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Section A :

Physique theorique.

Recently Sakita [1], Gursey and Radicati [2] [4] and Pais [3] [4] have
proposed a generalization of Wigner supermultiplet theory [5] for the

nucleus to baryons and mesons [6]. This raises the question: what is a
relativistic supermultiplet theory ? In this paper we shall consider only
the problem of defining the invariance group G for such a theory [7].
We denote by P the connected Poincaré group. It is the semi-direct

product P = T X L where T is the translation group and L is the homo-
geneous Lorentz group.

CONDITION 1. - The invariance group G of a relativistic theory contains P.
We shall not discuss here the discrete invariance P, C, T, so we shall add.

CONDITION 2. - G is a connected topological group (with P as topolo-
gical subgroup) [8].

Invariance under G is considered as the largest symmetry for strong
coupling physics [1] ] [2] [3] [4]. The particles of a supermultiplet have

(*) Work performed under the auspices of the U. S. Atomic Energy Commission.
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the same mass and for a given energy momentum p, all possible states
(spin, charges, etc.) of these particles form a finite dimensional Hilbert
space which is the space of an irreducible unitary representation of a compact
group Sp, the « little group » of p. From the classical Wigner analysis it
is easy to translate this as conditions on G.

CONDITION 3. - The translation group T is invariant subgroup of G.
The action of G on T (by its inner automorphisms) preserves the Minkowski
metric and the little group (mathematicians say stabiliser or isotopy group)
in G/T of a time-like translation a E T is a compact group S.

THEOREM. - If a group G satisfies condition 1, 2 and 3, then G/T is a
direct product of H x L.

Pr-oof :

The condition 3 implies that for every g E G, a (E T) and its transformed
g(a) = gag-1 have same Minkowski length : a . a = g(a) . g(a). In the

dual of T [i. e., the four dimensional vector space of energy momentum]
the orbits of G are the connected sheets of mass hyperboloid. Denote f:
G ~ Aut T, the homomorphism of G which describes its action, by inner
automorphisms, on its invariant subgroup T. It is easy to prove [9] that
the connected group of continuous automorphisms of G which preserves
the Minkowski metric is L. So the image of f is L: Im f = L. Since T

is abelian T  K = Ker f, the kernel of f, and f is factorized into g o p,
where p : G ~ G/T and g : L. The restriction of g to the subgroup
L = PIT c G/T, is an identity transformation. By definition of the semi-
direct product, therefore, G/T is the semi-direct product H x L where
H = Ker g = K/T. Furthermore, by definition of H = Ker g, H is an
invariant subgroup of every stabilizer (little group) S for any a. For a

time-like a, Sa is compact, this implies that its invariant subgroup H is
compact, and from a theorem of Iwasawa [10] H compact and G/T connected
implies that it is a central extension of kernel H. As we have seen, it
is also the semi-direct product H x L. Hence it is a direct product :

The proof of the theorem also gives conditions on the little group S,
for a time-like translation. Indeed it must be isomorphic to the direct
product H Q9 R where R is the three dimensional rotation group. Of

course, this excludes SU(6) or any simple Lie group for S.
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A possible way to have a relativistic theory with supermultiplets of

particles classified by irreducible unitary representation of SU(6), is to
find a (connected Lie) group G with irreducible unitary representations
characterized by m &#x3E; 0 and those of SU(6), and such that G &#x3E; P,
the covering of the Poincaré group. We proceed now to build such a

group G.

Among all subgroups of the linear group with enumerable dimension
let us look for the smallest group H such that :

where SU(2) is the covering of R and SL(2, C) the covering of L. The

smallest group H is the intersection of all groups which satisfy (2). SL(6, C)
is one of them, so SU(6) c H c SL(6, C). But SU(6) is maximal subgroup
of SL(6, C); this implies: H = SL(6, C). The elements x E H are

6x6 matrices with determinant 1. They can be decomposed in a unique way
into the product x = hu where h is a 6 x 6 hermitian positive matrix of
determinant 1 and u is a 6 X 6 unitary matrix with determinant 1. The

matrices u generates SU(6) and the set { h ~ of matrices h is the homogenous
space SL(6, C)/SU(6). The smallest Lie group generated by {/x } is the

additive group of the 6 X 6 hermitian matrices ; it is the 36 real parameter
simply connected abelian Lie group. We shall denote it 

The group G is the semi-direct product of SL(6, C) by T 36 with the
action: h - xhx* (indeed this contains the action of SL(2, C) on T 4,
hence G D P). The orbit of G on T 36 are characterized by det h and the sign
of the eigenvalues. If h &#x3E; 0, one can take as representative h = ml. Its

little group is that of the matrices with determinant 1 such that

xhx* = mxx* = m1; it is SU(6).
Hence the smallest connected Lie group which contains P and has unitary

irreducible linear representations characterized by : m &#x3E; 0 and the unitary
representations of SU(6), is the group G we just defined. It is a 106 para-
meter Lie group [11]. As we shall explain elsewhere the use of such G as
invariance group for a relativistic supermultiplet theory of elementary
particle is possible, but we do not like it.
One of us (L. M.) has benefitted very much from a two-month visit to

the Argonne National Laboratory, where this work was done.
We would like to thank Dr. W. D. McGlinn for his reading of the

manuscript.
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