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Poisson brackets of the constraints

in unified field theory

Philippe H. DROZ-VINCENT (1)
Institut Henri Poincare.

Ann. Inst. Henri Poincaré,

Vol. VII, n° 4, 1967,

Section A :

Physique théorique.

ABSTRACT. - When Einstein’s unified relativistic field theory is canoni-
cally formulated, proper dynamical variables are linked by some constraints.
We calculate explicit Poisson Brackets of these constraints, between one
another.

These brackets turn out to be very simple linear combinations of the
constraints.

In a previous work [1] we have tried to adapt canonical methods to
Lagrangians which are linear in the « velocities » (i. e. time derivatives of

the field).
Then we have applied our results to Einstein-Schrodinger unified field

theory.
Of course many other theories could be considered within the frame-

work of linear Lagrangian formalism: Indeed, by a formal increase of the
number of field variables, most well known Lagrangian densities can be
rearranged as linear functions of the velocities. For instance Maxwell

equations can be derived from a Lagrangian which is linear with respect to
the derivatives of variationally independent A~ and F pa.

Besides, Arnowitt, Deser and Misner [2] [3] have many times emphasized
the occurence of a similar situation in General Relativity as a starting point
for canonical investigations, metric and affinity being regarded as indepen-
dent under variation. Nevertheless, unified field theory itself is not much

(1) Laboratoire de Physique Théorique associé au C. N. R. S.
ANN. INST. POINCARÉ, A-VII-4 23



320 PHILIPPE H. DROZ-VINCENT

more complicated, so far as canonical formulation is concerned. As

shown by Einstein, variational principle can be applied to the scalar density

which involves the assymmetric metric and the assymetric affinity r as

independent quantities.
In A the only « velocities » are the time derivatives of the affinity. They

occur linearly, since the Ricci tensor is

As well known [4], variational principle yields field equations

In the paper quoted above [1] we have examinated the canonical struc-
ture of equations (1) (2), assuming that a space-like 3-surface (E) is given.
With respect to evolution in time and existence of Poisson bracket, the

notion of « proper dynamical variable » has been defined [5]. According to
this point of view all the metric quantities are proper dynamical variables,
while two kinds of variables arise from the affinity :

The linear combinations

and

are not proper dynamical variables.
On the contrary, the general formalism stated in [1] leads to exhibit

16 proper dynamical variables

where

and vector nx being the normal vector to surface (E).
In general the length of na is not unity, but the whole canonical formu-

lation is homogeneous with respect to na.
Hence normalization of na does not matter and one may assume that (L)

is a surface x4 - const., n~ _ ~a4 without loss of generality.
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Explicitly equation (3) reads

In other words

Finally, all the properly dynamical part of the affinity is included in these YJLV.
As regards Cauchy problem, equation (1) and the four equations

. 

are evolution equations insuring determination outside (E) of the

16 + 16 = 32 proper dynamic variables and Yap. The improper
variables and have no time derivative involved at all in field equa-
tions (1) (2).
Then one could ask wether the remaining 48 equations

simply express improper quantities Y in terms of proper dynamical variables.
Indeed there is 48 linearly independent quantities in the Y since Y Jlj j

identically vanishes.
But if one tries to solve (7) with respect to improper variables, five of

them (viz. Ykk and Y4’) cannot be calculated [6].
As a result one may exhibit five combinations of (7) where only proper

variables are involved. These five expressions are the only effective cons-
traints of the theory.
They read as follows [6]

with the identical expressions
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according to the notations

The five quantities C~, B, C are purely spatial and properly dynamical
variables. Hence they do have well defined Poisson brackets. But,
although the field equations require Cj, B and C to vanish, in general
Poisson brackets of these constraints with any proper dynamical variable
are not zero.

Such a situation is common when canonical formulation concerns a

theory which is invariant under an infinite dimensional group. This

question has been widely investigated by P. G. Bergmann [7].
Constraints with non zero Poisson brackets seem scarcely to permit any

further quantization. Actually, satisfactory results are possible when all
the Poisson brackets of the constraints among themselves are equal to zero
modulo the constraints (i. e. they are not identically zero but vanish provide
the constraints do, viz. when field equations are satisfied).

This point has been emphasized by P. A. M. Dirac [8].
Now our aim is to check wether our five constraints Cj, B, C exhibit

this nice property. Therefore the brackets

must be calculated. (For compacity of writing Ck, stands for Ck,(x’),
B’ stands for B(x’} and so on.) For this explicit computation we need
the basic Poisson brackets given in I.
As explained above, the properly dynamical part of the field consists

in the quantities and Yap.
In I we have given the fundamental Poisson Brackets :

where

and 5~) (x, x’) is the Dirac vector-scalar density associated with surface (E)
by the defining property
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Actually 5~ is a vectorial density at point x, and is a scalar at point x’.
(About bilocal objects, like tensors or densities and so on, refering to diffe-
rents points, see R. Brehme and B. S. de Witt [9] or A. Lichnerowicz [10]).

The bitensor z"~. is arbitrary except for the condition

With convenient coordinates (E) - (x4 - const.).

Due to well known properties of Dirac’s distribution, does not

actually depends on the choice of With the above special coordinates
one gets

The bi-scalar density

has the following properties

These formulae, being manifestly covariant in the 3-dimensional space (~),
just have to be proved in a special coordinates system. The proof is obvious
when (X) = (x4 - const.).
Then (18) and (19) reduce to

Property (18’) is trivial.
For (19) one just has to write down

Then (19’) comes out.
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Since the constraints are linear in and QIL"pa we have better first

computing the brackets of these expressions. By use of the expansion

it is easy to check the identity

where V is any proper dynamical variable.
Moreover Jacobi identity holds, and also

By use of (21) and (13) one gets

As we have shown in I p. 30 (where eq. 111-47 is meant for p = 1, 2, 3 only)
identity (22) provides

Since no confusion is possible we shall drop the indices and write

By use of (14) and (21) one gets

Only (23), (24’), (25’), (26) are needed in order to achieve computations.
After very tedious calculations (see Appendix) one finds simply

This result is satisfactory since the right-handsides merely reproduce a

trivial combination of the constraints. It may be stated that, according to
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our canonical formulation, the brackets of the constraints with the cons-
traints are equivalent to zero, modulo the constraints themselves.
The simplicity of the brackets we got is encouraging as regards possible

further calculations.

On the other hand, the fine behaviour of the brackets of constraints is
a good test of the canonical procedure we have chosen.

This procedure may be expected to fit with General Relativity as well.
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APPENDIX

1. - COMPUTATION OF { Cj 

By use of (23) only eight terms arise, viz.

But four terms vanish because

And two other ones vanish because

One is left with

Eq. (25’) yields

This term is zero, as proved by summation over cr and T.
Eq. (25’) also yields

and summation over c and r shows that this term too cancels out. Hence finally

2. - COMPUTATION OF { Cj C }

By use of (23), only eight terms arise, but, since 044k,~, = = 0 we have

Therefore one is actually left with six terms. In compact notations

where
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Of course, Aj can be written

Then applying (24’) gives

where

Thus

Then identity (19) permits writing

Let us now calculate Bj.
By applying formula (25’) we get

First of all, two terms in the above expression of Bj vanish because

Then, remembering the properties of ~-function, we may use the identity

which, in special co-ordinates, reduces to the trivial relation

Finally, Bj turns out to have the following expression :

Thus

and coming back to (28) and (29) we find

According to (8) we recognize
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3. - COMPUTATION OF {Cj, B }

As previously, (23) makes one term immediately to vanish.
Separating « mixed » terms which involve 9 and Q from « pure » terms invol-

ving Q only, one gets

with

That is to say

where

Thus, after summing over o-

Therefore, according to (19)

On the other hand Nj must be expressed.
By definition :

These brackets are to be calculated with the help of formula (25)- or equiva-
ently formula (25’).
But it is much more simple to use special co-ordinates, where, remembering

trivial properties of distribution one can give eq. (25) the following form :

Applying (25") to the brackets involved in Nj, and performing a lot of summa-
tions, one finally gets

Then (31), (32) and (33) permit to exhibit expression (8) of Cj in the result:
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4. - COMPUTATION OF { C B }

Direct calculation yields

All the terms involving ~ turn out to vanish because 8; = 0. For the same

reason Q’4’r4’r and also vanish, and one is left with

Using special co-ordinates, one simply finds

That is of course

5. - CO MPUTATION OF ~ B, B’ ~

As above we can separate two kinds of terms and write

where a denotes « mixed » terms, while b is the sum of terms involving Q only.
Explicitly we have

Summation over a and k provides

Also b must be computed. Direct calculation leads to
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Expressing the brackets with the help of (25") yields

i.e. obviously

Since a too has been found equal to zero, coming back to (36) we have

6. - COMPUTATION OF { C, C }

Without expanding the « mixed» brackets (involving both ~ and Q) one sees
from general symmetry properties of Poisson bracket, that these terms cancel
each other pairwise. Thus one is left with

Application of (25") gives

Performing all the summations one finds { C, C’ } = 0.
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