integral in (2.3.8) gives a factor
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and, using (2.2.12), we see that

where F#, is defined in the obvious way. Continuing (2. 3.9) out of A,,
and summing over 7r, proves the theorem.

3. ZERO MASS SINGULARITIES

THEOREM 3.1. - Let G be a connected Feynman graph. Let 

be such that the Feynman graph G~, obtained from G by deleting one
line 1~,, is connected. Then { Zoo = 0 } is a singularity of the generic Feyn-
man amplitude FG(s, z; x, v). More precisely, the physical sheet 

admits in the neighbourhood of Zoo = 0 the decomposition

where H~ and K~ are holomorphic in z~ in the neighbourhood 
Denote by GW the Feynman graph obtained from G by deleting the line /~
from the set of massive lines. Then, with the obvious identifications of
the spaces T Gw’ with subspaces of TG, -

we have

Prooj - If fro is a tadpole, the theorem holds trivially with HG indepen-
dent of Zro and KG = 0. In the following proof we may therefore exclude
this case. We apply Lemma 2.2. 33 with X = { úJ } to produce a region
A, c Ac for each 1 - 1 ..., N - 1 } -~ S2 - ~ co }. We then

define, for (s, z) E R~,

(p compatible with n), where the concept of compatability is defined in

Lemma 2.2.33.

LEMMA 3 . 5. - For (i~, Fe,(s, z) can be analytically continued
in Zro around Zro = 0 (the remaining s, z variables being held fixed). The

discontinuity of F~ around z = 0 (i. e. the difference between the func-
tion obtained by continuation of F~ along a loop circling z~ = 0 anti-
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clockwise and FG itself) can be analytically continued in Zro clockwise

around zero to small positive Zro values. For Zro small and positive it is

given by the sum of absolutely convergent integrals

( p compatible with n, k p = &#x3E; j p). Here JG is defined by replacing 6
in (? . ? . 22) by

-. ..... , ’" ,...,. ’B ~ ,.. -B.

Proof. - From (2.2.27) we see that we may choose a sufficiently small
neighbourhood U of z~ = 0 in the Zro plane so that for Zro E U and the

remaining s, z variables held fixed (the radius of U depends on their values)

iff kp = &#x3E; jp (so that (p = - z~). Also (3 . 8) holds only for z~
real and positive and then the set {g(x, s, z, x, v) = 0} intersects the faces
of the cube b(p) transversely. The analytic continuation of FG in z~

along a path circling z~ = 0 is thus made trivially (since no distortion
of the contour is required) until z~ approaches the real axis. The dis-

continuity in (3 . 6) is the difference between the functions obtained

by taking clockwise and anticlockwise paths. Now

Since (2 . 2 . 37) holds the integral J~ is absolutely convergent for (A, v) E A,.
In making this assertion we have used also the transverse intersection
property noted above, which guarantees that to prove absolute conver-

gence of J~ we have only to examine the exponents of the factors in the
integrand. From (3.9) we have

tor p such that kp = &#x3E;j~. Otherwise disc Fb = 0. Summing
over the p compatible with vr we obtain (3.6).

3 . 10. - For any 1 :1 mapping n : -~ 1, ..., N - 1 ~ --~ SZ - ~ m )
and (i, v) E A,

with H" holomorphic in the neighbourhood of z~, and
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Proof. - We may write the sum of integrals (3. 6) in the form of a single
integral 

N-l I

and the variables Xi are defined by (2.2.19) with p given by

For this p we have (p = - z~. For z~ positive and 0  r~  1,
1  i  N - 2, - z~ + ~2(~~ ~ z) is a quadratic polynomial i

with a negative constant term - z~ and positive linear and quadratic
terms. Thus it has a unique positive zero in 1 which we denote by

= 
..., XN - 2’ s, z)z~. We regard (3 .13) as an iterated integral,

integrating first over then over Xi, ..., XN - 2 and make the change
of variable 

, ,_ , ,,

Since -  + 1 + 1 (from (2 . 2 .11 ), (2 . 2 . 13), (2 . 2 . 25)) we obtain
(3 .11 ) with

where

Now h = { 1 + 7i(x)}~ { 1 + B(x, s, z)y ~ -~‘ exp ( - inll) where B is a

certain polynomial, positive in the region of integration. Hence h is

uniformly bounded in rl, ..., the region of integration. v can
be written in the form

where r’ is bounded away from zero uniformly in ..., for z~,

in the neighbourhood of zero. Since
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the value of Ii for the graph G~, the change in the exponent of Xi for
 i  N - ? obtained when (3.17) is substituted into (3.15) is just

the replacement of Ti by r~, the value of Ti for G~ (for other values of i,
T~ = Now in A, we also have Re T~ + 1 &#x3E; 0 for 1  i  N - 2.

It follows that H’ is holomorphic in z~ in the neighbourhood of z~ = 0
and that H" I=w=o is given by the integral (3.15) with z~ = 0 in the inte-
grand. Now by combinatorial arguments, which we will not detail here
since more general considerations of the same kind (but expressed in terms
of the 3~~ rather that the scaled variables x) will be given in Section 4.3,
it may be shown that

Also B I=w = 0 = 0. Thus when z~, is set equal to zero in (3.17) the y inte-
gration may be carried out explicitly to give a product of r functions.
Taking into account the definition of the normalization factor /c(~ v)
(2.2.12) and making use of the identity F(z)F(l 2014 z) = n/sin nz we find
that the resulting integral over xl , ..., XN - 2 is just the integral defining
FGw. This completes the proof of Lemma 3.10.

LEMMA 3.18. - FG - = KG is, for (~,, v) E An’ holomorphic in
z~ in the neighbourhood of 0 and KG = FGw.

Proof. - By construction of HG, KG is single valued in z~. Since for

(i~, v) in A,~, v~ &#x3E; 0 (2. 2. 36)) and the convergence conditions 1 + 0

for the integral F03C1G03C9 are satisfied for any p compatible with n, it is easily
checked that KG is also bounded in the neighbourhood of z~ = 0, hence
holomorphic, and its restriction to z~ = 0 is FGw as asserted.
To complete the proof of Theorem 3.1 we note that both sides of the

decomposition FG = + KG may be continued in (~,, v) outside A~
to give meromorphic functions (by the Gel’fand-9ilov technique) and that
the decomposition continues to hold. Summing over 7r we obtain (3.2).

4. NORMAL LANDAU SINGULARITIES

4. I . The definition of a normal Landau singularity

DEFINITION 4.1.1. - Let Q be a massive Feynman graph (2). Denote

by n the natural projection

(2) Throughout this and the following section we restrict ourselves to such graphs.
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and consider the restriction ni 1 of 7r to the set U

If c WQ is of complex codimension 1 in WQ we call the closure of
the leading Landau variety of Q, and write 03C01(U) = Lb. In this

case Q will be said to be normal.

Remark 4.1. 2. - For (a, s, z) E U we have D = 0 since D is homo-

geneous in a, and hence

These equations give

and conversely (4.1. 2) implies (ex, s, z)e U. (4.1.2) shows that the set U
has dimension equal to one less than the dimension of WQ, and so 
is of codimension &#x3E; 1 in W Q for any Q.

Remark 4. 1 . 3. - (4. 1 . 2) may be regarded as giving a rational para-
metrization of Lb. Thus Lb is a rational irreducible algebraic variety.

LEMMA 4.1.4. - For generic (s, z) e Li, ~~ 1((s, z)) is a single point.
The coordinates ai z)) are rational functions on LQ.

Proof. - Since (s, z) E Lb is generic it is a non-singular point of Lb.
Let (et, s, z) E 7rl1((s, z)). Then the 1-form

is a normal 1-form to Lp at (s, z). But Lp has a unique normal 1-form
at (s, z) (up to a factor), so a E is uniquely determined by (s, z).
This proves the first part of the Lemma. The second part then follows
from elimination theory (see e. g. [18]).

Remark 4.1.5. - Note that it is essential in Lemma 4.1.4 that the

masses z~ be regarded as variables. For Q the crossed square graph
(fig. 1 ), which will be seen from the results of Section 5 to be normal,
C. Risk [19] has shown that a particular section ~=~, 
in which the internal and external masses are fixed is a reducible variety.
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having two irreducible components Ci 1 and C2. For a generic point
(s, z) e C2, 7~ 1((s, z)) consists of two points. This result does not contra-

dict Lemma 4.1.4 since it may be shown that as z~ - z°, sf the

generic section Lp n { z = = sf, fe degenerates into C 1 C2 i. e.

C2 appears with multiplicity two.

FIG. l. - The crossed square graph.

LEMMA 4.1.6. - If Q is normal, Q is 2-connected (cf. (2.1.5)).

Proo.f. - If Q is not 2-connected we may write Q = Si u S2 where the
subgraphs Sl and S2 have at most one common vertex and no common
lines. Given (a, s, z) E U and ~. e C we define (x(2) by

Then it is easily checked that (o~), s, z) E U for all h. But this implies
that for no (s, is z)) a single point, so by Lemma 4.1. 4
Q is not normal.

LEMMA 4.1.7. - If Q is a normal graph and (s, z) a generic point of

Lb and (a’, s, z) the z)), the Hessian matrix

has rank N - 1. Conversely, if H has rank N - 1 for generic (s, a),
Q is normal.

Proof. - Rank H = N - 1 is just the condition that 1r1 be non-singular
at (x’, s, z). The lemma thus follows from our definition by an appli-
cation of Sard’s theorem [20].

4.2. A criterion for a Feynman graph to be normal

In this section we begin by recalling an important property of the func-
tion D*(x, s, z) = and we use this property to derive a
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necessary and sufficient condition for a Feynman graph Q to be normal,
which is more amenable than the Hessian condition of Lemma 4.1.6.

This condition will be used in Section 5 to shown that an externally com-
plete graph Q (cf. (2.1.2)) is normal, and to obtain certain sufficient condi-
tions for the normality of Q in the case in which Q is not externally com-
plete.
Denote by YQ(p) the set

where (cf. (2 . 2 .1 )), and we suppose m &#x3E; (nE(Q) - 1 ).

LEMMA 4.2.2. - The function

has for fixed oc, ~(oc) 5~ 0, and p E XQ and variable q E YQ(p) an extremum
equal to D*«(1, s, z) which occurs for

The vectors p) are given by the following combinatorial rule: choose
some vertex s E Then p) has an expansion as a sum of the vec-
tors pu, u E 0~ 2014 {~}:

where

In (4.2.6) the function is defined by

and the path joining u to s in T passes through i,

if the path from u to s in T passes through i in the direction given by the
orientation of i
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If at &#x3E; 0 for all i and the variables z are real and the Pu imaginary, and
D’(0152, q) is considered as a function of imaginary q, D*(a, s, z) is a mini-
mum.

Remark 4. 2. 7. The first part of the lemma is well-known (see e. g. [21] ).
The rule for the construction of p) does not seem to have been expli-
city stated before.

Proo,f: - Note that D’(~, q) is a quadratic form on YQ(p). It is an

extremum iff the loop equation

holds for any loop I of Q. For given a these are linear equations on q
and for ~(:x) ~ 0 and linearly independent pu (u ~ s), they determine
q = g(a, p) uniquely as a linear combination of the vectors pu with coeffi-
cients depending on (1.. It may then be verified that p) is given expli-
citly by (4.2.5), (4.2.6).
For any Feynman graph Q we define matrices TQ(«) by

Here the row index i is in and the column index j is in Qp x 8E x OE.

LEMMA 4. 2 .11. - If d(x) ~ 0, the conditions rank T = N and rank
T* = N - 1 are equivalent.

Proof.

with Tl;,;t,s = - 2014 T. has rank 1 so (4.2.12) implies rank

T* &#x3E;- rank T 2014 1. Now rank T*  N 2014 1 since ~, is always a null

vector for T* (by Euler’s theorem since is homogeneous of degree 0

in x). Thus rank T == N -~ rank T* = N 2014 1. To prove the converse

suppose that rank T* = N 2014 1 and that /3~ is a null-vector of T. The

g~ satisfy the identities
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The im 1 that 03B2i satisfies 1 cd - 0 i. e. that T - 0. Hence

= 0. Since rank T* = N - 1 this gives ~ = ca for some constant c.

But then 0 == ) ~ c h(Q)d. Since d # 0 this implies c = 0 L e.

f

~3 = 0 so rank T = N.
Denote by J(a) the Jacobian map of the map g(a), evaluated at

a e ~N -1 i. e. the linear map J(cx): ~N -1 - given by

LEMMA 4.2.15.

Proo.f - According to Lemma 4.2.2

Hence

Since D* is an extremum of D’ with respect to variations of q the second
term in (4.2.18) is zero. The first term in (4.2.19) is zero as also is the
last. By differentiating the equation

with respect to 03B1j we find that the second and third terms in (4.2.19)
are each equal to minus the fourth. From the resulting formula for

c2D*
(4.2.16) follows immediately.



26 E. R. SPEER AND M. J. WESTWATER

THEOREM 4.2.20. - The Feynman graph Q is normal iff for generic
the matrix TQ has rank N.

Proo.f - According to Lemma 4.2.11 we may consider instead of
the condition rank TQ = N the equivalent condition rank TQ = N - 1.

If for some s, :x, rank H = N - 1, it is immediate from (4. 2. 16) and (4. 2. 5)
that rank T* = N - 1. Conversely if rank T* = N - 1 for some a

we may choose a with &#x3E; 0, ~1, and rank T*(a.) = N - 1, and we may
choose imaginary momenta ~. Then the corresponding Hessian form

is non-negative, and p is a null vector for this form iff, ~~, = 0.

But if the pa have been chosen so that their span has dimension n(Q)E-1
the expansion

implies 03A303B2jT*j,ius = 0, Since the choice of s is arbitrary f3 is a null
J

vector for T*. This gives rank H = rank T* = N - 1, which completes
the proof

4.3. Limiting values of Symanzik functions

Let G be a Feynman graph, S a subgraph of G with components
Si, ..., and Q = G/S. In this section we prove a lemma relating
the d and D functions of these graphs. The reader uninterested in combi-

natorics may omit the proof of Lemma 4.3.4 without loss of continuity.
There is a natural projection map ~: XQ given by

where nQ is the map constructed in Definition 2.1.4, and a corresponding
map c : We 2014~ W given ~~5~ x ~(::) with

For f3 E and p E XQ we have defined in (4.2.5) momenta p) E YQ.
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These momenta are external to the graph S; it is therefore natural to define
maps ~: x xs~ by

and a corresponding map ~i : CN(Q) x WG  Wg with

and with ~~5~(x) given by summing (4. 3 . 3) over x and squaring (more preci-
sely, 2 . 2 . 3 defines a map is defined by factoring:

~o])- We now state the main result of this section.

by x, f3) = a, with

Then

Proof - We may assume that G is externally complete, since the result
for arbitrary G is a specialisation of this case. We will let T~ T;, T~ denote
r-trees in G, Si, and Q respectively. Suppose X c 0398Sj with ~ ~ 03C6, ~ ~ 0398Sj.
Then we define x) to be the set of those 2-trees T~ which appear in
the definition 2.1. 8 of Suppose now that is

not empty, i. e., x); we wish to define a new quotient graph
Q(j, x) of G by collapsing each subgraph S~, i # j, and collapsing each
component of H(Tj2). Explicitly,

(4. 3. 5) is easily seen to be independent of the choice ofT~ x).
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Now we clearly have, for any T~,

and hence, since + h(Q) = h(G),

It is now straightforward to verify

for some ’TQ, Ti; conversely, any T~, Ti give such an r-tree Tr.

for some j, X, T?(j,x), T~ E x), and Ti (i =t= j). Conversely, any such
union yields an r-tree Tr with_ == N(Q) - h(Q) - r + 2.
We now proceed with the proof of the lemma.

The restriction to x=0 restricts the sum to those T for which 
i) Then yields the desired conclusion.

b) The argument here is similar. We have, from (2.2.7),

The result is immediate for the z-dependent terms. When we put x = 0,
we restrict the sum which occurs in d2 to run over those T2 which satisfy
I T 2 = h(Q) + 1. If we again apply i), we may decompose such
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a T2 into trees in the St and a 2-tree in Q. Together with a), this completes
the proof.

c) In this proof it is convenient to choose a distinguished vertex E 

We have 

Again, the z-dependent terms are trivial. With the first term we argue

as above, noting that the contribution which survives
ex

for x == 0 comes from those 2-trees satisfying ~Qp 2014 T~ == ~(Q), and

similarly Using ft), we can then rewrite (4.3.8) in the
ex

form

where ~’ - and we recall from 2.1.4 that vertices in a quotient
graph of G are labeled by subsets of 8G.
To complete the proof we must identify the expression in { } in (4 . 3 . 9)

with To take into account the linear relations on the s(y) it is

more convenient to work with the p variables. Define

Then using (2.2.3) the term in { } in (4.3.9) becomes
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From (4. 3 . 3) and (4.2.5) one finds easily

We now compare the coefficients of in (4. 3 .10) and (4. 3 .11).
Writing A = (see (2.1.10)), noting that dQ = and
using Lemma 2.1.11, we find we must show that, for any u, v E 

But (4.3.12) is simply Jacobi’s theorem for the symmetric matrix
{ Ars r, ~ ~ }. This completes the proof.

4.4. The local decomposition theorem

Let G be a massive Feynman graph, Q = G/S a quotient graph of G
with corresponding subgraph S. Suppose that Q is normal with leading
Landau variety LQ. Then, if ç denotes the map W~ - WQ introducedin Section 4.3, ~ ’(L~) is a subvariety of WG. When no confusion is
likely to arise we denote this subvariety simply by L~. We assert then
that Lo c Lc. To prove this we will need a convenient path from the
Symanzik region to a point of L~. Such a path is given by the following
Lemma 4.4.1, due to Landau and Cutkosky [6] [8] (3).
LEMMA 4.4.1. - Let G be a massive Feynman graph with normal

quotient graph Q. Then there exists a path 5: [0, 1] - WG such that
1) 
2) can be analytically continued in s, z along 5([0, 1]). The ana-

lytic continuation is obtained directly from the definition of as an

integral (2.2.5), without any need to distort the contour of integration
(Recall that, according to Lemma 2 . 2 . 38, there exists for a massive graph G
a region A° c A~ such that for (s, z) E RG, (2, (2 . 2 . 2) is absolutely
convergent).
We denote this analytic continuation also by Fbhys.
3) d( 1 ) E L~, and L~ is the only singularity of in the neighbourhood

of this point.
~ 

e) It should. however, be noted that the proof given in [6] is incomplete.
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Proof. - Choose external momenta p0u which are purely imaginary and
span a space of dimension n(G)E - 1 and denote by the correspon-

ding invariants. Then we define

so that ~(y)(0) = 2014 &#x3E; 0 as required by 1 ). The mass variables z
will remain constant along the path

To construct suitable z? we begin by choosing an open set V contained
in the interior of the region yoQ { &#x3E; 0, i E The map 7r1 intro-

duced in (4 .1.1 ) maps the set

onto an open set K c the section of Lb defined by s (in the
induced topology). Since Q is normal we may assume (by replacing V
by a smaller open set if necessary) that 03C0 restricted to U(V) is non-singular,
so that there exists a map ~: K --&#x3E; of K onto V such that

Denote by z) an irreducible polynomial in (s, z) such that

From the definition of LQ in Section 4.1 it is easy to check that for no

i E S2 is a ‘ = 0 so that the set

is of complex codimension 1 in Lb, and correspondingly the intersection
of this set with s = s° is for generic s0 of codimension 1 in Thus,
by changing s° a little and replacing V by a smaller open set if necessary,

we may assume ~ ~z flQ(s0, z) # 0 for all i E and z) e K

Now for any (s°, z) E K and a E YOQ we have by Lemma 4 . 2 . 2

since z)) - zi = 0 for all i We next show that by changing
zQ a little, if necessary, we may arrange that (4.4.2) holds with equality

ANN. INST. POINCARE, A-XIV-l 3
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only for points in the interior of yoQ. We proceed inductively to remove
the zeros of DQ from the faces of the simplex YOQ. Suppose then that it

is known that s°, z) &#x3E; 0 for (a) ~ al = 0 for some 
where y is a subset of QQ. We begin the induction with x = 0 so that
at the beginning of the induction this statement holds vacuously and induces
on I z I. Let j be an index f X. We have to show that zQ can be changed
a little to give D(a, s°, z) &#x3E; 0 also for a E = 0 }. Since

it is only necessary to decrease the z,, f # j, by an arbitrarily small amount.

Since 2014 flQ(s0, z) ~ 0 for s° z) e K it is then possible to change z . appro-

priately so that we still have (s°, z) e K. Since each of the faces x,

previously considered are compact sets on which the function DQ(a, s°, z)
is positive, DQ(a, s°, z) will have a positive minimum on the union of
these faces. This minimum is a continuous function of z so if the change
in z which we have made to remove the zeros on y~Q is sufficiently small
it will not reintroduce zeros on the faces yoQ, i e x. This completes the
proof of the induction step, and hence of the assertion that we can choose
(s°, so that in (4. 4. 2) equality holds for z = z° only for points
in the interior of yoQ-

Finally we must choose the z~, From (4. 2 . 5) it is easy to show

that 2014 (2014 = gf(a, p°) is continuous in a on Hence we may

choose the z°, i ~ S2Q, sufficiently large and negative that, Qo and

oc E D (a, s0, z°) &#x3E; 0. Since M(x, s0, z°) is the boundary value

of D*(a, s°, z°) as a; - 0 for and (4. 4. 2) holds, D*(a, s°, z°) &#x3E; 0

for a e 03B30G ~ {(03B1)|03B1i 4= 0 for some i~03A9Q }.
We have now completed the construction of the path 6. The verifica-

tion of ( 1 )-(3) is immediate.
Next we need an elementary lemma on determinants. We omit the

proof.

LEMMA 4.4.3. 2014 Let A be a N x N symmetric matrix of rank N - 1,

(x~) a non-zero null vector for A. Then

is independent of i.
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We are now ready to state the main theorem of this section.

THEOREM 4.4.5. - Let G be a massive Feynman graph with normal

quotient graph Q = G/S. Then Lb c LG and in the neighbourhood of
a point z°) E L03C1Q constructed as in Lemma 4. 4.1 we have a local decom-
Dosition

where R~ = 0 is a local equation of Lb. HG and K~ are holomorphic
in (s, z) in the neighbourhood of z°). Moreover there is a rational

map ~: Li - Ws such that

The explicit form and the meaning of the factors appearing in (4.4.7)
will be given in the course of the proof. The exponent vQ in (4.4.6) is
given by

Proof. - Without loss of generality we may assume that G is connected.
Consider first the case N(Q) = 1 so that Q = { for some c~ E ~2~.
If h(Q) = 1, G - lCI) is connected and the present theorem reduces to
Theorem 3.1. If h(Q) = 0, = G1 U G2 is the disjoint union of
two connected components. Denote by x the set of j E OE such that V~ E Gi.
Then with the convention that s(x) = 0 if /= 0 or OE it is easy to show

that

so that (4.4.6) holds with K~ = 0. Thus the theorem is proved in the
case N(Q) = 1 and we will therefore assume N(Q) &#x3E; 1. Then according
to Lemma 2 . 2 . 38 there is a region AG such that for (~, v) E A° the
integral (2.2.5) is absolutely convergent for (s, z) e Re, and also Re VQ &#x3E; 0.
We will prove the theorem for (2, v) E A°. After this has been done we

obtain the theorem for all (2, v) E A~ by analytic continuation of both
sides of (4.4.6) in (x, v).

If 03B4 is the path constructed in Lemma 4. 4.1 we refer to a real point (s, z)
in the neighbourhood of (s°, z°) E LQ as a point below LQ if it can be joined
in this neighbourhood to a point of 03B4 without crossing LlQ; otherwise it
will be said to be above L~. Then the analogue of Lemma 3 .11 holds:

LEMMA 4. 4.10. - For (x, v) E A °, z) can be analytically conti-
nued around L~. The discontinuity of Fghys around Lp (i. e. the diffe-
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rence between the function obtained by continuation of FphysG along a
Joop circling Lb anticlockwise and the function itself) can be analy-
tically continued around Lb along a clockwise path to real (s, z) values

just above Lb. For (s, z) real and just above LQ it is given by

Here JG is the absolutely convergent integral defined by replacing 03B30 in
.

We omit the proof since it is essentially a copy of the proof of Lemma 3 .11
(without the complications caused by the need to transform to the x varia-
bles in that case).

Returning to the proof of the main theorem, we now make some changes
of integration variables in JG, which will enable the local power behaviour
of JG to be displayed explicity.
We single out a line l03C9 E Q and set

Since Q is supposed normal 7~ !((s°, z°)) consists of just one point («°, ~~, z~).
In the transformed variables this point is given by x = 0 and /31 == ~3° = 

According to Lemmas 4.1. 6 and 4. 2 .15 and the construction

of (s0, z°) in Lemma 4.4.1, the Hessian H,. = ~2D*Q ~03B1i~aj is for a == 03B10 non-

negative and of rank N 2014 1. We may therefore choose 03C9 so that the

corresponding submatrix H~’ defines a positive definite quadratic form

Then

where



35GENERIC FEYNMAN AMPLITUDES

We may define uniquely holomorphic functions ~3° = z) of s, z

in the neighbourhood of z°) by the conditions

This follows from the implicit function theorem. We then write

and note that Rp = 0 is a local equation for Lp since a 0Q q Q ( 
cz, 

Q

for (s, z)eLo).
Now we make a further change of variables

The coefficients k, vi, Aij are so chosen that

since by Lemma 4. 3 . 4 b) D,* = DQ. S(x’, y) is a polynomial in

x’, y with coefficients (depending on s, z, y) which vanish for RQ = 0, with
zero derivatives up to the first order in x’ and the second order in y at

x’ = y = 0. The equations which give the coefficients k, u~, Aj are
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~)We will need only to compute the Jacobian  = A: det A. (4 . 4 . 21 )
g ives for del A the e q uation

where we have again used Lemma 4. 3.4 b) to write D,* Ix=o = D.From
Lemma 4. 3 . 4 b) and c) we have

where the summation is over the connected components SI of S, and the
maps (; are defined immediately preceeding Lemma 4.3.4. Finally
Lemma 4. 3 . 4 a) gives us

where the coefficients of the polynomial T vanish for Rp = 0, and we have
made the convention that 03B2003C9 = 1.

After the second change of variables we have

j~ = z) (exp 2nivQ - 1) (exp 1)-1 (4. 4. 25)
with

morphic in s, z in the neighbourhood of (s°, z°). This is not quite mani-
fest in (4 . 4 . 26) since the integrand contains e. g. in S. However,
one notes that a change in the determination of the square root followed
by the change y’ = - y of integration variable leaves the integral invariant
so that the integral is single valued in the neighbourhood of Lb. It is

also bounded (we will write down its value for Rb = 0 below) so the singu-
larity Rp = 0 is removable i. e. HG(s, z) is holomorphic in s, z as asserted,

If Rb = 0 the integral over y’ reduces to
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after a short calculation. Here we have used the fact that

The integral over yos gives us a product of Feynman amplitudes for the
graphs Si

To restore the symmetry which was lost when we singled out the index
a) E QQ we make use of Lemma 4. 4 . 3 to write

and we insert a power to give an expression which is homogeneous
of degree zero in f1°. The normalization = 1 can then be dropped,
and we have finally a symmetric expression. This is

. From the theory of elimination [18], it follows that the f3?, i E regarded
as functions defined on Lb are rational so that (4 . 4. 28) has the form (4. 4. 7).
The meaning of the factors in (4 . 4 . 28) is the following: they become

singular at points on LQ, which are effective intersections of LQ with other
components of LG or effective self-intersections of L~ (cuspidal points).
For example if f3? = 0, (s, z) is’ a point of intersection of Lb with L~, where
Q’ is a quotient of Q in which li is contracted. If z) = 0 (s, z) is
a point of intersection of Lb with some anomalous Landau or second kind
singularity. If 0(H)(~i°)(s, z) = 0, (s, z) may be a cuspidal point of Lb
(The relation of zeros of the Hessian to cuspidal points is discussed in [22] (4).

(4) One of us (M. J. W.) wishes to point out two errors in [22]. First. the condition
! = 0 does not imply G~C for a two-particle scattering graph G as stated in the introduction
(although the converse is true as stated). Secondly. the final remark on the Landau curve
of the crossed square graph is incorrect. On this point the reader should consult [19].
The error lies in the fact that the component corresponding to asymmetric dual diagrams
degenerates, which was overlooked.
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It should be noted, however, that the Hessian used here does not have a
simple relation to the Hessian in momentum space used in [22]. A(H)
factorizes and not all the factors correspond to cuspidal points).

Finally we define KG = (Rbt’QHG. Then KG is single valued
in the neighbourhood of Lp, and bounded (since Re vQ &#x3E; 0 for (~., v) E A°)
and so holomorphic.

This completes the proof of Theorem 4.4.5.

5. NORMAL GRAPHS

5. 1 . The meaning of normality

In Section 4.1 we have given a definition of the leading Landau variety Lb
of a normal Feynman graph Q. However, it is customary to introduce
the notion of leading Landau variety for a wider class of graphs (see e. g. [23]).
These graphs, which we will call Landau graphs, are characterized as
follows:

DEFINITION 5.1.1. - A massive Feynman graph Q (5) is a Landau

graph if for some integer m there exists a point (p, z, q) E XQ x ZQ x YQ
such that 

’

and the loop equations

have a unique solution = with 0, i~03A9Q.

Remark 5.1.4. If Q is a Landau graph we could define the leading
Landau variety Lp of Q to be the closure in WQ of the set of invariants (s, z)
such that there exists a point (p, z, q) satisfying the condition of the preced-
ing definition with s related to p by (2.2.3). But it is not clear that LQ
so defined would be an irreducible variety, and in particular it is not clear
that for Q normal this definition would reduce to Definition 4.1.1. Also

we would wish to show that if G is a Feynman graph having Q as quotient
Lo c L~ (cf. Theorem 4.4.5). Since we have not settled these points
we prefer not to give a formal definition of L~ for an arbitrary Landau
graph Q.

( 5) As in Section 4. we consider only massive graphs in this section.
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DEFINITION 5.1. 5. - A Landau graph Q which is not normal is anoma-
lous.

We would like to be able to recognize when a given graph Q is a Landau
graph, and if it is a Landau graph when it is normal. Concerning the
first problem, we have the following remark due to Rudik and Okun [24].

Remark 5.1. 6. If Q has a subgraph S such that one of the following
conditions (a)-(d) holds then Q is not a Landau graph.

(a) S does not have two distinct vertices joined (in Q) to vertices not
in S; i. e., Q must be 2-connected.

(b) S has two external vertices, one internal vertex and two lines (fig. 2 a).

(c) S has two external vertices. The star of one of these vertices contains

at most one line not in S and is empty if the vertex is external in Q (fig. 2 b).

FIG. 2. - Non-Landau graphs.

(d) S has three external vertices. The star of each of these vertices

contains at most one line not in S and is empty if the vertex is external in Q
(fig. 2 c).
We will concern ourselves here with the second problem. Define, for

any Q,
TQ = (n(Q)E - 1 )h(Q) - N(Q) + 1. (5 .1. 7)

In Section 4. 2 we proved that Q is normal iff for generic x the matrix TQ
has rank N - 1. Since the (n(Q)E - l)h(Q) columns of TÓ indexed by
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jrs, with j in some cotree, r = ro fixed and s # r, span the set of column
vectors of T~ we have proved
LEMMA 5.1.8. - If Q is normal TQ &#x3E; 0. This lemma already suffices

to show that any Q with two external vertices and one or more internal
vertices is not normal. In fact we have

LEMMA 5.1.9. - If Q contains a subgraph S with two external vertices
which is not normal, Q is not normal.
We omit the proof.
In the following Section 5.2 we use Theorem 4.2.20 to derive sharper

criteria for Q to be normal. In fact we do not know of a graph Q which’
can be shown to be normal by direct study of the Landau equations which
cannot be shown to be normal by the reduction procedures of Section 5.2,
but we have not been able to prove that the normal graphs are precisely
those to which the methods of Section 5.2 apply.

5.2. Criteria for normality

DEFINITION 5.2.1. - A reduction O is a rule which assigns to a triple
{ G, S, OJ }, G a 2-connected Feynman graph, S a subgraph of G, OJ E Qs,
a Feynman graph G’ having fewer lines than G. O(G, S, w) = G’ may
be defined only for S, úJ satisfying certain conditions. If S = H({ w })
we omit reference to S and write G’ = O(G, cu).

DEFINITION 5 . 2 . 2. - If reduction 0 is admissable if « G’ = O(G, S, cv)
is normal » implies « G is normal » .
The condition in Definition 5.2.1 that G be 2-connected is made

for convenience. Since a normal graph is necessarily 2-connected
(Lemma 4.1. 5) only 2-connected graphs need be considered in discussing
normality.

LEMMA 5 . 2 . 3. - An externally complete Feynman graph G with h(G) =1
is normal.

Proof - The matrix T~ defined in Section 4.2 is in this case indepen-
dent of (X. Its determinant is easy to evaluate and turns out to be non-

zero so Theorem 4.2.20 gives the normality of G.

Remark 5.2.4. - The case in which G is a tadpole is understood to be
subsumed under Lemma 5.2. 3. Then we regard G as trivially externally
complete.
We can now state our criterion for a graph G to be normal.
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CRITERION 5.2. 5. - A graph G is normal if there exists a sequence of

triples {G,, S;, co1 ~, and admissable reductions Oi, 1  i  r, such that

(1) G1 = G.

(2) For all i, S, is defined. For i  r, Si’ ccy) = Gi+ 1.
(3) Gr+ 1 = S~, (Or) is an externally complete single loop graph.

This criterion is saved from triviality by the existence of a number of
admissable reductions O.

THEOREMS 5.2.6. - The following reductions O are admissable

( 1 ) Contraction.
- l /"~ B !1 ( ~B B

if the end points of l are external and [ is not a tadpole.
(2) Cutting.

lw is not a tapdole.

Proof - Write G’ = O(G, w). According to Theorem 4.2.20 the

condition that G’ be normal is equivalent to the assertion that rank

To. = N(G’) = N - 1 for generic oc, and we have to show that this implies
rank TG = N for generic 11. The proof in both cases (1) and (2) of the
present theorem (and also in each of the cases of Theorem 5.2.7 below)
is based on a combination of the following simple observations on the
rank for generic a of a matrix B whose coefficients are functions of x:

(i) rank B &#x3E; rank B’, for B’ a submatrix of B ;
(ii) rank B = rank B’, if B’ is equivalent to B for generic a;
(iii) rank B &#x3E; rank B’, if B’ is a specialization of B;
(iv) rank B = rank B’ + rank B", if B has block triangular form with

diagonal blocks B’ and B".

We now consider case (1). Denote by u, v E 8E the end-points of 
We consider the specialization of TG defined by setting «~, = 0. Refering
to the explicit form of the matrix elements given by (4.2.9) and
(4.2.6) we note that they are sums of terms which correspond to certain
trees T. The specialization «~, = 0 does not change T~ if i = w (since
the differentiation removes the «~, dependence of gjus) and eliminates the
terms corresponding to trees T not containing OJ if i # w. We observe
that for j ~ ú)

Ti.;"S = a not identically zero polynomial in the remaining a’s



42 E. R. SPEER AND M. J. WESTWATER

if i = c~, (r, s) = (u, v) and some j = jo (since G is 2-connected Lemma 2.1.6 .
gives a path from u to v which does not pass through ~)

i. e. this specialization of T~ has a submatrix which is of block triangular
form with diagonal blocks B’ = To, and B" a 1 x 1 matrix which is non

zero. This observation thus completes the proof of the theorem in Case 1.
In case (2), we note that because gjrs is homogeneous of degree h(G)

and at most linear in we have

The matrix T is equivalent to the matrix T’ given by

Now we specialize x~ 2014~ oo in T’. Since

and since is independent of we obtain in the limit a block diagonal
form with diagonal blocks B’ = T G’ and Brs = # 0 (since any r, s
may be joined by some path through cv, because G is 2-connected). This

completes the proof.
As an immediate application of Theorem 5.2.6, we have

THEOREM 5.2.8. - Any externally complete 2-connected Feynman
graph G is normal.

Proof : The proof is by induction on N(G). If N(G) = 1, G is normal.
We note that either of the reductions of Theorem 5.2.6 preserves the

property of external completeness. Moreover, if N(G) &#x3E; 1, for any line fro
of G either }) or }) is 2-connected. This completes
the proof.
The methods of Theorem 5.2.6 do not suffice for our purpose since

there are many normal graphs for which the application of Ocon or Ocut
to any line produces a non-normal graph. We therefore introduce other
admissable reductions.
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DEFINITION 5 . 2 . 9. - A subgraph S of a Feynman graph G is k-accessible
if, for any S’ ~ S, J &#x3E;_ k (For example, a 3-accessible subgraph is not
contained in any self energy subgraph).

LEMMA 5.2.10. - If S « G is k-accessible, there exist k disjoint paths
(possibly of zero length) which are disjoint from S and which join k dis-
tinct external vertices of S to k distinct external vertices of G.

Proof. - We apply a result of [9, p. 205] (actually a stronger version
of Lemma 2. 1. 6) to the graph 

DEFINITION 5 . 2 .11. - We define the five Feynman graphs Ti, T2, Hi,
H2, H3 as in figure 3. Suppose that G is a 2-connected Feynman graph
with a subgraph S isomorphic to one of these graphs (For notational

FIG. 3. - Reducible subgraphs.
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convenience we assume this isomorphism is actually the identity). Sup-
pose further that

Then we define the reductions S, w) and S, cv) for S==T~,
S = Hi respectively) by figure 4.

THEOREM 5.2.12. - The reductions S, w) and S, w)
are admissable if S is 3-accessible or 4-accessible, respectively.

We give the proofs for 0~ and OH3. The other proofs are
similar (and of intermediate complexity).
We first consider OT1. We replace T by the equivalent matrix (compare

the proof of part (?) of (5 . ? . 6))

Now in the submatrix ~ p ~ we specialize Since
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FIG. 4. - Reduction of subgraphs.

and are independent of this produces a block triangular
form. But p,

so that it remains only to prove that the other block, the 2 by (nE(G))2
matrix

(r, s E 0~), has rank 2.
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By Lemma 5.2.10 there are external vertices Vu, V,. # VQ of G and
disjoint paths from V~ to Vu, Vb to Let T be a tree of G which contains
these paths together with U~ and p, and specialize B’ by setting 3~ = 0,
i E T, =}= 03C9. Then we find that the cvua and 03C9uv columns of B’ have

the form
03C9ua 03C9uv

Hence this 2 x 2 submatrix of B’ has non zero determinant, which com-
pletes the proof.
We now consider OH3. We replace T by the equivalent matrix T’

Then in the submatrix { = ~2~2 } we specialize oo. Since

i = cu, p2, B’2’ and are independent of o~, this produces a block
triangular form. But for I, j # p2, ~’2

if the pi, ol, rows and columns of T’ are relabelled p, o in To, and if we

take as the parameters for the lines p, v, = + = + 

Thus it remains only to show that the other block, the 3 by (nE(G))2 matrix

has rank 3.

By Lemma 5.2. 10 there are external vertices Vu, Vv, Vx, Ww of G and
disjoint paths in G joining the pairs Vu, V~; Vv, Vd; V"., Ve; Vx, VI’ Let

T be a tree of G which contains these paths together with the lines of S,
and specialize B by setting = 0, i E T, i # U.~ (fig. 5). Then the 3 x 3

submatrix of B with columns 03C9uw is
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FIG. 5. - The tree T.

03C9uv 03C9ux mUvv

1

where is the sum of the 1 taken over i E T such that there is

v»~

a path from n to w in H(T - SZS) ~ ~ i ~) and the remaining ~’s are similarly

defined. - + + + . The determinant of this matrix

xt. uw ux

1S 
, ,- -.-,-,

But L = 0 is impossible since G is 2-connected. This completes the proof.
In figure 6 we give examples of graphs which may be shown to be normal

using Theorem 5 . 2 .12. In figure 6 a we may, for example, apply succes-
sively OT2 to line 8, 0~ to line 6, and OT2 to line 2 (we omit specification
of the subgraph S since no confusion is possible). Similarly in figure 6 b
we may apply either 0~ to line 1 or 0~ to line 2. The reader may also

easily produce examples to show that the accessibility conditions of Theo-
rem 5.2.12 are necessary.

ANN. INST. POINCARE, A-XlV-I 4
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FIG. 6. - Normal graphs.

6. REPRESENTATION CONDITIONS

61. The Regge conjecture

We recall the problem posed in [I] : given a Feynman amplitude F G(s, z ; 2)
determine the monodromy representation of the corresponding funda-
mental group

__ _ - ’z~ ’ B __ __

In [2] T. Regge conjectured that J~(/L) is uniquely determined by ~~ (which
is a finitely presented group, see [1]), and by certain « local conditions »
on the representation In this section we give two formulations
of the concept of « local conditions ». The first of these is most natural

from a purely mathematical point of view; the second comes closer to
codifying the practice of references [1] ] [2] [3] [4] [5] [29], and the corres-
ponding form of the Regge conjecture formalizes the intent of [2] [29].
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We distinguish the two formulations by letters A and B. The reader

may omit A without loss of continuity.
Let F be a function of Nilsson class, defined on an algebraic variety W

and having singular variety L c W. Denote by ~ the fundamental

group L; B) with some base point B, by V the vector space spanned
by germs of F over B and by 2: ~ ~ Hom V the monodromy repre-
sentation of F.

A. According to the theory of desingularization [25] we can find an
algebraic variety W together with a proper map p: W -~ W such that
L = p -1 (L) is in general position in W and p restricted to W - L is a
biholomorphic map of W - L onto W - L. In particular p induces
an isomorphism

DEFINITION 6 .1.1. A. - Let q be a point of L, d’(q) the local fundamental
group L), U(q) a sufficiently small neighbourhood of q. Up
to isomorphism ~’(q) is independent of the choice of U(q), and by the
general position condition it is free abelian on a finite number of generators

..., ak (say). There is a natural injection j~’(~) -~ ~. Denote by
the image of under this injection and by 03B11, ..., ock the images

of cx;, ..., Then we call d(q) a local subgroup of ~.. Suppose further
that the commuting operators ..., acting on V are simul-
taneously diagonalizable. Then we call the dim V k-tuples of eigen-
values of these operators the local exponents of 2 at q [Note that the dia-
gonalizability condition in 6 .1.1. A, which is supposed also in the following
6 .1. 2 . A, is not a severe restriction. It excludes logarithmic local beha-
viour which we do not expect to encounter in generic Feynman ampli-
tudes. In fact we introduced the complex parameter v, in addition to

the ;I.i’ precisely to obtain non-integer exponents also for points on second
. kind singularities], 

.

DEFINITION 6.1. 2 . A. - F will be said to have the Regge property if

its monodromy representation may be characterized as the unique repre-
sentation of its fundamental group with certain particular values for the
local exponents at each point of L.
Remark 6.1.3. - The local group and the local exponents of 2

at q evidently depend only on the particular irreducible intersection of
components of L to which q belongs. There are only a finite number
of such intersections so that the data by which J is to be characterized
in 6 .1. 2 . A is finite.



50 E. R. SPEER AND M. J. WESTWATER

Remark 6.1.4. It is not hard to show that the concept of local sub-

group of ~ in definition 6 .1.1. A is independent of the resolution used
to define it.

The principal disadvantage of the above formulation is that the passage
from L to L may be quite complicated even in seemingly simple situations.
For example if L has two components Ci, C2 having a tacnode contact,
it requires two blowingups to reach L and to Cl, C2 correspond four com-
ponents of L: Cl, C2 (the strict transforms of Ci, C2) and C3, C4. Of

the intersections of C1, C2, C3, C4 in pairs only the intersections of C1, C2,
C4 with C3 are non empty. For a detailed discussion of the resolution

of such isolated singularities see [26]. A further disadvantage is that

in the application to Feynman integrals we do not have any direct infor-
mation about the dimension of V; but see the discussion of Section 6.2.

B. DEFINITION 6 .1. 5 . B. - Let p be a point of L. We denote by
d’(p) the local fundamental group L), (Up) a sufficiently small
neighbourhood of p. Then we call ~(~(p)) (where is the image
of under the natural injection ~(p) 2014~ ~) the local algebra at p.

The specification of the local algebra at some pEL will be called a local
condition.

This definition is still too wide, if F is a homogeneous function defined
on en and pEL is taken to be the origin the corresponding local funda-
mental group is isomorphic with ~ itself. Thus it is only useful if we

further restrict p. ,

DEFINITION 6 .1. 6. B. - A local condition is a local condition in the

strict sense if the corresponding point pEL is either

(a) a non-singular point of L,
(b) a transverse intersection of one or more components of L,

(c) a tacnode, a cusp, or more generally, a generic point on a singular
subvariety of L which has codimension 1 in L.

This list is based on the experience of [1] [2] [3] [4] [5]. It clearly may
need extension at some future date. Modulo such extension, we may
formulate the conjecture of Regge in the form:

CONJECTURE 6 .1. 7 . B. - The monodromy representation of a Feynman
amplitude may be uniquely characterized by the corresponding funda-
mental group and by the local conditions in the strict sense satisfied by
the representation.
The way in which these conditions are to be deduced from the integral

representation of F~ is discussed in the following section 6.2.
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6.2. Consequences of the decomposition theorem

In this section we discuss the means of obtaining local conditions on
the representation from the decomposition theorem 4.4.5. Previously,
such conditions have been obtained from the geometric Picard-Lefschetz
theorem [27]. It should be noted that our decomposition theorem is

just the analytic counterpart of the Picard-Lefschetz theorem. The results

we obtain are incomplete because Theorem 4.4.5 has been proved only
for the physical sheet of the amplitude FG; it is possible (although we
believe it unlikely) that the behaviour of F~ near Lp might be quite diffe-
rent on another sheet (Such behaviour could be investigated, for example,
if a suitable resolution of the singularities of the integrand in (2.2.5)
were carried out. See also [28]). Our remarks here are therefore to be

regarded as heuristic; we will freely assume the behaviour of Theorem 4.4.5
on any sheet, as needed.

As a simple example, take Q a normal quotient of a connected Feyn-
man graph G, with z°) a generic point of L~. The local group z°)
is the free group on the generator aQ given by an elementary loop around

Lo. From Theorem 4.4.5 (or rather its generalization, as yet unproved)
we expect to have eigenvalues e21tivQ and 1; moreover, since the

discontinuity should be determined by the contour of the y integration,
which is equivalent to a sheet of Fs, we expect the two eigenspaces to have
dimensions dim (Vs) and [dim (VG) - dim (Vs)] respectively. This gives
the local conditions at (s°, z°) of type A; the local algebra (see 6 .1. 5 . B)
is generated by 1 and and is specified by the relation

Note that in the above example the dimension of the eigenspace of
with nontrivial eigenvalue (i. e. == 1) was given by the dimension

of the representation of the subgraph S. If a corresponding result could
be established for an arbitrary component of L~ we would be able to
compute dim VG recursively, using the implication of the homogeneity
of FG, namely the fact that the word at infinity is represented by a multiple
of the identity. For the detail of this technique the reader may refer
to Section 4.4 of [4].
Now take Q as above. Let L° c LG be some component of LQ (dis-

tinct from Lb) which intersects Lb transversely at z°) E WG, and suppose
that no other components of LG pass through z°). The local group

A(s°, z°) is therefore free abelian on generators ao, which are given
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by elementary loops around L°, LQ respectively [1]. Then if the functions /3°,
q on Lo (defined in the course of proving Theorem 4.4. 5) satisfy

it may be verified that the function HG (4.4.26) is not singular on L°.
Therefore we have, in the local algebra,

Conditions such as (6.2.2) are quite useful in constructing the mono-
dromy representation. For example, (4.2.3) of [4] is of this nature.

(2.3. 19) of [1] may be derived by applying this argument repeatedly in
a neighbourhood of the transverse intersection of all the mass zero curves
of the self energy considered there.

We finally give an example of local conditions arising from a point of
tacnodal contact. Note that the following lemma on the existence of
such points is rigorous, not heuristic.

LEMMA 6 . 2 . 3. - Let Q, Q’ be normal quotient graphs of G, with Q = G/S,
Q’= Q/S’, and suppose that S’ is also normal. Then LQ and Li, have
tacnodal contact along a variety M of codimension 2 in WG.

Proof. - Recall the maps ~Q : WG -+ WQ, (~: WG -+ WQ., and
~ : WQ x ~N~Q~~ -1 - W s’ defined in Section 4. 3 (the map ( as originally
defined would have domain WQ x but it is homogeneous of degree 0
in the second variable). Define

by the conditions

and n : LJ -~ WG to be natural projection. Let M = Now U
has dimension equal to the dimension of WG minus 2, and because Q’,
S’ are normal, 7r’~, z) consists of a single point for generic (s, z) E M.
Hence M has codimension 2 in WG.
Now clearly M c LQ. Take r.~ E E Qs, and normalize coordi-
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nates in and by ðro = y, = 1. For x E C and y, b as

above define /3 = ~(b, y, x) E by

(compare Section 4. 3). The point (s, z) E L~, where

approaches the point (s, z~(~), z/5, y), z~) (l E Qs) as x -~ 0. Hence M c Lp.
Moreover, since the normal to L~ is given by

(see the proof of Lemma 4 .1. 4), and similarly for Lemma 4.3.4. b
shows that Lp and L~ are tangent on M. Using 4. 3 . 4 c and the norma-
lity of S’ and Q’ we may also show that

hence the contact is precisely second order. This completes the proof
of the lemma.

We now show how this result may be used, with certain additional

assumptions, to determine the local algebra of such a tacnodal point of
Lc. Specifically, we assume that no component of LG other than Lb
and Lb, contains M, and that for generic z°) E M, z°) ~ Ls. We

will also assume that A(HQ), defined on the variety Lp, has a pole of order
N(S) - 1 in x on M ; we believe this to be true in general but have not been
able to prove it.

The situation in the neighbourhood of a generic point of M is shown
in figure 7, where the elementary loops aQ, aQ are drawn using the counter
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clockwise convention explained in [7]. Now (if we assume the base point B
is close to LlQ) the group element 03B1 = has a representative
lying arbitrarily close to Lp but staying a fixed distance from M. If we

define functions /3° by (4.4.15) along this path (with = 1 ), and functions
x, 5, ~ by (6. 2.4), we find that the path may be taken to have 5 and y cons-
tant, with x(O) = o ~ e  1, some a &#x3E; 0 (recall that M corresponds
to x = 0 on Now since [3i, i E S’, and dQ([3) contain factors x and

respectively, we find that

where aQ = ~(~o) 2014 1 (This may be shown using (4.4.26), or seen heuris-
tically by examining the behaviour of the factors in (4 . 4 . 28) for x(0) = 
0  0 ~ 1). Using exp ( - (6 . 2 . 5) becomes

(6.2.7), together with two relations of the form (6.2.1), determines the
local algebra at z°).

Relations of the form (6 . 2 . 7) were used in [7] and [4], where they were
derived from the relations in the local group at z°) and the fact that
aQ was, in those cases, a one dimensional projector. Their validity in
any generic Feynman amplitude (without this additional assumption),
as discussed here, could be viewed as a survival of the hierarchical principle
for ordinary Feynman amplitudes.
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