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Section A :

Physique theorique.

ABSTRACT. - An obstruction is found to considering a solution of the
linearized field equations in harmonic coordinates as a first approximation
to a radiative solution of the exact field equations with bounded sources.

RESUME. - On demontre l’impossibilité de considerer une solution
des equations du champ linearisees en coordonnées harmoniques comme
premiere approximation a une solution radiative des equations exactes
avec sources bornées.

INTRODUCTION

In this and a following paper we shall consider asymptotic expansions
of retarded radiative solutions of the Einstein field equations with bounded
sources.

Two general methods have been used to attempt to find these types of
solutions. The oldest is the successive approximation proceedure with
the harmonic coordinate condition imposed. The linear approximation
equations are wave equations in Minkowski space and may be readily
integrated. The second method which has been used is the formal power
series approach initiated by Bondi [1]. The metric is assumed to have
an asymptotic expansion along a family of forward null hypersurfaces
u = const. in inverse powers of a radial parameter r and the field equations
are formally integrated.
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The partial solutions obtained by these two methods have a property
in common which will be of interest to us here.

A retarded solution of the linearized field equations in harmonic coordi-
nates possesses an asymptotic expansion in powers of 1/r along any regular
family of forward Minkowski null cones. This expansion is the multi-

pole expansion.
The Bondi-type asymptotic solutions have a similar property. Consider

in fact the coordinate system (Xi) obtained from a Bondi-type coordinate
system (u, r, 8, ~) by the following coordinate transformation :

Xl = r sin 03B8 cos 4&#x3E;, X2 = r sin 0 sin 4&#x3E;, X3 = r cos 03B8. (1)

If we take a solution of the type obtained by Bondi and Sachs [1], [2] and
express it in the coordinate system (Xi) we find that the components of
the metric tensor approach the standard Minkowski metric asymptoti-
cally as r tends to infinity. We find also that the hypersurfaces u = const.
along which the components of the metric tensor are given as an asymptotic
expansion in powers of l/r form a family of foward Minkowski null cones
of the coordinate system (Xi).
The same remarks apply to the asymptotic solutions found by Newman

and Penrose [3] in a slightly different type of coordinate system. The

coordinate systems obtained by ( 1 ) from Newman-Penrose-type coordi-
nate systems have been used by Papapetrou [4] to study the asymptotic
properties of exact solutions of the field equations.
We see then that all of these coordinate systems have the property

that the components of the metric tensor possess an asymptotic expansion
along a family of hypersurfaces which are either the Minkowski null cones
(Papapetrou type) or which are the Minkowski null cones of a simply
related coordinate system through the coordinate transformation (1)
(Newman-Penrose type and Bondi-Sachs type).
What we shall do in Part I is consider all coordinate systems in which

the components of a given radiative solution of the field equations with
bounded sources possess an asymptotic expansion in inverse powers of
a radial parameter r along a family of foward Minkowski null hypersur-
faces. We shall find a necessary and sufficient condition which the com-

ponents of the metric tensor must satisfy in order that such a expansion
exist.

When we apply these considerations to the retarded solution of the
linearized field equations in harmonic coordinates we find that the condi-
tion is not satisfied. We have then a condition which must be satisfied

by a solution to the exact equations but which is not by the linear approxi-
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ma tion solution. Using this fact we shall show that it is impossible to
consider a retarded solution of the linearized field equations in harmonic
coordinates as a first approximation to a retarded radiative solution of
the exact field equations with bounded sources.
There are four sections. In Section I a decomposition is given of an

arbitrary symmetric matrix with respect to two Minkowski null vectors.
In sections II and III we use the field equations

which are valid outside of the world-tube of the sources. In Section II

we do not assume an expansion in powers of 1/r along any set of hyper-
surfaces. We only assume that the field becomes Minkowskian as 1/r
in the limit as r tends to infinity.
The main section is III. We here assume an asymptotic expansion in

powers of 1/r along a family of forward Minkowski null cones and consider
the conclusions which can be drawn from setting R~, the coefficient of
1/r2 in the asymptotic expansion of the Ricci tensor, equal to zero.

In the last section we consider the method of successive approximations
using the harmonic coordinate condition.

I

Let V4 be a Space-Time whose sources are restricted to some finite
region of space. We shall assume that V4 admits global coordinate systems

and we shall restrict our attention to the subset 1&#x3E;" of these § such that
the components of the metric tensor are of the form

where (r, (J, ~) is the polar coordinate system for 1R3 and u = r (We
shall later define the sets of coordinate systems 1&#x3E;’ and C). Latin indices

take the values (0, 1, 2, 3) and ~ij is the standard Minkowski metric of
signature - 2. In the following we shall use YJij to raise and lower all
indices. The coordinate functions (Xi) are related to the functions (u, r, 8, ~)
by the transformation (1) of the Introduction. We use the latter only
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as expansion parameters; (u, r, 8, considered as a coordinate system
does not belong to the set ~". The hypersurfaces u = const. are the
family of forward Minkowski null cones whose vertices lie on the world-
line of the origin.
The functions as well as their first and second derivatives are assumed

to be bounded functions of r in the limit as r tends to infinity. Since the

sources are bounded we may impose also that the time axes be such that
the Ricci tensor vanishes outside of a timelike cylinder r = const. Our

group G" of admissible coordinate transformations will be the set of

maps ~4 ---+ [R4 such that G" 0 ~" c 1&#x3E;". Notice that G" contains only
those Lorentz transformations which do not change the direction of the
time axes.

We wish to consider retarded radiative solutions of the fields equations
(We shall define later what we mean by a retarded solution). We shall

investigate the conditions which the coefficient of 1/r on the right-hand
side of equation (2) must satisfy in order that the left-hand side be a radia-
tive solution of the field equations.
The principal tool of our investigations is a decomposition of an arbi-

trary symmetric matrix with respect to the pair of associated Minkowski
null vectors çi given by

Greek indices take the values (1, 2, 3).
Define a symmetric projection operator 7:,; by

nij satisfies the following relations :

Let hij be an arbitrary symmetric matrix. Set

Define the quantities h, K, H, K, hi, H1 by the equations
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The quantities hi and Hi satisfy the relations

We have also

Therefore we find

Define hij by the equation

Multiplying both sides of this equation respectively by ~ ~ we find
A.

that h~ satisfies the relations

We find also that

Equation (6) is the decomposition of hij with respect to çi and 03B6i. We

have four functions h, K, H, K, two Cartesian vectors hi, HI each with
two independent components, and a symmetric Cartesian tensor hij with
two independent components, giving a total of ten components for hij.
The decomposition (6) is similar to the Fourier transform of the spin

decomposition given by Arnowitt, Deser and Misner [~]. We are here

working in the position variable space not in the momentum space. How-

ever, we are primarily interested in the leading term of a spherical wave
far from the sources and in this wave zone a spin decomposition is equi-
valent to the algebraic decomposition we have given. For example if

f’ ‘ is a vector field of the form

then we have
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We see that to within terms of order 0(r- 2) the differential condition

is equivalent to the algebraic condition

A similar decomposition may be given with respect to an arbitrary pair
of associated vectors

which are time-like or null. Formula (6) remains valid with (çi, ~) replaced
by (Pi, qi) but the expressions on the right-hand side of the defining rela-
tions (4) are more complicated.

II

In an admissible coordinate system ø E 1&#x3E;" the components of the metric
tensor are of the form (1-2).

Set

Then, since

we have

where we define the symmetric product of two vectors ai and b; as

Using the fact that

( 1 a) may be written as
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Equation (1-2) defines a symmetric matrix of functions hij which we
may decompose according to equation (1-6). Since the Ricci tensor

vanishes for large values of r, the elements of this decomposition will not
be arbitrary but will be forced to satisfy certain equations. To obtain
those equations which will interest us here in Section II it is sufficient to
consider the leading term of the Ricci tensor. That is, it is sufficient to

impose

From equation (lb) we find the following expression for the Riemann
tensor :

Therefore the Ricci tensor is given by

where for simplicity we have set = ht. If we decompose according
to equation (1-6), equation (4) becomes
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Therefore after a short calculation we see that equation (2) is equivalent
to the following set of equations :

Using these equations, (3) reduces to the form

This yields us the following result: the leading term of the components
of the Riemann tensor in an admissible coordinate system depends only
on the part hij of the matrix hij. This is true without imposing an out-
going (or incoming) radiation condition. We see from the form of (7)
that the leading term of the Riemann tensor vanishes if the matrix h~~
does not depend on u or r.

Let us consider now in more detail equation (6a). This equation has
two particular classes of solutions which yield simplified expressions for
the leading term of the components of the Riemann tensor. The first

class consists of those matrices which satisfy

where fij is an arbitrary matrix of functions which are bounded along with
their first derivatives with respect to r as r tends to infinity. A particular
subset of these solution is given by

where hU) and h1J) are arbitrary functions of (u, 8, These matrices l

and as well as the matrix given above in equation (8) must of course
satisfy the algebraic conditions (1-7) at each point.

If h1’/ is a solution of (6a) of the form (8) then the corresponding expres-
sion for the leading term of the components of the Riemann tensor given
by equation (7) becomes
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The leading term is of type N with 03B6i the principal null vector (Çi are the
components in the particular coordinate system considered of a vector
whose norm tends to zero as 1/r in the limit as r tends to infinity).

Condition (8) may be considered as a weakened form of the Sommer-
feld radiation condition.

Another particular class of solutions to equation (6a) consists of those
matrices which satisfy

where fij is an arbitrary matrix of functions of the same type as in (8).
A particular subset of these solutions is given by

where hU) and are of the same type as in (9).
If is a solution of (6a) of the form (11) then the corresponding expres-

sion for the leading term of the components of the Riemann tensor given
by equation (7) becomes

The leading term is again of type N but with principal null vector (~.
Equation (7) yields the result that the 1/r term of the Riemann tensor

is always of type N or I (if it does not vanish). No combination of out-

going or incoming radiation can yield an intermediate type. In fact, if

we define A.. lJ and B.. lJ by

then equation (7) may be written as follows :

If either A1~ or Bij vanishes as r!x the leading term is obviously of type N.
Suppose now that, for example, lim Aij does not vanish and that the

r- x 
"

leading term is algebraically special. We wish to show that this implies
that Bij must vanish as r’" (a &#x3E; 0).
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If the leading term is algebraically special then there exists a non-sero
null vector field a; which satisfies the following equation:

We may decompose a; as follows:

where ai satisfies the conditions (1-5). Using this and the expression ( 15)
for the Riemann tensor we find that ( 16) becomes

If (16) is to be satisfied then the leading term of (18) must vanish as 
We may decompose this term with respect to the index k as we did ai above
in (17). This yields three equations

If we denote asymptotic parallelism by the symbol ~ we have from ( 19)
the following conditions on ~;

where /.’ is an arbitrary vector field. We have from (17) the equation

The following diagram summarizes the various possibilities. The

numbers beside the arrows indicate the formulae which are involved in
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the implication. Note that from their definition (14), Aij and Bij satisfy
the algebraic conditions (1.7).

The only consistant possibility is

We see then that if the leading term is algebraically special it must be of

type N.

III

We now assume that for a given bounded source configuration there is
always a retarded solution of the field equations and from now on we
shall restrict our considerations to these solutions. We define a retarded

solution as a solution such that there exists a coordinate system § E O"
with the components gij of the metric tensor of the form

That is, such that

Since we shall no longer have occasion to use r, 0, (~), to alleviate
the formulae we shall in the following drop the superscript on hU)(u, 0, ~).
We define the coordinate set as the subset of cD" consisting of all cP
such that ( 1 ) is satisfied.

Since all the information concerning radiation is contained in the

ANN. INST. POINCARÉ, A-XII-3 21
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leading term of the asymptotic expansion, one could reasonably hope
to be able to decide whether one had a retarded solution or not simply
by regarding this term. We know that if 1&#x3E;’ is non-void then the

leading (1/r) term of the Riemann tensor is of type N [2]. It would be

nice to be able to prove a converse to this result, that is, to prove that if
the leading term of the Riemann tensor is of type N with a forward principal
null vector then 1&#x3E;’ is non-void.

For the rest of this section we fix a particular coordinate system 4&#x3E; E 1&#x3E;’.
Write ( 1 a) in the form

It is important that the following inequality be satisfied:

where K is an arbitrary constant. It is this inequality that assures that
the field variables tend uniformly to their Minkowski limit for all values
of u as r tends to infinity. We shall not use (3) explicitly in what follows
so we have not included it in the definition of 1&#x3E;’. Strictly speaking how-
ever one cannot call a solution retarded unless (3) is satisfied for at least
one coordinate system in D~. There is an interesting counter-example
in electrodynamics furnished by the everywhere regular vaccum solutions
considered for example by Synge [6]. These solutions are symmetric
under time inversion and so cannot represent everywhere outgoing radia-
tion. They possess however for all values of (u, 8, 4» an expansion of the
form (1) in powers of 1/r (*). An inspection of the coefficients of 1/r and
1/r2 shows that for arbitrarily large but fixed r the second term becomes
dominant over the first for u tending to - oo and condition (3) is not satis-
fied for any finite K.

We now proceed as in the previous section and decompose the matrices
of functions hij and with respect to çi and (i. We do not claim that

the elements of the decomposition of ~~, which we distinguish with a
superscript, have any physical significance; we use them only for conve-
nience of calculation.

Since we have an asymptotic expansion for the metric tensor we shall
also have one for the Ricci tensor :

(*) I wish to thank M. Papapetrou for bringing this to my attention.
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Setting RU) equal to zero proceeds as in the previous section and we obtain
the set of equations (II-6) simplified by the fact now h’ij = 0 - hij does
not depend on r. Equations (II-6) become

and since we are here considering a particular solution of (II-8) the lead-
ing term of the Riemann tensor is given by equation (11-10). With equa-
tions (5) satisfied, the Ricci tensor is therefore of the form

We shall now impose the condition

and consider what restrictions this places on the elements of the decompo-
sition of hij and /~. A short calculation gives that the system (7) is equi-
valent to the following set of equations (The details are given in the Appen-
dix) :

and

The most important of these equations is equation (9). It states that

for the field equations to be satisfied either = 0 or H = 0.

From equation (II-10) we see that hij = 0 if and only if the l/r term of
the Riemann tensor vanishes. We now consider under what conditions

the function H vanishes. Let u = const. be a fixed Minkowski coordinate

null cone and let u + m = const. be a (with respect to the Riemannian
metric) null hypersurface. Because of the expansion ( 1 ) for the components
of the metric tensor, the Minkowski cone will be asymptotically tangent
to a null hypersurface if and only if we can choose cv to be asymptotically
of the form

where WI 1 is a function of (u, (J, Suppose this to be the case and let
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p; be the normal to the hypersurface n + cv = const. Then p; is of the
form

Since pi is a null vector we have

and therefore H = 0.

Conversely if H = 0 an w can be found of the form (10) by assuming an
expansion in powers of 1/r and explicitly calculating the coefficients. If

H does not vanish we may consider the hypersurfaces given by

From the field equation (8b) we saw that H is independent of u. We

shall see in Part II that H is a constant. Therefore one can show (as
above for the case where H = 0 that there exists a null hypersurface asympto-
tically of the form u + 2H log r + 0(r-1) = const.
We have therefore shown that a necessary and sufficient condition for

the Minkowski cones u = const. to be asymptotically tangent to a null
hypersurface is that H vanish. If H does not vanish then the cones diverge
from all null hypersurfaces as 2H log r in the limit as r tends to infinity.

Referring back to equation (9) we see that we have proven the following :
the 1/r term in the asymptotic expansion of the Riemann tensor is of type N
or vanishes according to whether the Minkowski cones u = const. are
asymptotically tangent to null hypersurfaces or not. Therefore if the

FIG. 1. - u’ = const. is a null hypersurface.
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components of a metric tensor which is a radiative solution of the field

equations possess an asymptotic expansion in powers of 1/r along the
cones u = const., then these cones must be asymptotically tangent to null
hypersurfaces. Define the subset C of ~’ as the set of ø such that H vanishes.
One may formulate the consequence of (9) as follows : if the 1/r term of
the Riemann tensor does not vanish then

C= CB

We have considered so far asymptotic expansions of the components
of the metric tensor only along the particular family of forward Minkowski
null cones u = const. This restriction may be weakened. Suppose
we have an asymptotic expansion of the components of the metric tensor
in a coordinate system (Xi) along a regular family of hypersurfaces u’ = const.
which has the following property: we can choose functions (r’, 0’, ~/)
such that the coordinate system (x") constructed by formula ( 1 ) of the
Introduction is in ~. For example any regular family of Minkowski
null hypersurfaces of the coordinate system is a family which has this
property. Let G be the group of coordinate transformations which takes
O into itself: G o D c C. The two coordinate systems (Xi) and (x") are
connected by an element of G. It is easy to see (and we shall show in
Part II) that H is invariant under the group G. Since u’ = const. is the

family of forward Minkowski null cones of the coordinate system (x")
whose vertices lie on the world-line of the origin, we may conclude that

H = H’ = 0.

We see therefore that the vanishing of H is a necessary and sufficient
condition which the components of a metric tensor which is a radiative
solution of the field equations with bounded sources, must satisfy in order
that they possess an asymptotic expansion in inverse powers of r along
a family of Minkowski null hypersurfaces.

IV

In conclusion .we shall discuss the harmonic coordinate system in the
first approximation. We shall discuss these coordinate systems in general
in Part II [7]. Let gij be the components of the metric in a given harmonic
coordinate system. We have then
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where kij   |. Define

and let Tij be the components of the matter tensor. If we neglect quadratic
terms then the field equations

may be explicitly integrated to give the retarded solution

R is the Euclidean distance from the point of integration to the point where
t/Jij is being evaluated. Cx is the retarded Minkowski null cone with
vertex x. The right-hand side of equation (3) may be expanded in powers
of 1/r along the cones u = const.:

The energy-momentum vector pi is given by the integral

This may be written as an integral over the retarded cone C; with vertex x
(Details are given for example in Part II [7]) :

Recall that 03BEi is tangent to Cx at the point where it intersects the world-
line of the origin. From equation (4) we have

By our standard choice of time-axis the energy-momentum vector pi
has components

Therefore we have
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and from (2)

We see then that H is given by

If (1) is radiative then

We have therefore a coordinate system in which the components of the
metric tensor possess an asymptotic expansion in powers of 1/r along
a family of forward Minkowski null cones and in which we have

and

There is however no contradiction with the results of the previous section
since they were based on equation (III-9). This equation is quadratic
and (3) is valid only in the linear approximation.
The results of Section III assure us however that it is impossible to use

(3) as the first approximation in an iterative proceedure to obtain a second
or higher approximation to an exact retarded solution. For suppose

that we have a second approximation g(2)ij to a retarded radiative solu-
tion of the field equations. Then in some coordinate system (x’~), the
components of the metric tensor are of the form (1II-1). Since

and since the components of the first approximation metric tensor are
of the form (111-1) in the harmonic coordinate system (Xi), (x") may be
chosen to differ from (Xi) in the second order only:

We will then have from equation (III-9)

where Hand hij are the first order contributions to H(2) and respec-

tively. We have dropped the prime since the two coordinate systems (x’)
and (x") are equal in the first approximation. But we saw above that
neither H nor hij vanishes. Therefore (6) is not satisfied.
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It is important to remark that it is not the harmonic coordinate condi-
tion which we criticize here but rather the use of (3) as a first approxima-
tion to a solution. (3) can be considered as a first approximation only
in regions of space-time near the sources. This fact was recognized by
Fock. He has attempted to find second order approximations to solu-
tions of the field equations using the Schwarzschild metric as zeroth approxi-
mation instead of the Minkowski metric [8].
The author wishes to thank M. Papapetrou for a critical reading of the

manuscript.
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APPENDIX

We show here how the equation (III-7) implies the system of equations (III-8), (III-9).
Retaining only the second order terms, we have

The Christoffel symbols are given by

We have set = h; and for simplicity we have defined

Differentiation gives

We have therefore



304 J. MADORE

We have set = h~2’ and = 

The coefficient of 1/r2 in the asymptotic expansion of the Ricci tensor is given by

Using equation (III-5) we have

which gives us

Using this result, we have

which gives us

Using these two results we have for the trace of 

which yields us

Using this we have

which gives us

Placing these relations in the expression for gives

This yields us the rest of the system (III-8), (III-9).
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