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Finite groups generated by symmetries

M. SIRUGUE and J. C. TROTIN

Ann. Inst. Henri Poincaré,iaIll!. aW 1II. .

Vol. III, nO 2, 196,

Section A :

Physique théorique.

SUMMARY. 2014 In this paper, we study the finite groups generated by sym-
metries in a n-dimensional vector-space over the real, and also the rational -

numbers; we define also a « root pattern », a « simple root system », and
new diagrams including the set of Dynkin diagrams as a subset; the allowed
diagrams are shown; if n &#x3E; 2, two new diagrams are found, when we choose
the field of real numbers ; over the field of rational numbers, the solutions
are precisely the Weyl groups of simple Lie Algebras. These groups can
be used as an essential tool to introduce certain Lie Algebras, and for classi-
fying the irreducible modules [1] [3].

I - SYMMETRIES

Let us denote by V a finite-dimensional vector-space over the field R of
real numbers, or over the field Q of rational numbers. If S is a linear
involutive mapping in V, i. e. satisfying S2 = I (identity), we define the follow-
ing operators :

One can easily verify the relations :

It follows that E+ and E_ are projection operators associated with a
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decomposition of V into a direct sum of subspaces V+ and V-; we have
then:

The elements belonging to V ~ are specified by the condition

Reciprocally, if V is a direct sum of subspaces V+ and V-, the formula (2)
defines an involutive operator. S is a symmetry when V- is one-dimen-
sional ; thus :

DEFINITION. - A symmetry S is a linear involutive operator acting in a
finite-dimensional vector-space V [over the field of real numbers or over
the field of rational numbers], the subset of its fixed points being an hyper-
plane [i. e. a subspace with one dimension less than V].

Let E be a linear mapping from V into the field, such that for a given
element the following relations hold :

Since S(x) - x and if jc e V_, S(x) = S(Àa) == - x = 2014 ~
thus, Vx E V, S(x) = x - the symmetry verifying S(a) _ - a.
From now on, we shall write such a symmetry as S~

II. - ROOT-SYSTEM

Let G be a finite group generated by symmetries acting in V. We suppose
that G is an irreducible set of mappings. If we know a finite set of symme-
tries generating G, we can choose for any symmetry S; among these, and
also among those obtained through products of such generating symmetries,
a vector such that Si = Sa; ; we call A the set of vectors { ± ai }, or « root-
system », satisfying:

c) V is spanned by A.

a) Derives from the definition of the set A; we can take Sa(b) e A since
the following mapping is a symmetry belonging to G, as a product of gene-

(1) i. e. : « for every x belonging to V ».
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rating symmetries : SaSbSa = so, (b) results from a peculiar choice.

Clearly, if Sa(b) = xb, 1, from S; = I; thus (b) is in agreement
with (a). Now, if A only spans a proper subspace of V, it would be, at

least, a vector x # 0, belonging to every hyperplane Hai = 

i is fixed but X runs over the field) ; so, it would be a vector x E n 

and x would be an invariant vector by each S~, and also by the whole

group G, but G is irreducible, and only the null vector is invariant by G.

REMARK. - From (2), we see :

it follows :

Each element g E G can be written as a finite product of symmetries
(since G is finite) ; from (3), we derive :

By a recurrent process it immediately follows : SnSm ... SbSa = A and :

Further, if a is a root with ga = aa, since G is finite, an integer p can be
found with: gpa = apa = a, and necessary À = ± 1. Over the dual-

space V* of V, a positive definite scalar product is defined through the
formula :

if f and g are two linear mappings from V into the field; by duality, a posi-
tive definite scalar product (x I y) is defined onto V, which is an invariant
product by every linear operator conserving the set A, thus [from (4)], by
every g E G.

From now on, consequently, V is an euclidean space and every mapping
of G is orthogonal with respect to this product. G is a subgroup of the
orthogonal group. It will be easier to write down a symmetry acting as :

Or, more briefly:
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III. - SIMPLE ROOTS

The set A being a finite set generating V, we may conclude: 3xo E V
(i. e. xo can be found, belonging to V) such that (xo a) ~ 0 (Va E A). We
shall always denote by E the set of roots « a » such that (xo &#x3E; 0, (- ~)
the set of roots such that (xo [ a)  0. ~ and (- ~) give a partition for A:

V will be equipped with a partial ordering compatible with its structure of
vector-space over the real (or the rational) numbers ; let us write :

[K(E) is the set of linear combinations with coefficients &#x3E; 0, of elements
belonging to ~] ; thus the positive roots are the roots which belong to E.

Let us consider the subsets Q c E such that :

(the inclusion clearly suffices) and define the system of simple roots as

This is a rather direct (but difficult to handle), definition of II ; let us give
two remarks which characterize the elements of II.

REMARK. - If xi ~ 03A3 and xi ~ K(03A3 - xi), ((E - Xi) is the set S with x;
missing) then x; E n.

It suffices to prove that if it exists an Q such that Q, K(S~) ~ K( ~) ;
actually, if Q

and

which is not equal to since K( ~ - Remark Xj E II implies
K~ ~ - x~).

If not, the set E - Xi = Q generates K(03A3) and does not contain xi so
as n = II n Q, there is a contradiction.

It is necessary to prove that n is not empty, or equivalently that there
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exist roots such that xi ~ K(S 2014 this is clear, according to the following
remark :

if

then

According to the fact that (x xo) &#x3E; 0 for every x E K(~)

so

and

So if every x; E ~ was such that x E K(~ - Xi) one could construct a
sequence of 03A9i, 01 == S 2014 xi, 03A92 = 03A91 - x2, ... , Qp = C, each of them
generating K(~), which is absurd.
- It is clear then that from the previous remarks ,

and we shall derive with the help of a lemma that II is in fact a basis for V.

LEMMA I. - a e A cannot be written as with

Indeed, we can suppose a » 0; then, one would get

and then the following relation would be deduced :
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Such a system is not possible (since x, &#x3E; 0 0).
If 03BBi &#x3E; it would follow:

But this relation, written as :

shows that x, would not belong to M.
Now if OGi, x/ e II, x~ OCj :

and from condition (b) for root-systems, E A; from the lemma I we
conclude that

and:

Now we are able to prove the linear independence of the ocis (over the
corresponding field R or Q according to our primitive choice of the field).
If the «js were linearly dependent, one could write Evkak = 0 (vk # 0,

k

necessarily some vgs would be &#x3E; 0, others  0); one could deduce, consider-

ing separately these terms :

(with InJ==~;~,~&#x3E;0 and the families I, J of indices I, j verifying I,
J # 0).

Using (ai x,)  0, one could obtain from :

contrary to &#x3E; 0 (it makes no difference between R and Q).
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LEMMA II. 2014 V(w, x,), (X E ~, x, E II (with x 7~ a ), then E. We

can write :

« is not proportional to the numbers Àj (./ 7~) are &#x3E; 0 and at least one
among them 03BBj0 ~ 0. ~ 0394 and its coefficients are all together &#x3E; 0,
or all together  0; Àjo &#x3E; 0, thus all are &#x3E; 0 and E E.

= - «i E (- ~), there is only one positive root, «;, such that its

image through Sai belongs to (- L).

IV. - TOTAL ORDERING

E is always considered as a fixed set; with respect to the basis («i, «2, ... ,«n)
we consider the lexicographic ordering, noticed as x &#x3E; y (we decide
«1 &#x3E; «2 ... &#x3E; «n) ; it is a total ordering over V compatible with its structure
of vector-space over R or over Q if the elements x &#x3E; 0 are those written as

If x » y then x &#x3E; y, and if a e A with a &#x3E; 0, then a E ~.

LEMMA III. - Yx E K(~) (= K(II)), E II such that x &#x3E; 

(x # 0). If, V«; E II, (x 0, one could deduce 
’

it would follow x = 0; thus Xio can be found, such that (x I OCio) &#x3E; 0 ; from

Fundamental theorem. - Every root can be written as SIS; ... Sk«l,
where (1..;, (1..j, ..., «k, «i are simple roots [S = SC(i’ Sj - SC(j’ and so on ... ] :

Let us denote by W the set of roots which have the form S~Sj ... 
(these are roots from property (b) of root-systems) ; since = (1..1, x/ E W
and every simple root belongs to W; further, S,W c: If « is a posi-
tive root, let us suppose that all the positive roots p satisfying « &#x3E; p, belong
to the set W ; «; can be found (from lemma III) such that « (Xi,
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from lemma II, we deduce S;« » 0, thus S,x E W, and « = W too;
if « = «;, then « E W (since M c= W): in both cases « E W and «n is a simple
root belonging to W and satisfying « &#x3E; «n (V Cl E ~), so that we see by a
recurrent process that W =~ S; further, if « E W, (- a) E W because if

Thus W &#x3E; (- ~) and we conclude W = A.
From the formula gSexg-l = (Vg E G), which is an immediate gene-

ralization of SaSbSa = SSa(b), we see that for every root rJ.. = SiSj ... Skal,
the corresponding symmetry is 

’

Sa = (SiSj ... ... Sk)-l = S;Sj ... SkSlSk ... S/S,.
And every symmetry Sa is obtained through products of symmetries Sex

corresponding to simple roots only.

V. - CLASSIFICATION

Now, in order to obtain G, we must consider all possible sets of roots,
or all possible corresponding sets of simple roots ; if S and Sj are two sym-
metries, H~ and H jthe corresponding fixed hyperplanes, Ht n Hj is a sub-
space of two dimensions less than V, which is left fixed by the mapping 
V is the direct sum V = (Hi n Hj) + where rij is a plane, over
which SiSj induces a rotation; the rotation angle is necessary commensurable
with 7c, since the order of SiSj is finite. Further, there are at least two roots
in a, b, the angle between them being precisely the rotation angle, which

can be written as 2014 , - being an irreducible fraction; we can now, in the
m m g ’ ’

rij-plane, construct a subsystem of roots, departing from both the roots a, b,
constructing the roots Sa(b) and Sb(a), then the new ones obtained by sym-
metries of these roots, through each other, and so on. We obtain a sub-

system as the following one :
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Looking at such a system, since every positive root must be a linear
combination of simple roots with positive coefficients, we see that the two
simple roots which generate the system, are in the following position :

the angle between them is 2014. Thus, between any system of two simple
m

roots, ex, and rJ.j, the angle is 7u 2014 2014 = 6~ where nij is an integer. The
n,y

simple roots can be replaced with unit length vectors ai, ay, and we have to

search for allowable configurations defined by cos2 aij = cos2 i5 where is
nij

an integer &#x3E; 2 (cos eij  0).
It is useful to consider 4(a; = 4 cos2 2014, and to define a diagram for

any one allowable configuration, as a collection of points = 1, 2, ..., n,
and lines connecting these according to the rule : ui and uj are not connected
if (a; I aj) = 0 and ui and Uj are connected by 4(a; = 1, 2 or 3 lines
when this equality holds [i. e. respectively when nij = 3,4 or 6] ; the case
nij = 2 corresponds to (a; = 0. If is not an integer but
verifies :

p an integer, u~ and Uj will be connected with p lines, together with another
dashed line. For example, if ni, = 5, 2  4(a;  3, the diagram is

Thus, when n~, = 3,4 or 6, we recognize the Dynkin diagrams, and the
corresponding groups are the well-known Weyl groups of simple Lie Algebras.
But, otherwise, if n = 2, all values = 2, 3, 4 ... are solutions, and if
n &#x3E; 2, there are only two solutions, because, looking at connected diagrams,
one sees :

1 ~ If n is the number of vertices (points) of a diagram, then the number
of pairs of connected points is less than n.
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PROOF. - Let

If (a; I a;) ~ 0, then 2(at I a;)  - 1 . 

Hence the inequality shows that the number of pairs a~, OJ with (a 0
is less than n.

20 A diagram contains no cycles (a cycle is a sequence of points Ub ..., uk
such that ui is connected to i  k - 1 and uk connected to ui).

PROOF. - The subset forming a cycle violates the former condition.

30 The number of non-dashed lines (counting multiplicities) issuing from a
vertex is less than four.
PROOF. - Let u be a vertex, vi, V2, ..., vk the vertices connected to u.

No two v; are connected since there are no cycles. Hence (v = 0, i # j
(now for simplicity, we denote in the same way simple roots and vertices).
In the space spanned by u and the Vi we can choose a vector vo such that
(vo = 1 and vo, vi, ..., vk are mutually orthogonal. Since u and the

v1, i &#x3E; l, are linearly independent, u is not orthogonal to vo and so (u [ 0.

Since

Hence

Since 4(u v~)~ is the number of non-dashed lines connecting u and vl
whenever there is no dashed line between them, or otherwise is greater than
this number, the result follows.

4° With any dashed line, there are at least two non-dashed lines issuing

from a vertex the first case, nij increasing, is nij = 5, when ~~; = 7c 2014 .~.
It readily follows that when the dimension of V is n &#x3E; 3, and nij  7,

there is no solution because the corresponding diagrams (we speak about
connected diagrams) are such that there are at least four non-dashed lines

issuing from one vertex :
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5° Let IT be an allowable configuration and let Vb v2, ..., vk be vectors of 03A0
such that the corresponding points of the diagram form a simple chain in
the sense that each one is connected to the next by a single line. Let H’ be
the collection of vectors of IT which are not in the simple chain Vb ..., vk

k

together with the vector v = vt; then II’ is an allowable configuration :
1

PROOF. We have 2(v~ ~ vl+I) == -.1, for i = 1, 2, ..., k - I . Hence

Since there are no cycles (v; = 0 if i  j, unless j = i + 1. Hence

and v is a unit vector.

Now let u E M, u # v;. Then u is connected with at most one of the v;,

say vj, since there are no cycles. Then

as required; the diagram of FT is obtained from that of II by shrinking the
simple chain to a point ; thus we replace all the vertices by the single vertex v
and we join this to any u E II, u # v; by the total number of non-dashed lines
connecting u to any one of the vj in the original diagram; we get the same
result for dashed lines, but always one dashed line will connect two vertices.
Application of this to the following graphs :
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reduces these respectively to :

But these last ones are not allowable (four non-dashed lines issuing from
a vertex).
The possibilities are among the following type of diagrams :

(i. e. there is, on each side, a finite chain).
Consider the peculiar one :

And let us write

Since

we have :
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And

By Schwarz inequality :

p and q are integers &#x3E; 1; if n &#x3E; 3, q, for instance, is &#x3E; 1. The solutions
are:

corresponding to the following diagrams :

When the field is R, the field of real numbers, it is easy to see that these
two diagrams give actual solutions since the corresponding euclidean systems
can be constructed.

When the field is Q, the field of rational numbers, one can multiply the
non-simple roots by integer multipliers in such a way that the new ones can
be written as :

with m; integers &#x3E; 0, «; E IT; now, these are considered as new non-simple
roots, and the condition :

shows that necessarily, the scalars - ~!~ now on, we drop the~!~7 ’

(( prime )) for brevity) arc integers. More generally, the scalars - 2 (03B1 | 03B2)
(P)P)
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(Vx, ~ E E) are necessarily integers, since every root can be considered as
simple, according to the choice of xo, and E. From :

We deduce that the scalars 2014 ’ ’ ’ are integers verifying:

So we find precisely as solutions all Weyl groups of simple Lie Algebras,
whatever the dimension of V may be.
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