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Relativistic theory of angular correlations
in successive two-body decays

of unstable particles
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Ann. Inst. Henri Poincaré,

Vol. II, nO 2, 1965,

Section A :

Physique théorique.

ABSTRACT. - Relations for the study of angular correlations in successive
two-body decay processes are derived from general relativistic invariance
principles. The description of arbitrary spin states is discussed in terms

of the density matrix formalism. Use is made of multipole expansion
techniques derived from the basic transformation laws of physical states
and operators.

I. 2014 INTRODUCTION

Evidence for the existence of new particles and resonance states has been
accumulating during the last few years. The study of angular correlations
in their decay products has been providing information on their spin values
and parities, and also on the plausible dynamical mechanisms for the pro-
duction reaction processes. The theoretical description of these studies
has been discussed in the literature in relation to the particular phenomena
under consideration [7]. Usually, they consist in deriving the relevant
kinematical relations in a particular frame of reference. The underlying
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principle of these techniques is Relativistic Invariance in Quantum Mecha..
nics [2]. In this paper we derive general formulae for the study of angular
correlations in successive two-body decay processes. We show how they
follow from the basic transformation laws of physical states and operators.
The relations obtained are formulated with respect to a frame-tetrad (see
Section II A) which can be chosen arbitrarily. Thus the covariance of

our equations is assured and can be shown explicitly at any step of a compu-
tation (see for example the derivation of a covariant density matrix for
a particle of arbitrary spin in Section II C.) The topics discussed have
been summarized at the beginning of each section. We refer to Appendix I
for notations and a summary of formulae necessary for the derivation of

several equations in the text.

II. - RELATIVISTIC DESCRIPTION
OF PARTICLES WITH ARBITRARY SPIN

Let us call X a certain resonance state or a particle produced in some
reaction process

The sample of X’s produced in ( 1 ) has a spin distribution which is conve-
niently characterized by the use of the density matrix formalism [3]. In

this section we wish to summarize the essential features of a relativistic

description of this formalism [4].

A. - Frames of reference.

We call tetrad a set of four 4-vectors { t, n~l~ ~ i = 1, 2, 3, such that (see
Appendix I for notations)

and

In what follows we shall refer all the kinematics to a specific frame-
tetrad { t, n }, i. e., if p denotes the 4-vector energy momentum of a par-
ticle, say X in (1), then
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will be the energy and momentum components of p in this frame-tetrad.
For example, if t is chosen along p, i. e., t = p/m, where m denotes the mass
of X, then we are in the rest-frame of X. We shall choose one of the axes 

say n(3) - n, as the direction of quantization of the spin of the X in its
rest-frame. If t is taken along another direction (corresponding to the
laboratory system, or to the C. M. system in (1)). we shall choose the quan-
tization axis of the spin of the X along the 4-vector s (s2 = - 1, s . p = 0)
obtained from n by the pure Lorentz transformation which brings t upon
p/m = u and leaves invariant the 2-plane orthogonal to t and u,

with [5]

Explicitly

B. - One-particle states.

We shall use Dirac’s notation for the state of a particle of energy-
momentum p, spin j, and magnetic quantum number À = - j, ... , j, defined
as the spin-projection along s (see Eq. (4)). The states are eigensta-
tes of the energy-momentum operator plL, corresponding to the eigen-
value p’~,

Let Wp denote the restriction of the polarization operator [6] to the eigen-
states of P . Then

and

The states ~ yX ) are normalized as follows

with
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The set of vectors ~ 7~ ) with x = - j, ..., j defines a basis in the repre-
sentation space of a particle of mass m # 0 and spin j.

For a given Poincaré transformation [7] (a, A), the induced transforma-
tion of the vector basis is performed by a unitary operator U(a, A) according
to the relation [8]

Here, R(p, A) is a rotation of the little group of t (1. g. of t) defined thus

and A)]À’À the matrix elements of the irreducible representation
of the rotation group. From the set of A transformations let us consider

- /~

those A’s belonging to the 1. g. of t, i. e., such that At = t. According to (12)
N ~

we can identify R(p, A) and A if and only if

This means that for a given p, once is chosen (for example as in (5)),
where ~1’ denotes a specific transformation belonging to the 1. g.

of t, must be fixed according to (13), i. e.,

Then

and hence relation (13) holds for all the vectors A’p/m. Therefore, when
restricted to rotations R of the 1. g. of t, the transformation law (11) can
be simply written

The Hilbert space of the states consists of the vectors

with the scalar product defined, according to (10), thus

The expressions



91ANGULAR CORRELATIONS IN TWO-BODY DECAYS

are the (2j + 1) spin-components of the wave-function describing a particle
of energy-momentum p and spin j. Their transformation law, first derived

by Wigner [9], reads

where Q(p, A) are the unitary (2j + 1) by (2j + 1) matrices

of the rotation group.

C. - Spin density matrix.

Consider a sample of X’s produced in ( 1 ), with fixed energy-momen-
tum p. This is described by an incoherent mixture of (2j + 1) orthogonal
states of pure polarization, each with probability cn (0  cn  1).
This mixture can be characterized by the density matrix operator

Let us call the matrix elements of pcp) in the basis defined in the
last section. According to (18) their transformation law is (see AI.1)

The product of representations appearing in (20) is equivalent to the direct
sum of irreducible representations A)], with 0  L  2j.
Therefore, it will be convenient to express p(/?) as a sum of irreducible
tensor operators [10] (0  L  2j, - L  M  L) i. e., such that

Using the normalization

the density matrix operator can be expanded thus
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where

are the so called multipole-parameters of the density matrix. The hermi-
ticity of implies

and tr p(p) = 1 requires = 1. The magnitudes of the non zero
t~~~ (P) are further restricted by the fact that is positive definite. Thus
e. g., tr p2(p) ~ tr p(p), leads to the condition

In the basis defined by the one-particle states ~ p, jx ~, the matrix ele-
ments T~ (p)~~ are 3 - j symbol coefficients (see AI. 2). This follows
from the theorem of Wigner-Eckart

and the normalization defined in (22). Thus

In this representation, the multipole-parameters are given by

The components satisfy the restrictions

The operators (p) can be explicitly constructed in the following way.
Let us consider the spin operator



93ANGULAR CORRELATIONS IN TWO-BODY DECAYS

..... 

where s denotes the three 4-vectors obtained from the space-like compo-
-+

nents n of the frame-tetrad (see Eq. (2)) by the pure Lorentz transfor-
mation defined in (5),

From the operator p we form the spherical harmonic Y (Sp), completely
symmetrized with respect to the components of p. Then

The expansion of p(/?) in terms of these operators can be rearranged in a
completely covariant way [11] ] (ai = 0, 1,2, 3 for 1  i  L)

where W; denote the components of the polarization 4-vector operator,
and [12] .

The properties of the pseudo-tensors follow from their definition :

a ) they are completely symmetric and their components are real ;
b) they are orthogonal to the energy-momentum 4-vector p,

with

Relation d) gives the degree of polarization 2L - polar :
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For L = 1, i. e., the ordinary degree of polarization, we get the following
upper-bound

Sometimes it is convenient to describe the polarization in terms of the so
-+ ~

called Stokes-vector 03BE(p), such that 0  §( p)2 1 . According to the upper-
-+

bound found for 8(1), the relation between E(p) and the multipole-para-
meters t(1)M(p) is

III. - RELATIVISTIC DESCRIPTION
OF TWO-BODY DECAYS

In this section we discuss the kinematical properties of the scattering
amplitude of the process

where an unstable particle X of energy-momentum p and spin j decays into
a particle Y of energy-momentum pi and spin s, and a spinless particle y
of energy-momentum P2. We shall use the shorthand notation

for the scattering-amplitude in (43). Here À and y, the magnetic quantum
numbers of particles X and Y, are defined as follows

and

The transformations and are pure Lorentz transformations
defined as in (5). The Lorentz transformation which brings p/m upon p1/m1
is defined thus
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i. e., we first bring p/m to rest and then upon Note that this trans..

formation is such that

i. e., it also transforms the corresponding quantization axis. In what

follows we derive the multipole expansion of the scattering amplitude
in (43), and the decay angular distribution of Y’s.

A. - Multipole expansion of the scattering amplitude.

From (14) and (44), and using (AI. 1) we can derive the transformation
of the matrix elements of the scattering-amplitude, induced by a rotation R
of the 1. g. of t,

Let us multiply both sides of (49) AI. 2) and take summation

over  and x. Using (AI. 3) we are led to the relation (summation over y, À
and m, I, À)

If we call S(b(Pb p) the linear combination (summation over X and [1.)

then relation (50) tells us that the functions p) with m = - /, ..., 1,
transform under rotations like the complex conjugate spherical harmo-
nics Moreover, the kinematical dependence of each S’8lPh p) can
be expressed in terms of two angular parameters which we choose as the
components of the unit 3-vector [13]
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where

Consider now the invariant quantities (invariant with respect to the
rotations of the 1. g. of t)

where /=y2014 ~~2014~+1, ... , j + s is the orbital angular momentum.
This we shall call the lth multipole-amplitude of the process (43). Accor-

ding to this definition and using the inverse relation of (51 ), we can expand
the scattering-amplitude in terms of multipole-amplitudes as follows

B. - Decay angular distribution.

The angular distribution of Y’s in the decay (43) is defined thus

where tr means trace in the polarization space. From (55), (23) and (28),
and after some algebraic manipulations where use of (AI.4) and (AI.5)
is made, the following expression for I(pI, p) can be derived

N

where 1 and 1 take the values: j - s, j - s + 1, ...,y+ s ; and 0  L  2j.
N

If parity is conserved in (43) then 1-~- 1 must be even and hence only terms
with even L will be relevant in (57).



97ANGULAR CORRELATIONS IN TWO-BODY DECAYS

IV. - ANGULAR CORRELATIONS

Consider now the set of reactions

and assume that particle Z has energy-momentum p~ and spin k, and that z
is a spinless particle of energy-momentum p4. The techniques set down
in the last section can here be likewise applied to derive the angular distri-
bution of Z’s. However, this requires an explicit knowledge of the density
matrix of Y’s. In this section we derive the general expression for the
angular dependence of the multipole-parameters which characterize the
sample of Y’s. This provides the necessary information for the study of
any angular correlation problem. In particular we derive the angular
dependence of the longitudinal polarization of Y’s, with respect to a frame-
tetrad, and the connection between the averaged multipole-parameters of
the sample of Y’s and those of X’s. Some specific examples are discussed.

A. - Angular dependence of multipole parameters.

The density matrix of Y’s produced in the decay (43) is

and according to (29) the associated multipole parameters are

with 0  L’  2s. 
’

Making use of the multipole expansions for p(p) and p), as given
in (23) and (28), and (55) respectively, the angular dependence of p)
reads
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Here, we first use (AI . 5) to express the angular dependence in a spherical
harmonic pl)] alone, and next the following relation (see e. g.
ref. [20])

This expression can be further condensed introducing a 9 - j symbol
(see (AI.6)). We are thus led to the rather compact formula

This relation gives the angular dependence of the multipole-parameters
of Y’s in terms of the multipole-amplitudes of the decay (43) and the multi-
pole-parameters of the density matrix describing the sample of X’s.

B. - Angular dependence of the Stokes-vector.

The Stokes-vector (see (42)) describing the polarization of Y’s produced
in a given direction e(p, pl), is obtained from the expression given in (63)
for L’ = 1,

As a particular case, the angular dependence of the longitudinal compo-
nent, p). e~p, p1), with respect to a frame-tetrad { t, n } (see equa-
tions (2)), can be easily derived. Using (AI. 5) we get
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This expression reduces to a particularly simple form when s = 1 /2 [14].
-

Then /, / =7 i{i 1/2. If we call oc the asymmetry parameter

the final result is

C. - Averages of multipole parameters.

Let us call  p) ~ the average of the multipole-parameters of Y’s
over their angular distribution

These averages can be easily evaluated using the general expression given
in (63). For Y’s produced from a sample of X’s with fixed energy-momen-
tum p, ,
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Using (AI. 7) and the explicit values of the 3 - j symbols appearing in (69),
we finally get

This relation gives the proportionality coefficient between averages of the
multipole-parameters of Y’s and the corresponding multipole-parameters
of X’s. As a particular case of (70), when L = 1, we get

Let us choose the axis of quantization along the normal to the scattering
3-plane of the reaction (1). Then, if 8y and ~x denote the component along
this axis of the Stokes-vector of Y’s and X’s, from (42) and (71) it follows
that

The application of the preceding relation in the determination of the
spin-parity of strange baryonic resonances has recently been discussed by
one of us [15] : assume that (43) is a strong decay and particle Y has spin 1/2
(e. g. [16] Y* ( 1 660) - A + 7t; Yo( 1 815) ~ ~+ + 7t-); then it follows

from (72) that

and

In reference (15) it is discussed how ( ðy &#x3E; and 8x can be obtained from the
experimental data. Then for a sufficiently high number of events, rela-

tion (73) or (74) leads to the spin-parity determination of the X.
As an application of the restriction given in (30) we would like to

comment on the resonance at 1 250 MeV, called f °. At present
there is no conclusive assignment for its spin value, although recent experi-
mental data [17] indicate that the f° is an isotopic singlet ~I = 0) and,
therefore, that its spin j is even. The experimental data on the decay angular
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distribution of the f0 indicate [18] that j &#x3E; 2. Let us consider the quantities

where 03C0 is a unit vector along the momentum of one of the decay 1t’S in

the rest system of the f °, and  the average of the spherical har-

monic over the angular distribution of the ~° decay. From the

restriction stated in (30) it follows that

For example :

These upper-bounds can be used to eliminate some of the possible values of
the spin of the f °.

Further applications of the formalism presented in this paper are at present
being studied (see e. g., ref. [19]).



102 CLAUDE HENRY AND EDUARDO DE RAFAEL

APPENDIX I

In this appendix we define our notations and collect a number of formulae
which are necessary for the derivation of several relations stated in the text. We
adopt the definitions and conventions of Wigner’s book on Group Theory [20]
with two exceptions :

1) complex conjugation is indicated by a bar (e. g., is the conjugate of t~M~);
2) the (Hermitian) adjoint of an operator or a matrix p is denoted by p*.
We use the scalar product notation I.n = gaat«na with :

~03BB 03BD03C1 is the totally antisymmetric pseudo tensor of the fourth rank with ~0123 = 1.
Summation is understood when the same indices appear co-and contravariantly
(The same applies to the 3 - j symbols).

Summary of formul0153

The connection between co-and contravariant components of the 3 - j symbols is :

(summation over M and L)
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