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Section A :

Physique théorique.

ABSTRACT. - We consider a semi-simple subalgebra K of a semi-simple
Lie algebra L, and we develop a procedure to find the lattice of semi-simple
subalgebras Li of L, containing K. The essential point in the analysis
is the fact that such a subalgebra Ll is stable under commutation with K,
and therefore that we only work with subspaces of L, invariant under K.
A second point is the use of a faithful representation of L, and its repre-

sentation space M (i. e. a faithful L-module M). The use of M is crucial
for the method.

We also proved two propositions, concerning the imbedding of K in L.
We discuss possible physical applications, and finally we give two examples
in an appendix.

1. INTRODUCTION

The importance of semi-simple Lie algebras is already well established
in several branches of theoretical physics. Most of the time, the algebras
are used to label states in certain multiplets or irreducible representations.
To find sufficiently many labels, one of the most important methods is to
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use a chain of subalgebras and then reduce the representation with respect
to this chain. Therefore it is useful to find all the semi-simple subalgebras
of a certain semi-simple Lie algebra. Actually, this problem has been
completely solved by many authors (see e. g. ref. [1] [2]).

However, the result is not yet complete satisfactory, because not all the
chains are physical. Only those subalgebras which contain the Lie algebra
of the biggest invariance group of the system are of physical interest. This
means that the good quantum numbers, due to the invariance groups,
must be a part of the labelling numbers, and so only those chains, ending
in the Lie algebra of the invariance group are important. From this it
is clear that there exists an inverse problem : given a semi-simple Lie algebra
L and a semi-simple subalgebra K, find the chains of subalgebras between K
and L.

While in the case of particle physics, the physical chains are usually
mathematical simple ones, and so the preceding problem is an easy one.
In the case of nuclear and atomic physics, the last statement is false. The

physical chains are more difficult to deal with, and moreover, if group

theory is used in the shell theory of mixed shells, the algebras become
larger and larger, and the physical subalgebras are not at all clear, as is
usually the case, in particle physics. In section 7 we will sketch the use-
fulness of finding almost all the physical subalgebras, especially by the
construction of model Hamiltonians (see e. g. ref. [3] [4] [5] [6] [10]).
Our main purpose is to present a straigth forward procedure for finding

all semi-simple subalgebras of a given Lie algebra L, which contain a given
semi-simple subalgebra K of L.
The difficulty by this program is that we must find a subspace of L,

such that, together with K, we have the vectorspace of a subalgebra. In

many cases however the dimension of the space of the subalgebra is much
larger than this one of K, and so there are many possibilities to be examined.
The basis of our analysis is now to use the fact that the added subspace
has to be invariant under commutation with K because we want to construct
a subalgebra. Therefore we only have to examine the invariant subspaces
in L, under K. And so the number of possibilities has decreased rather
seriously, as will become clear in some examples given in appendix B.

In section 2 we recall some definitions and notations, and we introduce
the notion of all the K-invariant subspaces of a K-module M, and of all
the vectors of highest weight in M (M being reducible). In section 3 we

prove two propositions which are implicitly used in the main part of the
paper.

In the next two sections we construct a basis in a subspace of L and we
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give a few properties of a subalgebra Li containing K and contained in L,
using the properties of this basis. Finally in section 6 we explain the
method of construction of the lattice of subalgebras starting with L and
ending in K.

2. DEFINITIONS AND NOTATIONS

One of the most beautiful results in the theory of semi-simple Lie algebras
is the correspondence between the classes of equivalent irreducible modules
and the dominant integral linear functions on the Cartan subalgebra.
Since this correspondence will be fundamental in our notations, we first
recall briefly the notion of a dominant integral linear function on the Cartan
subalgebra. At the same moment we arrange some notations.

L is a semi-simple Lie algebra over the complex numbers. We shall

use x, y, to denote the elements of L.

K is a semi-simple subalgebra ( 1 ) of L, the elements being u, v.
J is a Cartan subalgebra of K.
There exists always a Cartan subalgebra of L, containing J (see ref. [7],

p. 149), so we denote by H a Cartan subalgebra of L, containing J.
Next we consider a set of positive roots in the space of all linear func-

tions on J corresponding to an ordered basis in this space, and we intro-
duce the associated canonical basis in J : {~, i = 1, l ~ (see ref. [7], p. 121 ).
A function a on J is called integral if a(ht) is integral for every hi.
We denote by J* the set of integral linear functions on J.
A function a E J* is called dominant if a(hi) is positive or zero for every h;.

We denote by J* the set of all dominant integral linear functions on J.
Similarly we define H* and H*.
For a better understanding of these definitions, see ref. [7].
Next we introduce a concept of great importance in this paper, namely

all irreducible K-submodules (of the same highest weight a) of a certain
K-module M, and the subspace of M of highest weight vectors (of a certain
weight a) with respect to K in M.

Consider a left K-module. This module is always completely reducible
because K is semi-simple. Therefore semi-simplicity is the essential
condition of our treatment.

Because of the one to one correspondence between the elements of J*

(~) K may be in fact every subalgebra with the property that every L-module is comple-
tely reducible when restricted to K. K may be for instance commutative and reductive
(see ref. 7, p. 104).
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and the equivalence classes of irreducible K-modules, we can associate
with rx E J* the set of irreducible K-submodules of M, having highest
weight a. We call this set WK(M, a). It may be empty for certain ele-
ments of J*.

Every module of WK(M, a) has a highest weight vector. All the highest
weight vectors of the same weight constitute a vectorspace. We call this

space VK(M, a). Every vectorspace VK(M, a) is a subspace of M. So

VK(M, a) is the subspace of M of highest weight vectors of weight a in M.
We shall use these two notions frequently throughout the paper.

3. CHARACTERISATION OF K IN L

Our aim is to construct all possible semi-simple subalgebras of L which
contain K. One of the most important things to know is how K is imbedd-
ed in L. It is easy to see that there may be many subalgebras of a certain
type, say isomorphic to an algebra K, in L. Fortunately most of these
subalgebras will behave in the same way, this means that they will be
contained in similar chains, that a L-module will decompose in the same
way with respect to these different subalgebras, etc.

Nevertheless, there will be classes of subalgebras, behaving in a comple-
tely different manner. This makes it important to characterize K in L,
not by writing a basis of K in terms of a basis of L, but by giving a certain
criterium to indicate the class to which K belongs.
To do this we first have to find a criterium for two isomorphic subalge-

bras to be in the same class.

We assume, in what follows, that K and K’ are two isomorphic sub-
algebras of L, and that M is a finite dimensional L-module.

PROPOSITION 1. 2014 If 03C3 is an invariant automorphism ( 1 ) of L, such that
7(K) = K’ then there exists a linear operator A : M ~ M such that

V(u, m) E K x M =&#x3E; A(um) = a(u)A(m).

Proof. 2014 Let T be an automorphism of the form exp (ad e), where (2)
e E VH(L, a), a E H*. Set A = exp e ; we have that :

(~) The invariant automorphisms are generated by exp (ad z), z E L and ad z nilpotent
(ad z : x -~ [z, x]).

(~) We consider L as a H-module by the mapping ad H : L - L.
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The group generated by automorphisms of the form exp (ad e),
e E VH(L, a) equals the group of invariant automorphisms (a result due to

Steinberg, see ref. [7], p. 288).
So we can write:

and we put :

Hence:

It would have been more natural to say that two isomorphic subalgebras
of L belong to the same class, if there exists just an automorphism relating
them, invariant or not. However only an invariant one guarantees the

equivalence of the K and K’-modules, arising from the same L-module.

PROPOSITION 2. - Let M be a faithful L-module and G be a connected

group of linear transformations of M, such that the associated represen-
tation of L in M is the Lie algebra of G. If there exists an A E G such

that for some isomorphism §: K -~ K’ and all (u, m) E K x M,
A(um) = ~(M)A(~), then there exists an invariant automorphism a of L
such that a(u) = u E K.

Proof. - Consider the subgroup G’ of G, generated by exp e, e E VH(L, a).
The Lie algebras of G’ and G are isomorphic, so this isomorphism extends

to a local isomorphism of G and G’.
Since G’ and G are connected, G is isomorphic to G’ and G = G’.
It follows that A can be written as a product of transformations exp e

e E VH(L, a) 
&#x26; 

.

We set

a is an invariant automorphism of L with the property that :

On the other hand :

And since this holds for V m E M and A is a mapping onto M because it
is invertible, it follows that:

As a by-product we give three corollaries. The second being the most
interesting one.
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COROLLARY 1. - Let K and K’ be two isomorphic subalgebras of A~,
the algebra of the group SU(l + 1) (1) and 03C6 the isomorphism of K onto K’.
Consider J and J’, Cartan subalgebras of K, K’. Take a function a E J*
on J. We associate a function a’ on J’* defined as:

Now it follows immediately from proposition 2 that if Mo is a (+!)-
dimensional Ai-module and V a E J*

then there exists an invariant automorphism a of Al such that :

Proof - Because

dim VK(Mo, a) = dim VK(Mo, a’), Va E J*

the two K-modules :

are equivalent.
So there exists an A mapping Mo onto Mo such that:

Furthermore there exists a unitary A, with determinant 1 with this property.
So A E SU(I + 1) which is connected and we can use proposition 2.

Q. E. D.

COROLLARY 2. - The number of different ways of imbedding an algebra
isomorphic to K in A~ is the number of partitions of (I + 1 ) into dimensions
of irreducible K-modules, such that the associated (+ I)-dimensional
representation of K is faithful. This results immediately from the preced-
ing one.

COROLLARY 3. - If K and K’ are two isomorphic subalgebras of L related
by an invariant automorphism a of L, then for every L-module M :

a’ defined as :

(~) We use the standard notations for simple Lie algebras.
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4. CONSTRUCTION OF A BASIS IN 

a) The importance of the spaces V K(L, a)

As we already mentioned in the introduction, the essential point in this

analysis is that we use the fact that a subalgebra L1 containing K and
contained in L is stable under commutation with K. It follows that those

subspaces of L, which are stable under commutation with K will play
an important role, since it will be sufficient, by constructing such sub-

algebras, to consider only these subspaces of L.
Now, these subspaces are nothing else but the K-submodules WK(L, a)

where L is considered as a K-module under commutation. Let us consider

also the vectors VK(L, a). All these vectors are in a certain sense « repre-
sentative » for the modules WK(L, a) since they generate, under commuta-
tion with K, the modules.

All the vectors VK(L, a) constitute a subspace of L, namely the subspace
of highest weight vectors with respect to K. Let us call this space VK(L),
so: 

_

We can also consider the analogues for L1 and K, namely :

VK(L 1 ) is the subspace of Li 1 of highest weight vectors with respect to K,
and VK(K) is the corresponding subspace of K.

It is easy to see that (an important result):

if Li is a subalgebra of L such that it contains K.
Let us now turn the other way around, and let us try to construct such a

subalgebra Ll. From the fact that the vectors of VK(L 1 ) generate under K
the whole space L it is sufficient to construct the set of vectors in VK(L 1).
For once the vectors in VK(L1, a) are known one can construct the set of
elements WK(L1, a) and so Ll is completely and uniquely defined.
To construct a subalgebra L1, we must therefore extend the space VK(K),

with vectors of VK(L), to arrive at a space VK(L1) with the inclusion property
stated before:
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Since it is not hard to see that the same inclusion must hold for every a E J*

it follows that we must extend, for every a, the space VK(K, a) with vectors
of VK(L, a) to get VK(L1, a).

The advantage of this procedure is that the dimensions of VK(K), VK(L1)
and VK(L) are usually much smaller than those of resp. K, Li and L itself.
And while in the usual procedure we would have to extend K with vectors
of L to get L1, we now do the same thing with much smaller vector spaces.
What is now the price we have to pay for this ? -

In the usual construction, where K is extended with vectors of L to a
space L1, there must be checked if the space L1 is a subalgebra. That
means that one must verify the inclusion :

It is clear that a similar verification must take place in the new procedure.
The problem is however that the commutator of two highest weight vectors
of VK(L1) is not a highest weight vector, and so :

So we have to use another inclusion. Let us consider the spaces 

It is clear that this space is an invariant subspace of Li (under K).
We can again decompose this K-module and clearly we have that :

and similarly :

So these relations replace c Li and they are to be verified for the
vectorspaces VK(L1, 03B1) in order that they generated really a subalgebra L 1.
We shall refer to these relations as commutation relations.

b) The introduction of a faithful L-module M

As we have seen before, our procedure consists essentially in two steps.
First we have to extend the spaces VK(K, r1.) with vectors of VK(L, r1.) to cons-
truct the spaces r1.). Once we have a basis in VK(L, r1.), this is an easy

(~) [AB] is the space generated by [a, b] where a E A and b E B.
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thing. But the second step may be hard, and it is clear that the verification
of the commutation relations will be much easier if one has chosen an

appropriate basis in every space VK(L, a).
To construct such a basis, it turned out that the introduction of a faithful

L-module M was very useful, especially in the case where K is simply
reducible (ref. [8]) and 3 - j and 6 - j coefficients can be used. But also

in the general case, the introduction of M makes it possible to characterize
partially a basis in the spaces VK(L, a), such that the commutation relations
can be verified more easily. In the important case that K is simply reduci-
ble these new commution relations present no difficulties and are as easy
as Ll.
We now turn to the construction of a basis in the spaces VK(L, a) using

a simple faithful L-module M. As a starting point we use the set :

as might be expected from proposition 1 and 2, since this set characterizes K
almost completely.

c) Construction of a basis in V K (L, a)

We consider an irreducible faithful L-module M. M decomposes
with respect to K into irreducible K-submodules Mi and we denote by
a; E J* the highest weight of the module M~. For every pair (i, j), the set
of operators :

is again a K-module under the product:

where

So we can consider the spaces M~), a) of linear operators
in M, acting between M~ and Mj only, and of highest weight a under com-
mutation with K.

We choose a basis in all these spaces, and we denote the basis vectors as :

Since :
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on the one hand and by its representation :

on the other hand it is possible to write the vectors of in terms of

the basis vectors :
, J- i .. ,

and it is clear that the vectors of VK(L, a) must be linear combinations
of vectors:

By a good choice of M, the vectors of VK(L, a) are simple expressions
in the ij), sometimes a) coincides with:

for almost all a so that :

is effectively a basis in VK(L, a).
In the case where K is simply reducible, we have that :

so that there is atmost one K-module in M~), a).
If is the vector of weight À E J* in Mi (1) and E~ E M~)

is defined as :

then :

is a vector in

and in the case where K is simply reducible We will always use this basis
vector in

(1) Since K is simply reducible the vectors in an irreducible module are completely
labelled by their weights.

(2) The 1 - j and 2 - j coefficients are defined as in reference 8.
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5. PROPERTIES

In the preceding section, we constructed a basis in VK(L, a) and we

explained why we use these vectorspaces and why we introduced an irre-
ducible faithful L-module M.

We now give a summary of results, so that we can explain the general
procedure in the next section.

a) Let

and

then, if Li 1 is a subalgebra such that K c Li 1 c L, for every tJ.:

b) Put

Empirically we have found that 9 is often equal to 1 for a minimal exten-

sion, that means for a proper subalgebra L1 of L, and such that there is
no subalgebra L2, different from K and L1 such that :

This is of great importance since it shows that the minimal extensions

with 8 = 1, which are easily found, provide us a considerable part of
the minimal extensions.

The same results hold if Li 1 is replaced by K, L or M).
d) Let
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then

where WK(M, is an empty set if and is WK(M, y) is i = j.
e) If K is simply reducible one can show (see Appendix A) that if

are the modules with highest weight vectors

then the highest weight vector of

is (up to a constant)

Property a and b were already mentioned in section 4.
Property d and e explain why we use the L-module M, especially in

the case that K is simply reducible.

6. CONSTRUCTION OF THE MINIMAL EXTENSIONS

In section 4 we sketched the procedure to construct the lattice of sub-
algebras between K and L. In section 5 we have given some properties
of the notions introduced in section 4. In this section we explain more in
detail how we can construct systematically all the minimal extensions
of K in L. It is clear that, once the minimal extensions are found, we can
find all the subalgebras by constructing the minimal extensions of the
minimal extensions, etc.
We suppose that K, L and, for a certain irreducible faithful L-module M,

the set :

The knowledge of this set enables us to decompose M into irreducible
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K-submodules M~ and to find the ai, the highest weights of Mi. Then by
decomposing the product of the contragredient module of Mt and the
module M~ we can find the possibilities for the basis vectors in VK(a) :

We proceed by writing the elements of VK(K, a) and VK(L, a) in terms
of this basis in VK(a). This is possible if the action of K and L in M is
known. Considerations about the dimensions may be very useful here.
Once this work is done we are ready to find the minimal extensions, at

least in the simply reducible case. Successively we search for extensions
with 0 = 1, 2. 

’

For 0 = 1 we write down an arbitrary vector qa E VK(L, a) for some a
and we determine the coefficients such that :

and if Q~ is the module having qa as highest weight vector :

If these relations can be written down explicitely, we obtain all the

extensions with 9 = 1, provided we check that the obtained algebra is

semi-simple.
In a similar fashion, we construct all the minimal extensions with

9 = 2, 3, .... To clarify the method, we give two examples in Appendix B.

REMARKS. 2014 1. Only in the case that K is not simply reducible there may
be difficulties by checking the commutation relations. However property
d) may be very useful if for almost all the pairs (i, j) we have that :

Finally we can use a subalgebra Ki of K which is simply reducible or
even commutative, and use the basis of VKt(a) to evaluate the relations.

2. Checking the dimensionalities, together with semi-simplicity, it is
sometimes possible to exclude a proposed extension.

3. It is clear that if Li c L, M has to be a faithful L1-module and if
K c Li, it has to decompose in a given way with respect to K. These
two properties may of course be useful too.
Some of these remarks will be used in the examples.
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7. PHYSICAL APPLICATION

To illustrate the possibility of physical applications, we sketch a cons-
truction of a certain class of model Hamiltonians in the nuclear shell

theory.
In this theory, one always considers only a finite set of one particle

states, stable under the transformations of the group SU2(J) x SU2(T)
of total angular momentum and isospin. Furthermore one restricts the

one and two particle operators as acting only between the chosen set.

These things have been translated into group theoretical concepts by
Moshinsky (and many others), as follows: we consider the Lie algebra K
of the group SU2(J) x SU2(T); the chosen finite set of one particle states
forms a K-module, call it M. We take L to be the semi-simple Lie algebra
of traceless linear operators of M into M. L is therefore the Lie algebra
of the group SU(n), n the dimension of M. Clearly L contains K.

It is a well known fact that there is a correspondance between resp.
the n-particle states, the one-particle and the two-particle operators on the
one side and the vectors of some irreducible L-modules, the operators
of L, and the quadratic expressions in the operators of L on the other side.
All this is explained in full detail in the work of Moshinsky [3].

Suppose now that we have constructed the lattice of semi-simple sub-
algebras of L, containing K. We can extract one chain out of it and build

a quadratic operator by taking a linear combination of Casimir invariants
of the subalgebras of the chain. Such an operator corresponds to a model
Hamiltonian ( 1 ). And this model ,Hamiltonian is a very easy one to deal

with. For it is possible to take a basis in the n-particle states such that
the Casimir invariants are all diagonal, and the eigenvalues are known.
So the method provides us a wide class of model Hamiltonians which

are very easy to deal with. A lot of the earlier models belong to this class,
such as pairing and quadrupole-quadrupole. Even some of the recent

models are closely related to the considered class (see ref. [6] [10]).
It must be mentioned that this class of model Hamiltonians may be

unsatisfactory in configurations where only one or at most two shells are
taking into account, because then there are enough methods to use.

However, if one would try to relate some results of different shells, or
if one would like to take into account the effect of other shells, it might be

effectively useful to have a wide class of model Hamiltonians which are

easy to handle, even in the case of mixed shells.

(1) All these Casimir invariants are invariant under the group SU2(J) x SU2(T).
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On the other hand, it can be possible that there exists a chain such that
a part of this chain occurs in a configuration for which other methods can
be used, and so a new class of models can be treated. This is for instance

the case in a p - f shell. The algebra in consideration is SU( 10), and it

has a (rather remarkable) set of physical chains

Clearly we encounter the last part also in a d-shell and so we can treat
a model in the p - f configuration, using the same results and known
coefficients of the familiar d-shell. The same thing occurs in the s - d
and the p-shell, and here the method is applied indeed.
As a last remark on the applicability, we want to emphazise the impor-

tance of the transformation coefficients between the bases, determined by
different chains. Since, if such coefficients could be calculated or tabu-

lated, it would be possible to treat a model Hamiltonian, which is a linear
combination of Casimir invariants of different chains. And so we get still

a wider class of possibilities. The importance of these transformation
coefficients has already been emphazised by Moshinsky for the mathe-
matical and a simple physical chain [11].

APPENDIX A

We shall prove the formula only for the case that K = Aj, the algebra of the group SU 2’
In this case we label the elements of J* by the half of the value of the function on the cano-
nical element of J, as usual, and we call the values jl, j2 ... for elements of P and mlm2 ...
for those of J*. All these numbers may be integer or half integer.

In this notation we have:

p(l, ij) is the highest weight vector of the module P(l, ij) with vectors :

We want to calculate W([P(I, ij)P(k, i’j’)], ).
So we construct :
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The result is certainly the highest weight vector of the unique element of

up to a constant.

After using the commutation relations of the operators and the formula (ref. [9],
p. 152) :

we get by a straight forward calculation the formula:

with qL E QL, the highest weight vector of QL, equal to

APPENDIX B

1. In the first example we construct, in a straight forward manner, all the minimal

extensions of the subalgebra Al of the algebra Ds.
First we « realize » this chain by operators in a simple Ds-module, for which we take

the 10-dimensional one Mo. We characterize A further by taking (~)

and otherwise

The possible operators p are (if Mi, M2 are resp. the 3 and 7 dimensional Al-submodules):

Next we try to find the expressions of V(I), V(Ds, I), V(Ai, I) in terms of the p’s.
Obviously

The operators of D5 consist only of antisymmetric combinations. It follows that :

(~) Because we are dealing with AI, we label the elements of J*, J* by half of the value,
taken by the function on the canonical element of J as usual. We omit the K (in this case A i)
as an index of V.
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To prove this, we can use the formula of appendix A and prove that the given operators
constitute a simple algebra of rank 5, dimension 45.
The operators of V(A1, 1) are found by taking into account the given dimensionalities

of M1, M2 and the fact that we have only one vector in V(A1, 1).

First we look for extensions with 8 = 1. This means that we take a vector x~ in some

space V(D 5, I) (I = 1, 2, 3, 4, 5). We have:

and if we call XP the module with xp E Xp then we must find the solutions of { aij such
that :

otherwise.

If Q(k) E k) and q(k) the highest weight vector of Q(k) then :

with

If we impose the conditions:

We get solutions with

impossible.

It can be checked that we have the extensions:

If we look for minimal extensions with 8 = 2, 3 then we must take Xp, Y ... different
and independent of the preceding solutions. In this case however:

ANN. INST. POINCARE, A-XIII-3
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and so one of them must be a linear combination :

different from h 1 .

That means that the extension contains one of the preceding subalgebras, and so we
have not a minimal extension.
The result is that we only have minimal extensions with 0=1, and that the two solu-

tions are :

2. In this second example we use more sophisticated arguments to illustrate some
remarks in 6.
We take A2 c Ag and Mo the 10 dimensional A9-module with only e)

We have only one A2-submodule, for this reason we omit the i, j in the operators p.
The possible p’s are :

These are the elements of V(a).
The elements of V(Ag, a) are:

This can be found only by checking the dimension.
The only operator of V(A2, a) is:

There are only two possibilities for an extension:

The last one is impossible because it would be a simple algebra of dimension 72, and
rank 6 which doesn’t exist.
The first one is impossible because it would be a simple algebra of rank 5, dimension 35,

and so As, having a 10 dimensional irreducible module. It follows that, in this very special
case, the only minimal extension of A2 in A9 is A9 itself.
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(~) We indicate the elements of J* by (a(hd, a(h2)), } a canonical basis in J.
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