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Section A :
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ABSTRACT. - The symmetries of the 3j symbols of SU (2) are fitted into
a broader group theory framework. The 3j symbols of SU (2) are iden-
tified to certain 3j symbols of SU (3). Viewed as SU (3) properties, their
Regge symmetries are nothing but ordinary permutation symmetries.

1. - INTRODUCTION

It is known from Regge’s work [1] that the symmetry group of the 3j sym-
bols (or Clebsch-Gordan, or Wigner coefficients) of SU (2) is not the usual
twelve element group of permutations and reflection but rather a larger
seventy-two element group the deeper significance of which is not clear
as yet. In this paper we give these new symmetries a group theory inter-
pretation within a framework which, we hope, could be generalized to
other groups.
We shall be guided by two remarks :

First: it makes more sense to permute like objects than different ones
as in the former case the permutation group is a group of invariance while
in the latter it is a mere group of operators acting on the set of those objects.
This is well known in quantum mechanics. Thus, instead of dealing
separately with the irreducible representations of SU (2), we embed them
in a larger completely reducible representation space which contains each
of them once, and only once, and we consider a collection of replicae of
such identical spaces. Such an object has been constructed already by
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Schwinger [2], and Bargmann [2] has given it a good status as a function
space; he called it ..t~ 2 (we recall their construction at the beginning of
section 2). Now we consider the tensor product .~ 2 0 ... times,
the closure of it is :F 2n in Bargmann’s notation. It is now natural to

permute the subspaces F2 and indeed we shall realize the group of the per-
mutations of these n objects by explicit unitary operators in :F 2n which will
generate the usual permutation symmetries of the 3j symbols in the case
of ~6.

Second: Problems about 3j symbols are more properly to be viewed as
problems in the theory of invariants. Indeed the 3j symbols for an arbi-
trary group G can be considered as coupling three irreducible represen-
tations of G to the trivial one-dimensional representation. A general

notation which is well-suited to this viewpoint is (~1 "!2 "!3); it is
72 73 /

patterned after the notation for the 3j’s of SU (2) (we forget about multi-
plicity indices which are necessary in the general case). Let us call

(j1m1) 11 J3 the corresponding basis vectors of the three representations.
Then every vector J1 (j2 ) J3 (the summation conven-
tion on the indices mi is to be understood in this type of formulae) is inva-
riant under the diagonal of G 0 G 0 G. Similar remarks could be made

about the generalized Wigner coefficients which generalize 3j symbols
for the case of n representations of G.

Let us then consider the direct product G = SU (2) 0 ... 0 SU (2)
n times. It acts in a canonical way in :F 2n. The preceding remark leads us
into studying the subspace In of :F 2n which is pointwise invariant under
the diagonal K" of G. We consider now the algebra of the linear operators
in In. Clearly these operators are scalars i. e. they commute with the

elements of It is natural to inquire about the existence of a subalge-
bra Ln of linear operators in In with the following properties : it is a finite
Lie algebra and the space In is irreducible under Ln. We find that this is

indeed the case, Ln being SO* (2n) a special non compact form of SO (2n).
U (n) is a maximal compact subalgebra. It will play a crucial role in our
developments. The most remarkable fact is that it is the diagonal of the
direct sum of two commuting U (n) algebras. We take up these matters

in section 2.

Before proceeding further, we introduce a classification of the symmetry
properties [3] of the 3j symbols of an arbitrary group into two classes.
This will help us state our results.
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CLASS I: the permutation symmetries, i. e., the ordinary properties under
any permutation of the three representations labeled by ji, j2, j3. In most

cases it is possible to choose the bases in the representation spaces so that
the effect of a permutation is a mere phase factor. Let us remark however
that the problem is an open one for the special case wherein j1j2j3 are
equivalent to one another [4]. For SU (2) the usual choice leads to the
invariance of the Wigner coefficients under even permutations and to its
being multiplied by ( - 1)J for odd ones where J =7i + j2 + j3.

CLASS II comprehends all other symmetries the symbol may have, i. e.,

symmetries which cannot be accounted for by a permutation of the repre-
sentations. In particular they may relate symbols involving different

triples of representations. For SU (2) the new Regge symmetries and the
symmetry under « time reversal » (ma goes into - m~, a = 1, 2, 3 together
with multiplication by ( - 1/ belong to class II.

Regge’s notation for the 3j symbols of SU (2) exhibits all symmetries
at once although it is highly redundant

The class I symmetries consist of the permutations of the columns. The

time reversal symmetry is associated with the permutation of the second
and third rows. The other permutations of rows and the transposition
of the matrix yield the new Regge symmetries (invariance under the even
permutations of rows, and transposition, multiplication by ( - 1)J under
the odd permutations). The symmetry group so obtained is made up
of 3 ! t x 3 ! t x 2 = 72 elements as announced at the beginning.
Now we can state our results on the 3j symbols of SU (2) : The known

class II symmetries of the general 3j symbols of SU (2) are identical to the
class I symmetries of the 3j symbols of SU (3) (the maximal compact sub-
algebra of L3 = SO* (6)) involving three identical representations of SU (3)
of the completely symmetric type (here we reap the dividends of remark 1
above), with the exception of the transposition symmetry. The latter is

of a different nature albeit also a SU (3) property; it is linked to the exis-
tence of an outer automorphism of SU (3). To prove these statements

(in section III) we shall identify the general 3j for SU (2) with the above
special 3j symbols of SU (3), up to a normalization factor. We shall also

prove that the SU (3) algebra we have introduced can be used to generate



356 G. FLAMAND

a class of recursion relations between the 3j symbols, those among coeffi-
cients with the same value of J. The other recursion relations require
either going outside SU (3) to SO* (6) or for those involving the same

triple jlj2j3 simply using the diagonal of SU (2) 0 SU (2) 0 SU (2).
Let us note that our technique does not seem to provide us with any new

property of the Wigner coefficient of SU (3).

2. 2014 THE CONSTRUCTION
OF THE INVARIANT SUBSP ACE In

AND OF THE LIE ALGEBRA L~ FOR SU (2)

We rely upon Schwinger’s powerful description of SU (2) in terms of
spin one half boson creation and annihilation operators [2]. We shall use

either Schwinger’s abstract operator formalism or Bargmann’s Hilbert
function space realization of Schwinger’s bosons. In the former descrip-
tion we write :

Naturally [a, a*] = 1 = [b, b*], [a, b] = 0 = [a*, b*] and the state space
is Fock space. The bracket [A, B] is of course AB - BA. The casimir

operator is J2 = j( j + 1) where ’ - 1 (a*a + b*b).
In the latter, the elements of Barmann’s space ~2 are entire analytic

functions of two complex variables ç, ~; the inner product is so chosen as

to make ç and ~ ~03BE, respectively q adjoint to each other with respect

to this inner product. All polynomials in ç and 11 belong to :F2 and the
set of all the monomials is a basis for :F 2.
The isomorphism between Schwinger’s construction and Bargmann’s is

indicated by the following arrows a~~ ~03B6 a* +-+ ç b~~ ~~ b* H ; the
vacuum 0 &#x3E; -&#x3E; function 1.
The standard orthonormal basis for the irreducible representations of

SU (2) can be written as follows :
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Now let us consider ,~ 2n. The operators a, b, etc. now have an index
i = 1, ..., n. Since the vacuum is a cyclic vector it is possible to cons-
truct In and L" both at a time by just building all possible invariant ope-
rators out of the a;, hi, ai, bl. This is easy enough since the n couples
(ai b;), i = 1, ..., n, are n SU (2) spinors, the couples (ai hi) being the adjoint
spinors.
The basic invariant operators in terms of which any invariant operator

can be expressed are then the scalar products (unitarity)

and the determinants (unimodularity)

Instead of t ij it is more convenient to define

It is clear that the set of Tij’s has the structure of the Lie algebra of U (n)

Now the set of the T’s, the D’s and the D*’s is closed under the bracket

operation. It is indeed a realization of a non-compact form of SO 

(It is SO* (2n) as proved in the appendix.)

This is our sought-for Lie algebra Ln. The invariant subspace In is easy to
construct : it is spanned by the vectors

Let us note the fact that these vectors are not linearly independent for
n &#x3E; 4 because of the following set of algebraic relations (these actually
are the only relations) :

It is clear that In is an irreducible representation space for Ln and the vacuum
a cyclic vector for it. Let us now focus our attention on the maximal

compact subalgebra U (n) or equivalently SU (n). First we decompose 1.
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into a direct sum of irreducible representations of SU (n). It is fairly
n

obvious that the set of vectors { &#x3E; with 03A3kij = J a fixed value,
i=/./

span an irreducible representation space for the T algebra (J is the value
n

of the operator tii). Indeed the T’s act within every such set of vectors

1=1

and any vector &#x3E; belonging to one value of J can be generated
from any other one with the same J value by repeated commutation with
the T’s. We give this representation the label 2 x J for reasons which
should be clear in a moment.

Then we notice the capital and most unexpected fact that the T algebra
is the diagonal of the direct sum of two commuting SU (n) algebras

where

This property seems to be rather general [5] ; however it is in want of a
mathematical theory which we do not attempt here.
We now concentrate on some implications of this property. It is obvious

that the irreducible representations of the algebras A and B which are allowed
in the space F2n are all the completely symmetrical ones. They are charac-

terized by an integer J and their Young diagram I ! of length J. We

write down their standard orthonormal bases in Bargmann’s notations:

Let us denote these monomials respectively J and in keeping

with the notation (jm ) we considered in the introduction. Now it is clear

that the Young diagram of the representation we labeled 2 x J is ;
of length J : the associated Young symmetrizer applied to our polynomial 1

bases precisely yields the basis f ~~ } &#x3E; which we denote 2 x J after’ 

B M /

orthonormalization. This enables us to express ( -.. ) as a superposition
B M / 

pe p
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of the vectors ( )(rn) through the use of a 3/ symbol for SU (~) (we areBL~]/ BL~]/
using unconventional but natural bases for our SU (~) representations).

Thus this formula casts a new light on the generalized Wigner coefficients
for SU (2) which can be identified (up to a normalization factor) with
certain 3j symbols of SU (n). However we shall not pursue this line here

but rather look at the cases n = 2 and 3 in closer detail.

Before leaving the general case let us write down explicit expressions for
the operators which realize the permutations of the various subspaces ~2
of :F 211.

Since the permutation group of n objects can be generated by transposi-
tions, we need only worry about these simpler operations. Let us consider

the unitary operators

It is a simple matter to compute e.g.

Thus Pij permutes the subspaces ~~ and ~’~ and leaves the other sub-
spaces .~ 2 untouched. The operators P ij and their products are the ope-
rators we are looking for. They represent a finite subgroup of the group
SU (n) constructed from the T algebra, which is actually the Weyl group
of SU (n).

3. - THE CASES n = 2 AND 3;
THE REGGE SYMMETRIES

AND THE RECURSION RELATIONS
OF THE 3 j SYMBOLS

3.1. - The case n = 2.

The space 12 is readily constructed; it is spanned by the following ortho-
normal vectors :

where A1 2 = 03BE1~2- ;;2’11 in Bargmann’s notation.
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Let us note that Al2 in this formula is isomorphic to as we defined it in

section 2. Using both Bargmann’s and Schwinger’s schemes is at the source
of minor notational difficulties.

We define what we should call a « 2j coefficient » were it not for the fact
that it has names already : Herring metric tensor or 1 j coefficient:

and we readily find the well known result :

The Lie algebra L2 has a simple structure: it splits into a direct sum :
SU (2) @ SL (2, R) which is in keeping with an identification of L~ with
SO* (2n). The generators of SU (2) are the T’s and those of SL (2, R)
are the D’s (and T11 + T22).
Applying the techniques of section two, we readily identify the Herring

metric with a SU (2) 3j symbol which is of course well known ! One

verifies that the space 12 is an irreducible representation space for SL (2, R),
of the discrete series type.
Now we note a property which we generalize below. The T algebra

T = A + B (in the notation of section 2) and the J algebra J = + 

of the initially given angular moments are related to each other by an
explicit outer automorphism which we write as follows

where the role of summation indices goes over from (1, 2) to (a, b). The

property we want to note is that the transposition symmetry of the deter-
minant 039412 is an expression of the fact that it is invariant under both the
T algebra and the J algebra.

3.2. - The case n = 3: the Regge symmetries
of the 3 j symbol.

The coupling to the identity representation of three angular momenta
is expressed by the formulae [6]
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where

The polynomials form a basis for the invariant subspace 13. The

polynomials with ki + k2 + k3 = J form a basis for the representa-
tion 2 x J of SU (3). Thus we write : 

.

- J - _ j _

We have yet to remark that ( I and I I are contragradient to
- J -

each other since they can couple to the scalar I, or determinant to
the power J in standard polynomial bases. We then immediately derive
the relation

We can now carry out the identification of the general 3j symbol of SU (2)
with a special 3j symbol of SU (3) as announced in the introduction; this
symbol involves three equivalent completely symmetric representations
of SU (3)

We remind the reader of the significance of certain letters :

and, e. g., [k] stands for the triple (ki k2 k3).
It is easy to check that the 3j symbol of SU(3) at hand possesses the class I

permutation symmetries i. e. it is invariant up to a phase factor under any
permutation of the representations. This is also proved for the 3j symbols
involving three arbitrary equivalent representations in ref. [7]. We verify
this at the beginning of the next subsection.
We can now state our interpretation of the symmetries of the 3j symbol
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of SU (2) : the classe I symmetries of the coefficient as a SU (3) 3j symbol
are its class II symmetries as a SU (2) symbol with the exception of the
transposition symmetry. Conversely its class I symmetries as a SU (2) sym-
bol yield class II symmetries for it as a SU (3) symbol e. g.

Of course these are easily established in a direct way.

3.3. - The transposition symmetry.

We view it as a pure SU (3) problem. Let us consider three completely
symmetrical irreducible representations of SU (3) labeled by the same

Young diagram !. Let us call the corresponding polynomial bases

) -,.) = 03C4k1103C4k2203C4k33 k1! k2! k3! and [2] as before. We are thus work-

ing in F9 in Bargmann’s notation. Then we form a scalar S with them

and our SU (3) 3j symbol.

Let us switch to Schwinger’s notation - *~ etc.

By definition S being a scalar commutes with the following SU (3) algebra

where of course e. g. Aj = We now inquire as before about the
operators made out of the a b c’s etc. which act within the one dimensional

space S. Apart from S itself, there must be the SU (3) invariant scalar
products of the spinors a b c, and the functions thereof. These are e. g.

3

a*b = ~ They generate another U (3) algebra which is isomorphic
«=1

in its structure to the U = A + B + C algebra. The associated outer
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automorphism is just the exchange of (a b c) with (1 2 3). The scalar
S’ isomorphic to S is then :

which is clearly equal to S.
Thus S’ = S is the SU (3) interpretation of Regge’s transposition sym-

metry. Expressed in SU (3) 3j symbols, it reads (a class II symmetry)

It is clear that this property can be trivially carried over to the generalized
SU (n) Wigner coefficient which couples n completely symmetrical repre-
sentations of SU (n) to the identity. Let us also note that Schwinger’s
generating function ref. [2] fits in nicely in the present framework.

3.4. The recursion formulae.

They can be classified into three classes :

(i) the recursion relations which relate 3j coefficients with the same
values of j1j2j3 but different values of the m’s. These have a direct

meaning with respect to SU (2) J = + J(2) + J(3). They are obtained
by writing :

(ii) the recursion formulae which relate 3j symbols with the same value
of J = jl + j2 + j3 but different values of the individual values of jl j2j3.
These have a direct meaning with respect to SU (3). They can be obtained
by commuting the T’s with both sides of

or more in the spirit of invariant theory by writting (in the notations of
the preceding subsection)
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(iii) the recursion relations which involve 3j symbols with different values
of J. They are accounted for easily along the lines of the preceding sub-
section or more simply by applying D*ij to the above formula which expresses

( 2 J[k] ) in terms of ljEj ) .
4. - CONCLUSION

We have fitted the problem of the Regge symmetries into a broader group
theoretic framework. However we did not attempt at all to generalize
our point of view to an arbitrary Lie group. In our opinion the important
property which must be understood at a deeper level is the splitting of the
SU (n) algebra we discussed in section 2.
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APPENDIX

We carry out the identification of our Lie algebra Ln with a skew Hermitean
realization of SO* (2n) [8]. As a 2n x 2n matrix Lie algebra, SO* (2n) is the set
of the matrices

where ex, p, S are real antisymmetric n x n matrices and y is a real symmetric
n x n matrix. The algebra U (n) can be embedded in SO* (2n) through the fol-
lowing isomorphism :

Let us remark that the corresponding representation obtained for the group U (n)
by exponentiation (M - exp t M, t a real parameter) is unitary since S~ = - SU
whereas it is not so for the group SO* (2n) because of (iSp)* = iSp. This is not

surprising since SO* (2n) is non compact. On the contrary the infinite dimensio-
nal representation obtained from the T’s, the D’s and the D*’s is unitary. To

perform the identification we define first skew Hermitean operators :

The new commutation relations then read :

We defer writing those relations involving the s ans a’s and we identify sub-
algebra (4).
According to (1) and (2) we get:

where the elements of the matrices and crik are

Let us now write down the remaining commutators :
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Using ( 1 ), (5), (6) and (7), we get :

The isomorphisms (5) and (8) achieve the identification. For completeness let
us quote from reference (8) the accidental isomorphisms
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