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Galois properties of linear differential equations (*)

MARIUS VAN DER PUT (1)

Dedicated to Jean Écalle for the anniversary of his transseries.

ABSTRACT. - The theme of this paper is rationality, field of definition
and descent for linear differential equations over some differential field.
The results extend and supplement [H-P,Ho-P,P]. The questions and re-
sults are mainly of an algebraic nature, with the exception of differential
equations over fields of convergent Laurent series.

RÉSUMÉ. - Le thème de ce papier est rationnalité, corps de définition et
descent pour des équations différentielles linéaires sur un corps différentiel.
Les résultats étendent et complètent [H-P,Ho-P,P]. Les questions et les
résultats sont pour la plupart de nature algébrique à l’exception des
équations différentielles sur des corps de séries de Laurent convergentes.

Annales de la Faculté des Sciences de Toulouse Vol. XIII, n° 3, 2004
]

1. Introduction

Let k be a differential field of characteristic 0. Its field of constants will b(
denoted by Ck. Let Ck denote the algebraic closure of Ck and put k = Ckk
The skew ring of differential operators over k is denoted by k[~]. A moni(
differential operator L E k[~] may factor in [~] as a product L 1 L2 of moni(
operators such that Li, L2 belong to k’[~] for some finite extension k’ of k
contained in k. The theme of this paper is to determine the fields k’ whicl
are involved in these factorizations. The translation of this question in term:
of differential modules can be phrased as follows:

Let M denote the differential module over k corresponding to L, i.e.

M = k[~]/k[~]L. Put M = k 0k M. A submodule N C M will be callec
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rational over a field k’ with k C k’ C k if there exists a submodule N’ of
k’ 0k M such that N = k ~k’ N’.

A related notion is the following. A differential module A over (say) k
descends to a field k’ (with say, k C k’ C k) if there exists a differential
module B over k’ and an isomorphism A ~ k ~k’ B.

Let M be a differential module over k and consider a proper submodule
N (if any) of M. Over which field k’ is N rational and for which fields k’
does N descend to k’?

We make some observations. The module M is equal to k[~]/k[~]L. The
submodules N of M are in 1-1 correspondence with the monic right hand
factors L2 E k[a] of L. This correspondence is given by L2 k[~]L2/k[~]L.
Let N C M correspond to L2. The group Gal(k/k) = Gal(Ck/Ck) acts in
an obvious way on M and on k[~]. For 03C3 E Gal(k/k) one has that 03C3(N)
corresponds to cr(L2). In particular, 03C3(N) = N if and only if 03C3(L2) =
L2. Furthermore, N is rational over k’ if and only if 03C3(N) = N for all
03C3 E Gal(k/k’). In particular, let H denote the open subgroup of Gal(k/k)
consisting of the a with 03C3(N) = N. The fixed field k H is the smallest

field of rationality for N. We will call this field the field of definition of N.
The above shows that the given translation from differential operators to
differential modules is correct.

An important notion, introduced in [Ho-P], is that of a skew differential
field F over k. This will mean here the following: F is a skew field containing
k, k lies in the center of F, the dimension of F over k is finite, and F has a
differentiation which extends the differentiation of k. A diff erential module
M over F is a finite dimensional left vector space over F, provided with an
additive map ~ : M -4 M satisfying ~(fm) = f a(m) + f’m for all f E F
and m E M. By restriction of scalars, M is also a differential module over k.
Using skew differential fields over k one can produce in this way differential
modules over k with rather special properties.

The above questions are studied in [H-P] and in recent preprints [Ho-P]
and [P]. Here we review some of the material (from a somewhat different
point of view) and provide some new complementary results, in particular
for differential fields of convergent Laurent series.

2. Rationality for submodules

The results of this section extend and correct [H-P], Corollary 4.2 part
2. We note that a mistake in this corollary (namely 2d should be was
discovered by Mark van Hoeij.
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THEOREM 2.1. - Let M be a differential module over k of dimension n.
Let N c M be an irreducible submodule and N ~ 0, M. Suppose that there
is no submodule A ~ N with A ~ N.

(a) The field of definition k’ of N satisfies [k’ : k]  n dim N.

(b) Suppose moreover that M is irreducible. Then C := Endk[~] (M) is a
finite field extension of Ck. For a suitable Ck-linear embedding C C Ck C k
one has k’ = Ck. Let Z denote M, regarded as differential module over k’.
Then k ~k’ Z ~ N.

~ 

Proof. - (a) The sum of all 03C3(N), with 03C3 C Gal(k/k), is a submodule
N that is rational over k. Let H be the open subgroup of finite index
r of Gal(k/k) consisting of the elements a with 03C3(N) = N. Then N is
rational over the fixed field k’ of H and [k’ : k] - r. Let al,... , ar denote
representatives of Gal(k/k)/H with ul = 1. Then 7V is the sum of the 03C3i(N)
for i = 1, ... , r. This sum is direct since 03C3i(N) ~ aj (N) for i j. Hence
[k’ : k]  dim N ’ 

(b) M = ol (N) ~ ··· ~ 03C3r(N) since M is irreducible. E := Endk[~](M) is
the product of r copies of Ck, since the 03C3i(N) are irreducible and pairwise
non-isomorphic. Put C := Endk[8] (M). Then Ck 0Ck C ~ E (by [Ho-P],
lemma 2.3). Since M is irreducible one has that C is a commutative field
and [C : Ck] == r. Let Z denote M, considered as differential module over
Ck. Then

Furthermore, k~kkC is isomorphic to the product of r copies of k. Therefore
M is the direct sum of k~kC Z taken over all k-linear embeddings of kC into
k. For the embedding of kC into k, which is induced from the embedding
of C into the first factor of the product Ck x ... x Ck, one has 15. ~kC Z ~
03C31(N) = N. Finally, one easily sees that C = kH and thus Ck = k H is

the field of definition of N. D

Examples 2.2. - Example for Theorem 2.1 part (b). For À E one de-
fines the 1-dimensional differential module E(03BB) := Q(x)ex over Q(x) by
8e,B == 03BB xe03BB. Let 03BB1,..., Àr be all solutions in Q of some irreducible poly-
nomial over Q. Suppose that Ài - 03BBj ~ Z for i j. On the differential
module A := E(03BB1) ~ ··· EBE(Àr) over Q(x) one defines an action of Gai :=
Gal(/Q) = Gal((x)/WQ(x)) by 03C3e03BB2 = e03C3(03BB2) and 03C3(fa) = 03C3(f)03C3(a) for
f E Q.(x) and a e A. This action commutes with a. Then M = A Gal
is a differential module over Q(x) and Q(x) ~Q(x) M = A. Thus M and
N :== E(03BB1) is an example for (b). Clearly Q(03BB1) is the field of definition
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of N. Put Z := Q(03BB1)(x)e03BB1. Then Q(x) ~Q(03BB1)(x) Z ~ N (for the inclu-
sion Q(03BB1)(x) C ((x)). Furthermore, Z, considered as differential mod-
ule over Q(x), is isomorphic to M. Indeed, Q(x) ~Q(x) Z is isomorphic to
(Q(x) ~Q(x) Q(03BB1)(x)) ~Q(03BB1)(x) Z. Furthermore, Q(x) ~Q(x) Q(03BB1)(x) is

isomorphic a product r copies of (x). It follows that Q(x) ~Q(x) Z is
isomorphic to A. Also Q(x) ~Q(x) M ~ A. By [Ho-P], lemma 2.3, one
has Z ~ M.

The above theorem can be supplemented with an algorithm in case k =

Ck(x). Let L E k[~] be monic, irreducible of degree n. Put M := k[~]/k[~]L.
Write e E M for the image of 1. There are several efficient ways to calculate
a basis of C := Endk[~] (M) over Ck (see [P-S]). A multiplication table for C
can be calculated. e is also a cyclic vector for Z, which is M seen as a Ck-
differential module of dimension d = n The monic operator P E Ck[~]
of degree d with Pe = 0 can be calculated by some linear algebra. Then P
is a right hand factor of L. The irreducible monic right hand factors in k[~]
of L are the images of P in k[~] obtained by the Ck-linear embeddings of C
into Ck C k.

THEOREM 2.3. - Let M be a differential module over k of dimension n.
Let N C M be an irreducible submodule and N ~ 0, M. Suppose that there
is a submodule A ~ N with A r--" N.

(a) There exists a submodule A ~ N having a field of definition k’ with
[k’ : k]  n dim N.

(b) Suppose moreover that M is irreducible. Then F° := Endk[~] (M) is
a skew field of dimension s2 &#x3E; 1 over its center C. Put r := [C : Ck].
Assume that F := F° ~Ck k is again a skew field.
Then F is a skew differential field. Let Z denote M, considered as a differ-
ential module over F. For a suitable maximal commutative subfield G° ~ C
of F° and a suitable embedding of G = G°~Ck k into k one has k~G Z ~ N.
In particular, dim N is a multiple of s.
The finite field extensions of minimal degree k’ ~ k, contained in k, such
that there exists a submodule A C M, with A N and field of definition k,
have the form Sk where S ~ C is a maximal commutative subfield of FO.

(c) Suppose that the differential field k has the form Ck (x) Then:
(cl) The assumption in (b) is satisfied.
(c2) For the case dim N = 1 in (a), the estimate [k’ : k] n 2 holds.
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Proof. - (a) Let N+ denote the sum of all submodules of M that are
isomorphic to N. Let H c Gal(k/k) be the open subgroup consisting of
thé cr with 03C3(N+) = N+. Let 1 - 03C31,..., 03C3r denote representatives of
Gal(k/k)/H. Then 03C31(N+) ~ ··· ~ 03C3r(N+) is rational over k. Hence N+ is
rational over a field k+ with [k+ : k]  n dim N+. We have to show that N+
contains an irreducible A ~ N which is rational over an extension A/ D k+
with [k’ : k+]  dim N 

For notational convenience we suppose that k+ = k and that N+ = M.
Since M is a sum of irreducible modules it is also a direct sum Ni ~ ··· 0 Ns
of irreducible modules, isomorphic to N.. Then Endk[a] (M) is isomorphic to
the algebra Matr(s, Ck) of all s-x s-matrices with entries in Ck. The algebra
B := Endk[~](M) has the property that the canonical map Ck ~Ck B ~
Endk[~](M) is an isomorphism (see [Ho-P], lemma 2.3). Hence B is a simple
algebra of dimension s2 over its center Ck. Let C, with Ck C C c B,
be a maximal commutative subfield. It is known that [C : Ck] = s and
that C is a splitting field for B, i.e., C ~Ck B ~ Matr(s, C). Put k’ = Ck
and M’ - k’ 0k M. Then Endk’[~](M’) = C ~Ck B ~ Matr(s, C). Let
P E C ~Ck B satisfy P2 = P and the rank of P, considered as element
of Matr(s, C), is 1. Then the image A’ = P(M’) is a submodule such that
k 0k’ A’ is irreducible and isomorphic to N. This proves (a).

(b) Let N+ denote the sum of all submodules A c M that are isomorphic
to N. Let H c Gal(k/k) denote the stabilizer of N+. Then H is an open
subgroup of finite index r. One chooses representatives 1 = 03C31,..., 1 U, of

Gal(k/k)/H. Since M is irreducible one has M - ~03C3i(N+). Furthermore,
N+ is the direct sum of s &#x3E; 1 copies of N. One concludes that E :=

Endk[~](M) = 03A0ri=1 Endk[~] (03C3i(N+)). Thus E is the product of r copies of
the matrix algebra Matr(s, Ck). Put FO == Endk[~] (M). From M irreducible
and Ck 0Ck F° ~ E one concludes that FO is a skew field of dimension rs2
over Ck. The center C of FO has the property that Ck 0Ck C is the center
of E and hence isomorphic to C/c . It follows that [C : Ck] = r. The algebra
F := FO ~Ck k is given a differentiation by (f (g) a)’ f (g) a’ for all f E FO
and a ~ k.

By assumption F is a skew field of dimension s2 over its center Ck. The
left action of F on M, makes M into a differential module Z over F. By
restricting the scalars from F to k, one obtains M again. The dimension of
M is equal to rs - dim N. Let z be the dimension of M as vector space over
F. Then the dimension of M over k is equal to zs2r. It follows that dim N
is divisible by s.
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Let GO ::) C be a maximal commutative subfield of FO and write
G == G°k. Then G is a maximal commutative subfield of F and Z can be
considered as a differential module over G. Now M = k~kZ = (k~kG)~GZ.
Furthermore, k ~k G is a product of rs copies of k. This yields a decompo-
sition of M as a direct sum of rs submodules. One of them is isomorphic
to N.

A finite extension S D Ck, contained in Ck, has the property that Sk ~k
M contains a submodule D with Ii ~Sk D ~ N if and only if Sk ~k M is
a direct sum of rs2 irreducible submodules. This condition is equivalent to
S~Ck F° is isomorphic to 03A0ri=1 Matr(s, S). The latter is equivalent to S D C
and S is a splitting field for Fo. The extensions S of minimal degree, having
that property, are the maximal commutative subfields of po containing C.
See [Ho-P] for more details.

(c1) follows easily from the observation that F°~Ck Ck(x) ~ FOQ9CC(x).

(c2) Let N be a submodule of M of dimension 1. With the above nota-
tion, one has that 03C31(N+) ~ ··· 0 03C3r(N+) has field of definition k. We may
suppose that this module is equal to M. By (b), we find that M is reducible,
since dim N = 1. Now M and M are semi-simple and M has a decomposi-
tion Ml ~ ··· EB Mt into irreducible submodules of the same dimension. For
some i E {1,..., t} the projection of N to Mi is injective. We replace now
N by its isomorphic image in Mi. By (2) (b) we have that Mi contains no
submodule A ~ N with A ~ N. Thus we can apply Theorem 2.1, part (a)
and therefore [k’ : k] n t  2 ~

Examples 2.4. - Example for Theorem 2.3 part (a) k == Q(s,t) with
s2 + t2 = -1 and differentiation given by s’ = 1 and t’ = -st-1. The 2-
dimensional vector space M := k2 over k is made into a differential module
by ~(a1, a2) = (a’1 - a2/2t, a’2+a1/2t). A calculation shows (compare section
2.5 of [Ho-P]) that Endk[~](M) is isomorphic to H = Q1 + Qi + Qj + Qk,
the standard quaternion field over Q. Then the algebra of the Q(s, t)[~]-
linear endomorphisms of M is isomorphic to the matrix algebra Matr(2, Q).
Thus M has a 1-dimensional submodule. Moreover, all the 1-dimensional
submodules of M are isomorphic. For every splitting field C of degree two
over Q, i.e., the fields Q(-m) where m is the sum of  3 rational squares,
there is a 1-dimensional submodule N of M with field of definition C.

One observes that the assumption of Theorem 2.3 (b) is not satisfied.

Indeed, k is a splitting field for H and thus H Q9 k ~ Matr(2, k). Moreover,
the conclusions of Theorem 2.3 (b) and (c2) are not valid for this example.

Example for Theorem 2.3 part (b) In [Ho-P] many examples are given. They
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are constructed as follows. Consider a differential field k = Ck (x) and a skew
field po of dimension s2 &#x3E; 1 over its center Ck. One makes the skew field
F = po ~Ck k into a skew differential field by defining ( f 0 a)’ = f tg) a’
for f E FO and a E k. One considers a suitable differential module M over
F of dimension z. Then M considered as differential module over k has the

properties: M is irreducible, Endk[a](M) = F°, Endk[~](M) ~ Matr(s,Ck),
and M has an irreducible submodule N of dimension sz.

The simplest example is given by k = Q(x), F° = H the standard
quaternion field over Q, M = Fe and B on M is given by ~e = (i + jx) e.
The differential operator corresponding to M and the cyclic vector e is

L4 is irreducible as element of Q(x)[~]. For every splitting field C c Q of H
there is a decomposition L4 as product of two monic irreducible operatoi
of degree 2 in C(x)[~]. For the case C = Q(i) this decomposition reads

Suppose that k = Ck(x) and let L E k[~] denote a monic irreducible op-
erator. We suppose that M :== k[~]/k[~]L satisfies the condition of Theorem
2.3. Let e E M denote the image of 1. An algorithm for finding factorizations
of L is the following. One calculates a basis over Ck of FO == Endk[~] (M)
and a multiplication table w.r.t. this basis. From these data it is easy to cal-
culate C D Ck, the center of FO. Let f E FO be a "generic" element. Then
GO = C( f ) has degree s over C and thus GO is a maximal commutative
subfield of FO, containing C. Now M, as differential module over G = G°k,
has again e as cyclic vector. Using linear algebra, one determines the monic
differential operator of smallest degree P E G [9] with Pe = 0. After taking
a Ck-linear embedding of GO into Ck C k, one obtains a right hand factor
of L of minimal degree in k[~].

3. Descent for differential modules

Consider a Galois extension K D k of differential fields such that K =

CKk. Let G denote Gal(K/k) = Gal(CK/Ck). For a differential module M
over K and any a E G one defines the twisted differential module 03C3M by:
a M == M as additive group, ’M has a new scalar multiplication given by
f * m = 03C3-1(f)m (for f E K and m e M) and the derivation a of aM
coincides with the 9 of M. A necessary condition for M to descend to k is

the existence of an isomorphism ~(03C3) : 03C3M ~ M for every a E G. The



- 466 -

descent problem asks whether this condition is sufficient, or more generally
for which intermediate fields l (i.e., k c l c K) M descends to l.

The results of [Ho-P] and [P] concerning this question can be formulated
as:

Suppose that K = CKk, CK/Ck is a finite Galois extension with group
G, A is a differential module over K with EndK[~] (A) = CK and 03C3A ~ A
for all 03C3 ~ G. Then:

(1) If k is a field of formal Laurent series, say, k = Ck((x)), then A
descends to k.

(2) If k is a field of convergent Laurent series, say k = R({x}),
K - C({x}), then A will in general not descend to k. The obstruction
to descent is determined by the Stokes matrices belonging to M.

(3) If k is a function field in one variable, say, k = Ck(x), then there is
a (skew) field F° over Ck such that M descends to l if and only if the field
of constants of l is a splitting field for F°.

The descent problem is related to the rationality results for irreducible
submodules formulated in Theorem 2.3. This can be formulated as follows.

PROPOSITION 3.1. - Let N be an irreducible module over k. Suppose
that 03C3N ~ N for all 03C3 C Gal(k/k).

(1) There exists an irreducible module M over k and an embedding
N ~ M.

(2) The module M, with property (1), is unique up to isomorphism.

(3) N descends to a finite extension k’ of k with k’ c k if and only if
there exists a submodule A C M with A N and A has field of definition
k’.

Proof. - There is a finite Galois extension K ~ k contained in k such
that N descends to K. Thus N = k ~K B for some differential module B
over K. One regards B as a differential module over k. By [Ho-P], B is a
semi-simple k-differential module and moreover, k. ~k B is the direct sum of
[K : k] copies of N. Indeed,

Then Ck~Ck Endk[~](B) ~ Endk[~] (N ~ ··· ~N) ~ Matr([K : k], Ck). There-
fore Endk[~](B) ~ Matr(d, F°) for some d and some (skew) field F° with
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center Ck. Hence B is a direct sum Bi ~ ··· EB Bd of isomorphic irreducible
differential modules over k and Endk[~] (Bi) = F°. Clearly N can be seen
as a submodule of k 0k Bl. Thus M = BI has the required property (1).

Suppose that M(l) has also property (1). Then N = k 0K B C M(l) =

k~kM(1) and B :== k~kB ~ N[K:k] C M(1)[K:k]. The last module is semi-
simple and there is a projection P : M(1)[K:k] ---+ M(1)[K:k], commuting
with 9 and with image B. For any cr E Gal(k/k) one can form the conjugate
upu-1. This is again a projection commuting with 9 and with image B.
Let 03C3iP03C3i-1, i = 1,..., s denote the distinct conjugates of P. Then Q :=

1 s 03A303C3iP03C3i-1 is again a projection, commuting with 9 and with image P.

Since Q also commutes with the action of Gal(k/k) on M(1)[K:k], one has
that Q maps M(1)[K:k] onto B. Now B is a direct sum of copies of M and
therefore M ~ M(l). This proves (2).

The "if" part of (3) is obvious. Suppose that N descends to k’. We

may suppose that k’ C K, where K is the finite Galois extension of (1).
Then N = k ~k’ C and B = K ~k’ C satisfies N = k 0K B. As in (1),
B = B1 0... OE) Bd as k-differential module. The inclusion C C B induces an
inclusion k 0k C C ~di=1k ~k Bi. Moreover, A := k ~k’ C can be considered
as a submodule of k 0k C. Hence A is a submodule of k 0k Bi for some i.
Now Bi ~ M := B1 for all i and thus A can be considered as a submodule
of M. 0

Proposition 3.1 has a translation in terms of differential operators. Let
L E k[~] be a monic irreducible differential operator and suppose that for
any a E Gal(k/k), the operator cr(L) is equivalent to L (in the sense that the
two operators define isomorphic differential modules). Let N :== k[~]/k[~]L
be the corresponding differential module. Let L1,...,Ls, denote the con-
jugates of L for the group Gal(k/k). Then L+ denotes the least common
right multiple of Li,...,Lg in the skew ring k[~] (i.e., L+ is the monic

generator of the right ideal ~si=1 Lik[~]). Then L+ E k[~], L+ = LA for
some A E k[8] and thus k[~]/k[~]L+ contains the submodule k[~]A/k[~]LA
which is isomorphic to N. The operator L+ can be reducible in k[~]. But
L+ is semi-simple by construction and for any irreducible right hand factor
R E k[~] of L+ one has M ~ k[~]/k[~]R. Part (3) of 3.1 reads now: L
descends to k’ if and only if R has a monic irreducible right hand factor in
k[8] with coefficients in k’.
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4. Galois structure on the solution space

Closely related to rationality and descent is Galois structure on the solu-
tion space of a differential module. Let A be a differential module over k. Let

K ~ k denote a Picard-Vessiot extension for A. The solution space of A is
then V := ker( 8, K ~ A). Let G and G+ denote the groups of the differential
automorphisms of K/k. and K/k. There is an obvious exact sequence

where for any g E G+, the element pr(g) is the restriction of g to Ck.
Interesting questions are: what is the image of pr and does pr have a quasi-
section ?

Example. 2013 k = Q(x), k = Q(x), A = ke with 9e = 03BBxe and À E Q B Q.
The image H of pr consists of thé cr e Gal(Q/Q) such that 03C3(03BB) = or
03C3(03BB) = -A + a for a uniquely determined a e Z. Moreover, there is a section
H ~ G+.

In particular, G+ ~ Gal(Q/Q) is surjective if and only if the minimal
polynomial of 03BB over Q has the form T2 + aT + b with a E Z.

Proof. - The Picard-Vessiot field K is Q(x,t) with t transcendental
over Q(x) and t’ = 03BB xt. Any 03C3 such that either 03C3(03BB) = 03BB or 03C3(03BB) = -03BB + a
has an obvious extension to an element a+ E G+, given by the formula
a+t = t in the first case and by a+t = xat-1 in the second case. Moreover
(03C303C4)+ = 03C3+03C4+.

Suppose that a extends to an T E G+. A calculation shows that the
equation y’ == ?y with J1 E Q has a non-zero solution in K if and only if
03BC ~ Z03BB + Z. Now 7(t)’ == 03C3(03BB) x03C4(t). Therefore 03C3(03BB) E Z03BB + Z. Also 03C3-1(03BB) E
ZÀ + Z. Hence 03C3(03BB) = ±03BB + a with a e Z. Suppose that 03C3(03BB) = 03BB + a, then
an (À) = a + na for any n  1. Hence a = 0.

The last assertion is an immediate consequence. D

LEMMA 4.1. - Let M be a differential module over k = Ck (x) and let
K be the Picard- Vessiot field for k ~k M. Then pr : G+ ~ Gal(Ck/Ck) is

surjective and there exists a section s : Gal(Ck/Ck) ~ G+.

Proof. - It suffices to prove the existence of a section s. Consider a

point x = a E Ck at which M has no singularity. Then Ck((x - a)) 0 M
is a trivial differential module and so is Ck((x - a)) 0 M. Put
V = ker(Ck((x - a)) 0 M). Then V is a full solution space of M, i.e.,
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the dimension of V over Ck is equal to the dimension of M over k. The
field, generated over k C Ck((x - a)) by the coordinates of all elements of
V with respect to a fixed basis of M over k, is a Picard-Vessiot field for
M and can be identified with K. Moreover, V can be identified with the
above solution space inside K 0 M. Now Gal(Ck/Ck) acts in an obvious
way on Ck((x - a)). The induced action of Gal(Ck/Ck) on Ck((x - a)) 0 M
commutes with 9. Hence the space V C Ck((x - a)) 0 M is stable under
this action. Therefore K is also stable under this action and we obtain the

required section s : Gal(Ck/Ck) ~ G+. 0

COROLLARY 4.2. - Suppose that k = Ck(x). Let B be a differential
module over k such that 03C3B has the same Picard- Vessiot field as B, for
everya e Gal(Ck/Ck). Then G+ ~ Gal(Ck/Ck) is surjective and has a
section.

Proof. - B descends to some finite Galois extension k’ of k, contained
in k. Thus B = k ~k’ C for some C. Let M denote C, considered as differ-
ential module over k. Then k 0k M is isomorphic to the direct sum 0 03C3C,
taken over all 03C3 e Gal(k’/k). By assumption, k 0k M and B have the
same Picard-Vessiot field. Now the above statement follows from Lemma
4.1. 0

OBSERVATION 4.3. - Galois structure on the solution space V of a dif-
ferential module M = k 0k M. Rationality properties for submodules of M.

As in lemma 4.1 we assume that k = Ck (x). We will use the above
notations. The natural action of G+ on K 0k M induces an action of G+
on the solution space V = ker(9, K 0k M). Moreover, this action of G+ on
K 0k M induces the natural action of Gal(Ck/Ck) on k 0k M = M.

The choice of a section s : Gal(Ck/Ck) ~ G+ provides V with a Ck-
linear action of Gal(Ck/Ck). By [S], Proposition 3, p.159, the Ck-vector
space

has the property that the natural map Ck ~Ck V0 ~ V is a bijection. We
will formulate this property by "V has a Ck-structure". For the section s,
considered in the proof of Lemma 4.1, one has Vo = ker(~, Ck((x - a)) 0M).
The Ck-structure of V depends of course on the choice of s.

There is a 1-1 correspondence between the submodules N of M and the
G-invariant subspaces W of V. This correspondence is given by N ~ W :=
ker(~, K tg) N) c V = ker(a, K tg) M). Let N correspond to W. Let H be
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the open subgroup of finite index of Gal(Ck/Ck) that stabilizes N. Then
pr-1 H C G+ is the stabilizer of W and moreover, H is the stabilizer of W
for the chosen Ck-structure on V. Let C’ C Ck denote the fixed field of H.
Then W is defined over C’ and the field of definition of N is k’ - C’ (x) . One
concludes that rationality properties of G-invariant subspaces W of V (and
the corresponding N C M) do not depend on the choice of the section s.

5. Fields of convergent Laurent series

The field of convergent Laurent series over R will be denoted by
k = R({x}). Then k = C({x}) is the field of convergent Laurent series
over the complex numbers. The main observation is that there are exam-
ples for part (b) of Theorem 2.3 in this situation. This is in contrast with
the formal case, i.e., differential equations over the fields R((x)) and C((x)).

We are looking for an example of an irreducible differential module M
over R({x}) and an irreducible submodule N of M = C({x}) ~R({x}) M
with N ~ 0, M such that M contains a submodule A with A ~ N and
A ~ N. For the construction of an example we need a skew differential
field F of finite dimension over its center k = R({x}). The most obvious
example is F = H Q9R R({x}), where H is the quaternion field over R.
The differentiation on F is given by (h 0 r)’ - h 0 r’ for any h E H
and r E R({x}). According to part (b) of Theorem 2.3, M must have the
structure of a differential module over the skew differential field F. The

cheapest choice that one can make is M = Fe and o9e = de for a suitable
element d E F. This choice works. The explicit example d = i + x-1 j is

treated in detail in [P] (in the context of descent). One obtains a differential
operator of degree 4 in R({x})[03B4] (where 03B4 = x dx namely

which has the properties:

L4 E R({x})[03B4] is irreducible.

L4 factors in C({x})[03B4] (in many ways) as a product of irreducible oper-
ators of degree 2. One right hand factor is for instance L2:= 03B42 + 03B4 + (1 +
x-2 - i). The complex conjugate L2 := 62 + 6 + (1 + x-2 + i) is obviously
also a right hand factor of L4 and is moreover equivalent to L2.

L4 factors in R((x))[03B4] as a product of irreducible operators of degree 2.

One can construct large classes of differential operators in R({x})[03B4]
with these somewhat bizarre properties.
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One way of explaining these examples is that a differential module over,
- 

say, C({x}) can be seen as a differential module over C((x)), provided with
the additional data of a family of Stokes matrices. The possibilities for
these additional data form a finite dimensional affine space over C (see
[P-S]). These Stokes matrices are responsible for the above phenomena. It
seems that similar examples can be constructed for non-linear differential
equations over R({x}) and their solutions written in terms of transseries.

There are only a few skew fields of finite dimension over their center
R({x}). In fact, the Brauer group of this field is (Z/2Z)2. More room for
examples seems to be available for the field of convergent Laurent series
over the p-adic numbers, i.e., for the differential field Qp({x}). There are
many skew differential fields F of finite dimension over their center Qp({x}).
Indeed, the Brauer group of the field Qp is known to be Q/Z. Let FO be
a skew field of finite dimension over its center Qp. The skew field F =

F°~Qp Qp({x}) has the same dimension over its center Qp({x}). Moreover,
F becomes a skew differential field by the formula (f 0 a)’ - f 0 a’ for any
f ~ F° and a ~ Qp({x}).

The calculation of the full Brauer group Br(k) goes as follows. The field
k = Qp 0Qp k is a Ci-field and has trivial Brauer group. As a consequence
Br(k) = H2(Gal(k/k),k*). There is a Galois equivariant isomorphism

Hence Br(k) ~ Br(Qp) x H2(Gal(k/k), Z). Furthermore,

The last group is isomorphic to the group of the continuous homomorphisms
Z ~ Q/Z.

In the final part of this paper we consider a differential field K := k({x}),
where k is a complete valued field containing Qp. We want to compare the
classification of differential modules over K and over k := k((x)), in order
to see whether there is indeed room for examples with "strange" descent
properties due to skew differential fields with center K. As we will show,
there is no multisummation theory for differential equations over K and
there are no Stokes matrices. The difference between differential equations
over K and the formal theory, i.e., differential equations over R = k((x)),
lies in the appearence of p-adic Liouville numbers. An element A E Zp is
called a p-adic Liouville number if lim infn~~|03BB-n|1/n = 0. In other words,
À is a p-adic Liouville number if À is too well approximated by positive
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integers. This terminology and some of the following results were discovered
in [C], and rediscovered in [P80]. The basic example which explains the role
of p-adic Liouville numbers is the differential equation

This equation has the unique formal power series solution 03A3n- 1 n-03BBxn.
This solution is divergent precisely when À is a p-adic Liouville number.

First we recall the classification of differential modules over K = k((x)),
where k is any algebraically closed field. Let 03B4 denote the differentiation

xd dx. A differential module M = (M, 03B4) over K is called regular singular if
there exists a k[[x]]-lattice Mo C M (i.e., Mo = k[[x]]b1 + + k[[x]]bm for
some basis b1,..., bm of M over K) which is invariant under 03B4. One can
show that for any regular singular differential module M there exists a ba-
sis bl, ... , bm such that the matrix of 03B4 w.r.t. this basis has coefficients in k
and moreover the difference of (distinct) eigenvalues of this matrix is not an
integer. For q E x-1k(x-1] one defines the differential module E(q) = Ke of
dimension 1 by 6(e) = qe. For distinct elements q1, ... , qs E x-1k[x-1] and
regular singular differential modules Mi,..., Ms one considers the differen-
tial module ~si=1E(qi) 0 Mi. The differential modules obtained in this way
are called "unramified differential modules" over K. Let us call the above
decomposition the eigenvalue decomposition of the unramified module. The
q1, ... , qs will be called the eigenvalues of the unramified module. For any
integer n  1 we put Kn := k((x1/n)). The classification of differential
modules over K can be formulated as follows:

For any differential module M over K there exists a smallest integer
n  1 such that Kn ~ M is an unramified differential module over Kn.
Moreover, the eigenvalue decomposition of Kn ~ M is unique.

The following result seems to be new. It gives the first step towards a
classification of differential modules over K = k({x}), where k is an alge-
braically closed and complete field containing Qp. For convenience we only
formulate the result for the unramified case.

PROPOSITION 5.1. - The eigenvalue decomposition.
Let M be a differential module over K. Suppose that  := K ~K M is
unramified. Let the decomposition of  be ~si=1E(qi) ~ Ni (with the above
notations). Then there exists a unique decomposition M = ~si=1E(qi) 0 Mi,
with all Mi regular singular. Moreover, the canonical map M ~  yields
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isomorphisms K 0 Mi Ni. In other words, the eigenvalue decomposition
of M is already present over K.

This result is completely opposite to the complex case, i.e., for differential
modules over the differential field C({x}). Indeed, the divergence of the
eigenvalue decomposition in the complex case lies at the center of the theory
of multisummation and the Stokes matrices. For the proof of the above
proposition one has to examine the steps in the proof of the formal case
(see for instance Chapter 3 of [P-S]) and show that no divergence occurs.
We will not carry this out here.

In the sequel of this paper, k is a complete valued field containing Qp.
Again K = k({x}). For the study of regular singular differential equations
over K, the matrix form is more convenient. We will use the notation 6 + A
with A e Matr(m, k{x}), for a regular singular differential equation. Write
A = Ao + A1x + A2x2 +... with all Ai e Matr(m, k). The eigenvalues of Ao
can be shifted over integers by using a transformation B(ô + A)B-1 with
B E GL(m, K). We may and will suppose that the eigenvalues of Ao do not
differ by an integer.

PROPOSITION 5.2. - Regular singular modules.
Let 6 + A be a regular singular differential equation over K. There exists a
unique B E GL(m, k[[x]]) with Bo = lm such that B(03B4 + A0)B-1 = 03B4 + A.

Moreover, B is convergent, i.e., B E GL(m, k{x}), if no difference of the
eigenvalues of Ao is a p-adic Liouville number.

Proo f . - Write A = A0 + A1x+··· and B = B0+B1x+B2x2+··· with
Bo = 1m. The equation B(6 + A0) = (6 + A)B is equivalent to a sequence
of matrix equations

The operator Tn : X ~ nX + AoX - X Ao on the vector space of the m x m-
matrices over k has eigenvalues n + 03BBi - Àj (all i, j), where Ai,..., Às are the
distinct eigenvalues of Ao. By assumption, 0 is not an eigenvalue of any Tn.
Therefore the sequence of equations has a unique solution. The assumption
that Ài - Àj is not a Liouville number for any pair i, j, implies that the norm
of the inverse Tn 1 of Tn can be bounded by Rn for some R &#x3E; 0. From this

the convergence of B follows. ri

Example. - The transformation B of Proposition 5.2, satisfying

is divergent if and only if -À is a p-adic Liouville number.
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The classification of regular singular differential equations over K, is in
contrast to the complex case, a rather complicated combinatorial problem.
Although there is enough room for skew differential fields, the use of p-adic
Liouville numbers does not seem to lead to strange descent problems. More
precisely we formulate the following conjecture. 

Conjecture. - Let k ~ l be a finite Galois extension complete valued
fields containing Qp. Write K = k({x}) and L = l({x}). Suppose that the
differential module M over K has the property that 03C3M ~ M for every 03C3
in the Galois group of K/L. Then M descends to L.

By Proposition 5.1, it suffices to verify this conjecture for regular differ-
ential modules M over K. We will prove the conjecture in the special case
that M has dimension 2. One can reduce to the situation where M corre-

sponds to the matrix differential operator b + A = B(d + 03BB 0 0 0 )B-1.
In case B is convergent, the conjecture is trivial. Suppose that is di-
vergent. There are three cases to investigate. We consider one of them,

namely A = (03BB0 a0). The other two cases can be treated in a similar way.
Now B has the form 1 b ) and b is a divergent solution of the equation
b’ + Ab = -a. In particular -03BB is a p-adic Liouville number. A computation
shows that the group of the automorphisms of J + A is k*. For every cr in
the Galois group of kif there is given a B(u) E GL(2, k{x}) such that

We normalize B(03C3) by B (a) o = ( r. 1 ) for some * E k*. The two equalitie:

imply that B(03C303C4) = C(03C3, 03C4)B(03C3)03C3(B(03C4)) for some automorphism C(03C3, T) (

03B4+A. Thus C(03C3, T) e k* and by the above normalization one concludes tha
C(03C3, 03C4) = 1 for all 03C3, 03C4. Using [S], Proposition 3, p.159, and using [Ho-H
(part (3) of Definitions 2.2), one concludes that 8 + A descends to the fiel
L = l({x}).
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