
ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE

ISABEAU BIRINDELLI

FRANÇOISE DEMENGEL
Comparison principle and Liouville type results
for singular fully nonlinear operators
Annales de la faculté des sciences de Toulouse 6e série, tome 13,
no 2 (2004), p. 261-287
<http://www.numdam.org/item?id=AFST_2004_6_13_2_261_0>

© Université Paul Sabatier, 2004, tous droits réservés.

L’accès aux archives de la revue « Annales de la faculté des sciences de
Toulouse » (http://picard.ups-tlse.fr/~annales/) implique l’accord avec les
conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitu-
tive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AFST_2004_6_13_2_261_0
http://picard.ups-tlse.fr/~annales/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


-261-

Comparison principle and Liouville type results
for singular fully nonlinear operators (*)

ISABEAU BIRINDELLI (1), FRANÇOISE DEMENGEL (2)

ABSTRACT. - In this paper we consider a large class of degenerate or
singular operators F defined on IRN x (IRN)* x S, where S denotes the
space of symmetric matrices on IRN, F is continuous. We give a new
definition of viscosity sub and super solutions for F(x, ~u, V2u) = 0.

We prove a comparison theorem between sub and supersolutions for

F(x,~u(x),~~u(x)) - b(u(x)) = 0 where b is an increasing function,
and a Liouville type results.

RÉSUMÉ. - Dans cet article nous considérons une classe d’opérateurs
F definis sur IRN x (IRN)* x S, où S désigne l’espace des matrices
symmétriques sur IRN, F continue. Nous donnons une définition convena-
ble des sur et sous-solutions de viscosité pour F(x, ~u(x), ~~u(x)) = 0.
Nous montrons un théorème de comparaison pour les sur et sous-solutions
de F(x, ~u(x), ~~u(x)) - b(u(x)) où b est une fonction croissante, ainsi
qu’un théorème de Liouville.

1. Introduction

This paper is two folded: On one hand, we prove a comparison result
for singular fully nonlinear operators modeled on the p-Laplacian. In the
second part we use this and a strong maximum principle to obtain Liouville
type results.

The solutions considered are taken in the viscosity sense even though
the standard definitions need to be adapted to our singular operators. As
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in the work of Evans and Spruck [10] and the work of Juutinen, Lindquist,
Manfredi [15], we take into account that we cannot take test functions whose
gradient is zero in the test point since the operator may not be defined when
this occurs.

We shall consider an operator F defined on IRN x (IR,N ) * x S, where
S denotes the space of symmetric matrices on IRN, F is continuous. F is
supposed to satisfy some of the following conditions:

1. F(x,p,0) = 0,~x,p ~ IRN  (IRN)*.
2. There exists a continuous function cv, v(0) = 0, such that if (X, Y) E

,S’2 and ( satisfy

-03B6( I 0 0 I)  (X 0 0 Y)  403B6 ( I -I -I I)
and I is the identity matrix in IRN, then for all (x, y) E IRN,

F(x, 03B6(x - y),X) - F(y, 03B6(x - y), -Y)  03C9(03B6|x- y|2).

3. 30:,13 E IR2, 03B1  13 &#x3E; -1, (03BB, A) E (IR+)2, such that ’1’(x,p,M,N) E
IRN X (IRN)* X S2, N  0

|p|03B203BBtrN F(x, p, M + N) - F(x, p, M)  ( Ipla + |p|03B2 2 )AtrN
Let us note that among the functions satisfying all the conditions above

there is the function

F(p, M) = |p|03B1M+03BB,039BM
wherem+ M = 039B 03A3ei&#x3E;0 ei+03BB03A3ei0 ei and 61,..., eN are the eigenvalues
of M (see Caffarelli - Cabré [6] ). Other examples, including the p-Laplacian,
are given at the beginning of section 2.

Of course condition 3 implies the monotonicity of F i.e. in particular
that ’1’(x, p, M, N) E IpN x (IR,N)* X ,S’2, N  0

0 c F(x, p, M + N) - F(x, p, M).

Furthermore if F does not depend explicitly on x, condition 2 is not

necessary.

In his famous work [13] Jensen proved comparison results for viscosity
solutions of

F(u, 17 u, 17i7u) = 0
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for a class of F everywhere defined. This was a crucial step in the devel-
opment of viscosity theory for second order elliptic operators (see e.g. Ishii,
Jensen-Lions-Souganidis, Crandall Lions, etc, [12], [14], [8]).

In the sequel we shall define the concept of viscosity solutions for in-
equations of the form

F(x, B7u, 17i7u) - g(x, u)  0( 0)

where g is supposed to be continuous on IRN x IR. Moreover in Theorem 1.1,
we shall establish some comparison principle when g(x, u) = b(u) where b is
a continuous function on IR which is non-decreasing and such that b(0) = 0.

In the first part, our main result is the following

THEOREM 1.1. - Let 0 be a bounded open set in IRN . Suppose that F
satisfies conditions 1, 2, and the right hand side of 3 . Suppose that b is
some continuous and increasing function on IR, such that b(0) = 0. Suppose
that u E C(f2) is a viscosity sub-solution of F = b and v E C(f2) is a viscosity
supersolution of F = b:

If u  v on 9ÇI, then u  v in Ç2.

If b is nondecreasing, the same result holds when v is a strict supersolu-
tion or vice versa when u is a strict subsolution.

Let us remark that the super and sub-solutions are taken in the sense

given in Definition 2.7 below.

This result implies, of course, uniqueness of viscosity solutions for Dirich-
let problems in bounded domains. Furthermore it allows us to prove a strong
maximum principle when b is zero (Proposition 2.15). The case where b is
non zero but satisfies some increasing behavior at infinity is treated in [4].

The proof of Theorem 1.1 follows the strategy of the proof of compari-
son theorems for second order elliptic operators without singularities which
doubles the variables and uses a technical Lemma due to Jensen (see Lemma
2.13 below). Here two difficulties arise, the first is due to the fact that we
can’t use functions with gradient equal to zero at the test points, hence
we need to prove explicitly that this is not the case. Secondly condition 3
requires the tests functions to be constructed with functions modeled on

03C8(x) = b + a|x|q with q &#x3E; 0+2 as in [15], therefore Jensen’s lemma cannot
be used as is, we need to prove some other ad hoc technical Lemma (see
Lemma 2.10 below).
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Let us also remark that our proof doesn’t differentiate the case a &#x3E; 0

(where the operator is degenerate elliptic) and a  0 where the operator is

singular.

In the second part we consider the inequation

{ -F(x, i7u, D2u)  h(x)uii in IRN
u  0

where F is a continuous function satisfying conditions 1,3 . Condition 3
will be assumed with a = 13; furthermore h is a smooth function such that
h(x)  C|x|03B3 for |x| large and for some 03B3 that will be specified later.

Let us observe that for a = 0 and À = A = 1 the above equation becomes

{ -0394u  h(x)uq in IRN 
(1.1)u  0.

In this case Gidas in [11] and Berestycki, Capuzzo-Dolcetta, Nirenberg [1]
proved, for classical solutions, that when 1  q  N+03B3 N+03B3-2 there are no non-
trivial solutions. This result is optimal, in the sense that for any q &#x3E; N+-y-2
it is possible to construct a non trivial positive C2 solution of equation (1.1)
(see [5]).

The main result in the second part is the following

THEOREM 1.2. - Suppose that F satisfies condition 1,3. Suppose that
u E C(IRN) is a nonnegative viscosity solution of

-F(x, ~u, D2u)  h(x)uq in IRN (1.2)

with h satisfying

h(x) = a|x|03B3 for Ixl large, a &#x3E; 0 and -y &#x3E; -(a + 2). (1.3)

Let 03BC = 039B 03BB(N - 1) - 1. Suppose that

0 q  1+03B3+(03B1+1)(03BC+1) 03BC

then u - 0.

When 03B1 = 0, for standard viscosity solutions, this result is due to Cutri
and Leoni [9].
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When F is in a class of divergence form operators (including the p-
Laplacian) this result was obtained by Mitidieri and Pohozaev [16] using
integral estimates that cannot be applied in our case.

The value 1+03B3+(03B1+1)(03BC+1) 03BC is equal to N + 03B3 when 03BB = A

and a = 13 = 0 i.e. the case of the Laplacian.

2. Comparison principles

Before stating the comparison principle, let us make a few remarks and
give some examples about operators satisfying conditions 1,2 and 3.

Remark 2.1. - It is quite standard to see that condition 3 implies that
V(x, p, M, N) ~ IRN X (IRN)* X s2,

|p|03B2 03BBtrN+ - (|p|03B1 + |p|03B2)039B 2trN-  F(x,p, M + N) - F(x,p, M)

 (|p|03B1+ |p|03B2)039B 2trN+ - |p|03B203BBtrN-
where N = N+ - N- is a minimal decomposition of N into the difference
of two nonnegative matrices. This of course implies that for a = 13:

|p|03B1M-03BB,039B(N)  F(x,p,N)  |p|03B1M+03BB,039B(N)
where M-03BB,039B (N) and M+03BB,039B (N) are the so called Pucci operators defined by

M-03BB,039B(N) = À( Lei) + A( Lei), Mt,A (N) = À( Lei) + A( Lei)
ei &#x3E;0 ei 0 ei 0 ei &#x3E;0

where the ei{1iN} are the eigenvalues of N.

Example 2.2. - Evans and Spruck in [10] have considered the evolution
of level sets by mean curvature i.e. they have studied:

ut = (03B4ij - IDul2
in IRN x [0, +~).

Let us remark that the associated stationary operator:

F(p, N) = trN - 
(Np,p) |p|2

satisfies the assumptions 1,3. (See also the work of Chen, Giga and Goto
[7]).
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Example 2.3. 2013 In the case of the q-Laplacian , 3 is satisfied with 03B2 =
a = q - 2. Indeed the q-Laplacian is defined by

F(p, N) = |p|q-2trN + (q - 2)|p|q-4(Np,p).

Example 2.4. - Let us consider

F(p,N) = |p|8 + 2|p|6 + 3|p|4 + 1 |p|trN +b(Np,p)
with b  0. Then 3 is satisfied with a = 4 and 03B2 = -3 4.

We now present an example where F depends explicitly on x.

Example 2.5. - Suppose that ql, q2 are real numbers such that

1  q1  2, 1  q2  2, c(ql, q2) is such that

c(q1, q2) 
{ &#x3E; 0 if q1 ~ q2

 q1 - 2 if ql = q2

and suppose that B, and B2 are two Lipschitz functions which send n into
S. Then the function

F(x, p, N) = |p|q1-2tr(B*1 (x)B1 (x)N) + c(q1, q2)|p|q2-4(N(B2(x)p, B2(x)p))
satisfies conditions 1,2, 3.

Indeed conditions 1 and 3 are immediate, we shall prove condition 2. In
a first time we check that when B is a matrix with Lipschitz coefficients
and 1  91  2, the operator

|p|q1-2tr(B*(x)B(x)N)
satisfies 2. For that aim let X, Y, such that

x 0 
 03B6 (I -I -I I).0 Y) -1) 

Then for 03B6, ~ E IRN we use the inequality

(Xç, ç) + (Y~, ~)  03B6|03BE - ~|2

with 03BE = B(x)ei and 77 = B(y)ei and ei is some vector of the canonical

basis.

(XB(x)ei,B(x)ei) + (YB(y)ei, B(y)ei)
 03B6|(B(x) - B(y))ei|2
 03B6|x - y|2(Lip B)2|ei|2.
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Summing over i = 1, 2, ..N one gets

F(x, «x - y), X) - F (y, «x - y), -Y)  c(03B6|x - y|)q1-2(03B6|x - y12)
= (03B6|x - y|2)q1-1|x - y|2-q1)
 (diam 03A9)2-q1 (03B6|x - y|2)q1-1

which goes to zero with 03B6|x - y|2, since 1  qi  2.

We now treat the second term

(XB(x)p, B(x)p) + (YB(y)p, B(y)p)  (IB(x)p - B(y)pI2
 (LipB)2 (Ix - y121p12.

Using this with p = 03B6(x - y) one obtains

Ip1Q2-4 ((XB(x)p, B(x)p) + (YB(y)p, B(y)p))  (Ix - Y12«IX _ YI)q2-2
= (03B6|x - y|2)q2-1|x - y|2-q2

this goes to zero when (03B6|x - y12) does, since q2 ~]1,2].

Before introducing viscosity solutions in this setting, we want to prove
a weak maximum principle for classical C2 solutions:

PROPOSITION 2.6. - Let 03A9 be a bounded open set in IR N. Suppose that
b is some non decreasing continuous function on IR, such that b(O) = 0.
Suppose that u is C2(03A9) and satisfies

F(x, ~u, D2u) - b(u)  0 in Ç2

where F satisfies 1 and the left hand side of 3, u , 0 on 8n. Then u  0
inside 03A9.

Proof. - Suppose by contradiction that u has a strictly negative min-

imum. Let x E Ç2, such that u(x0)  0, and E  -u(x0) diam(03A9)2. Then the
function u~(x) = u(x) - ~ 2|x - xol2 also has a strictly negative minimum
which is achieved inside S2. Indeed if one supposes that it is achieved on the

boundary, say at Xf E ~03A9, then

u~(x~) = u(x~) -~ 2|x~ x0|2 u(u0) 2 &#x3E; (x0) = U, (xo)

a contradiction.
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At the point x, one has

D2u(x~)  EI
and then, even if Du(x~) = 0, one can find a point x’~ around x, such that
Du(x’~) ~ 0, and D2u(x’~)  ~ 2. Using this and the fact that b(u(x’~))  0,
the inequality in 3 becomes

0  F(x~, Du(x’~), D2u(x’~)) - b(u(x’~))
 03BB|Du(x’~)03B2~N
&#x3E; 0,

which is a contradiction. ~

In the definition below, g denotes some continuous function defined on
IRN x IR,.

DEFINITION 2.7. - Let S2 be an open set in IRN, then v E C(03A9) is called
a viscosity super-solution of F = g(x,.) if for all xo E S2,

- either there exists an open ball B(x0, 6), ô &#x3E; 0 in 03A9 on which v = cte = c

and g(x, c)  0

- or b ~~ E C2(03A9), such that v-p has a local minimum on xo and D~(x0) ~ 0,
one has

F(x0, D~(x0), D2~(x0))  g(x0, v(x0)). (2.1)
Of course u is a viscosity sub-solution if for all xo E 0,

- either there exists a ball B(xo, 6), ô &#x3E; 0 on which u = cte = c and

9(x, c)  0,

- or Vp E C2(03A9), such that u - ~ has a local maximum on xo and

D~(x0) ~ 0, one has

F(x0, D~(x0), D2~(x0))  g(x0, u(x0)). (2.2)
We shall say that v is a strict super-solution (respectively u is a strict sub-
solution) if there exists E &#x3E; 0 such that for all xo Ç2, either there exists
an open ball B(xo, 03B4), 03B4 &#x3E; 0 in 0 on which v = cte = c and g(x, c)  E, or
~~ E C2(0), such that v - ~ has a local minimum on xo and D~(x0) ~ 0,
one has

F(xo, D~(x0), D2~(x0))  g(x0, v(xo)) - E.
(respectively either u = cte on a ball B(xo, 6) and g(x, cte)  -E, or in
(2.2), one has F(xo, D~(x0), D2~(x0))  g(xo, u(x0)) + ~.)
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Remark 2.8. - When g - 0 the conditions on locally constant solutions
are automatically satisfied for sub or super solutions.

THEOREM 2.9. - Let 03A9 be a bounded open set in RN. Suppose that F
satisfies condition 1, 2, and the left hand side of 3, that b is some increasing
continuous function on IR, such that b(O) = 0..4ssume that u E C(03A9) is a

viscosity sub-solution of F = b(.) and v E C(03A9) is a viscosity super-solution
of F = b(.), and that u  v on ~03A9, then u  v in Ç2.

If b is nondecreasing the same result holds when v is a strict supersolution
or vice versa when u is a strict subsolution.

For convenience we start by recalling the definition of semi-jets given in
[8] (see also [12], page 140)

J2,+u(x) = {(p, X) E IRN X S, U(x)  u(x) + ~p,x - x) +
1

+ 1 2~X(x- x),x -x)~ + o(|x - x|2)}2

and

J2,-u(x) = ((p, X) E IRN X S, u(x)  u(x) + (p, x - x) +
1

+ 1 2~X(x - x)~ + o(|x - x|2}.

Clearly when (p, X) E J2,+u(x) and p =1- 0 the function ~(x) = u(x) +
(p, x - x~ + 1 2~X(x- x), x - x)) will be a test function for u at x if u is a
subsolution.

Before starting the proof we state the analogous of the famous standard
result (see e.g. Lemma 1 in Ishii [12]) used in comparison theorems for
second order equations:

LEMMA 2.10. - Let 03A9 be a bounded open set in IRN . Let u E C(O),
v E C(03A9), (xj, yj) ~ 03A92, x j =1- yj, and q  3.

We assume that the function

03C8j(x, y) =u(x) - V(Y) _ 3 x- y|q
q

has a local maximum on (x j , yj), with x j ~ yj. Then, there are Xj, Yj E sN
such that

(j(|xj - Yj |q-2(xj - Yj), Xj) E J2’+u(Xj)
(j(|xj - yj|q-2(xj - yj), -Yj) E J2’-v(Yj)
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and

-4ikj 0  (Xj 0 
 3jkj 

( 7 -I )
0 I 0 Yj) -I l

where

kj = 2q-3q(q-1)|xj-yi|q-2.

We postpone the proof of Lemma 2.10, but let us just remark that since

( 
I -I -I I ) 

annihilates vectors of type ( 
x x 

), then Xj  -Yj.

Proof of Theorem 2.9. - Suppose by contradiction that max (u - v) &#x3E; 0

in Q. Let us consider for j e IN and for some q &#x3E; max ( 2, 03B2+2 03B2+1)

03C8j x y) = u(x) - v(y) - j q x- y|q.

Suppose that (xj, yj ) is a maximum for 7I’j. Extracting a subsequence
still denoted (x j , yj ), one has (xj, yj) ~ (it, j) for some (x, y) E 03A92.

Furthermore from

03C8j(xj,yj) 7I’j(Xj,Xj),
one obtains that j|xj - yj|q  C, hence x = y ~03A9.

On the other hand

u(x) - v(x)  limu(xj ) - v(yj )
 lim1/Jj (x j , yj)
 lim sup 9 j (x, x)

x~03A9

&#x3E; sup(u(x) - v(x))
x~03A9

and x is a point where (u - v) achieves its maximum. In the same time we
have obtained that j|xj - Yjlq ~ 0.

CLAIM. - For j large enough there exists (xj, yj ) as aboves with x j =1=Yj.

Indeed suppose by contradiction that xj = yj. Then one would have

03C8j(xj,xj) = u(xj) - v(xj)

 u(xj) - v(y) - j q|xj - y|q
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and then 

V(Y) + j q|xj - y|q  v(xj).

Suppose first that xj is not a strict minimum for the function y i ~

v(y) + j q|y - xj|q. Then there exist 6 &#x3E; 0 and R &#x3E; 8 such that B(xj, R) c Ç2
and 

v (xj) inf {v(x) + j q|x - xj|q}.
03B4|x-xj|R q

Then if yj is a point on which the minimum above is achieved, one has

v(xj) = v(yj ) + j q|xj - yj|q,
and (xj, yj) is still a maximum point for 03C8j since

u(xj) - v(yj) - j |xj - Yjlq = u(xj) - v(xj)  u(x) - v(y) - j|x - y
q q

In this case the claim is proved.

In the other case we want to prove that v(xj)  0 and u(xj)  0. This
contradicts the fact that, for j large enough u(xj) &#x3E; v(xj) and ends the
proof of the claim.

Suppose first that b is increasing.

If v is locally constant around xj, by definition b(v(xj))  0 and then
so is v(xj)  0.

If v is not locally constant since we are in the hypothesis that xj is a

strict minimum for v(.) + j q| · -xj|q. Then, for aIl 8 &#x3E; 0

inf {v(x) + j q|x - xj|q} &#x3E; v(xj).
03B4|x-xj|R q

We use the following lemma whose proof will be given later:

LEMMA 2.11. - Let v be a continuous, viscosity supersolution of

F(x, V’v(x), ~~v(x)) - b(v(x))  -~1
with ~1  0 for all x in S2. Suppose that x is some point in 0 such that

v(x) + Clx - x|q  v(x),
where x is a strict local minimum of the left hand side and v is not locally
constant around x. Then,

b(v(x))  El.
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Remark 2.12. - Of course the analogous result is true for subsolutions.

Using Lemma 2.11 with 61 =0, C = q and x = Xj, one obtains that
b(v(xj))  0, hence v(xj)  0 which is the required results for v.

Now we consider that b is non decreasing. In this case by hypothesis
either u or v are strict sub or super solutions, without loss of generality we
will suppose that v is a strict super-solution.

Clearly, if v is locally constant the definition implies that b(v(xj))  E.

If v is not locally constant we proceed as above taking in Lemma 2.11
~1 = 6’ &#x3E; 0 again we get that b(v(xj))  ~.

Hence, to summarize, when b is non decreasing, if b(v(xj)) = 0 we have
reached a contradiction and this ends the proof of the claim or b(v(xj)) 
e &#x3E; 0 and then v(xj) &#x3E; 0 as required.

For the function u we proceed similarly, indeed going back to the in-
equality

03C8j(xj,xj)  03C8j(x,xj),
one gets that 

u(xj)  - xi l’ q

We obtain that if xi is not a strict maximum for the function x ~ u(x) -
j q|x - xj|q, there exists zj ~ xj = yj such that 03C8j(zj,xj) = sup 03C8j(x,y) and
the claim is proved.

Let us treat now the case where the above maximum is strict.

First we suppose that b is increasing. If u is locally constant around
xi, by definition b(u(xj))  0 which implies the required result. If u is not
.locally constant we are in the hypothesis of Lemma 2.11 (see Remark 2.16)
with ~1 = 0 hence one gets similarly that u(xj)  0.

On the other hand when b is non decreasing, we still are in the hypothesis
that v is a strict supersolution. If u is locally constant around xi i.e. u(x) =
u(xj) then by definition b(u(xj))  0. If u is not locally constant proceeding
as above using Remark 2.16 we again obtain that b(u(xj))  0.

Now if b(u(xj)) = 0, since v(xj)  u(xj) = c, we get that

b(v(xj))  b(u(xj» = 0. (2.3)
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But we have seen that either b(v(xj))  03B5 and this contradicts the above
inequality (2.3) or b(v(xj)) = 0 and that was in itself a contradiction.

If b(u(xj))  0 then u(xj)  0, which is the required result.

The claim is proved.

We now conclude. Let E &#x3E; 0 be given. Suppose first that b is increasing.
Since u(x) - v(x) = m &#x3E; 0, one can take j large enough in order that

b(u(xj)) - b(v(yj))  03B5 4 and 03C9(j|xj - yj|q)  03B5 4.4 4

Then using Lemma 2.10, and property 2 of F, one gets

0  F(xj, j|xj - yj|q-2(xj - Yj),Xj) - b(u(xj»
 F(xj,j|xj - yj|q-2(xj - yj), Xj) - b(v(yj)) - 03B5 44

E

 F(yj,j|xj - yj|q-2(xj - yj), -Yj) - b(v(vj)) - 03B5 44
+ 03C9(j|xj - yj|q)

 
-E

2

a contradiction.

In the case where b is nondecreasing let E be given such that

F(x, ’7v, ~~v) - b(v(x))  -E

and we take j large enough in order that

E

03C9(j|xj - yj|q)  03B5 2.

One has, using Lemma 2.10, property 2 and 3 of F and the nondecreasing
behavior of b,

0  F(xj,j|xj - yj|q-2(xj - yj), Xj) - b(u(xj
 F(xj,jlxj _ Yjlq-2(Xj - yj), Xj) b(v(yj»
 F(yj, j|xj - YjBq-2(Xj - yj), -Yj) - b(v(yj))

+ 03C9(j|xj - yj|q)
-E

C -2
In both cases, one gets a contradiction and it ends the proof of Theorem
2.9. ~
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Proof of Lemma 2.11. 2013 Without loss of generality we can assume that
x = 0. Let ?7Zj be defined as

ms = inf {v(x) + C|x|q} &#x3E; v(0)
03B4|x|R

and
E = m03B4 - v(O).

We choose No large enough in order to have No &#x3E; 1 03B4 and No &#x3E; 4q(diam03A9)q-1C ~
and such that for |x - y|  No , one has

|v(x) - v(y)| + |b(v(x)) - b(v(y))| ~4.4
Since v is not locally constant and q &#x3E; 1 for all n there exists (tn, zn ) E
B(0, 1 n) with

v(zn) + C|zn - tn|q  v(tn).
We prove that for n  No

inf (v(x) + C|x - tn|q)  inf (v(x) + C|x - tn|q).|x|03B4 03B4|x|R

Indeed

inf (v(x) + C|x -tn|q)  v(zn) + C|zn - tn|q
|x|03B4

 v(tn) (2.4)
 v(0) + 03B5 4. v(0) + 

~ 4.

On the other hand, for n &#x3E; No :

inf (v(x) + C|x - tn|q) inf (v(x) + C|x|q + C|x - tn|q -C|x|q)
R|x|03B4 R|x|03B4

 E + v(0) - qC|tn|(diam03A9)q-1
 3E v(0) + 03B5 4.

Finally the minimum is achieved in B(0,03B4).

Moreover, using (2.4), the point on which the minimum is achieved is
not tn, hence the function

~n(x) = -C|x -tn|q

is a test function for v on a point zy. Using the right hand side in the
property 3 of F, one obtains that for some constant C’

F(zn03B4, ~~n(zn03B4, ~~~n(zn03B4))  -C’|03B4|q(03B2+1)-(03B2-2).
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Consequently, since q &#x3E; 03B2+2 03B2+1, we can choose ô such that C’03B4q(03B2+1)-(03B2+2)
 ~ 4 and then

b(v(0))  b(v(zn03B4)) - ~ 4
 b(v(zn03B4)) - F(zn03B4, ~~n(zn03B4), ~~~n(zn03B4)) - ~ 2b(v(zn03B4)) - F(zn03B4, ~~n(zn03B4), ~~~n(zn03B4) - 2
 ~1 - 

E

2

This ends the proof, since E is arbitrary. D

Proof of Lemma 2.10. - The proof is a consequence of two technical
facts and a lemma which can be found in Ishii [12]:

LEMMA 2.13. 2013 Let (u, v) E USC(IR’) and A e S’2N, and assume that
u(0) = v(0) = 0 and

u(x) + v(y)  (x,y)A(x y)y 

for all x, y E IRN then for all E &#x3E; 0 there are (X, Y) E S’N such that

(0,X) e J2,+(u(0)), (0, Y) E J2,-(v(0))

and 

-(1 ~ +~A~) (I 0 0 I)  (X 0 0 Y)  A +~A2.
This lemma will be used later with A = Aj defined in claim 1 below.

CLAIM 1. - Let Aj be defined as

Aj =j(Dj -Dj -Dj Dj )
-_Di Dj

where Dj = 2q-3qCj and Cj = |xj - yj q 2 I + (q - 2)(xj - yj) ~ (xj - yj)).
Then

Aj + 1 jA2j  2j~Dj~ ( I -I -I I).
CLAIM 2. - Suppose that q &#x3E; 2. Then

1 |03B6 + ~|q - 1 -  03B6,~ &#x3E; -2q-3q(|~|2 + (q- 2)  03B6,~ &#x3E;2)  0 (2.5)
q q
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for any 03BE ~ 0, 03BE ~ IRN, |03BE| = 1 and q E IRN such that

|03BE|  |~|.

We are now able to prove Lemma 2.10. We use the arguments in Ishii

[12]. Let j be large enough in order to have |xj - yj|  1 j|xj - yj|q-1 +1..

For 6 small enough, ~  |xj - yj| 2, define uj and vj E USC(IRN)

uj (x) = { u(x 
+ xj) - u(xj) - j|xj - yj|q-2  xj - yj,x &#x3E;, |x|  ~

- |x|2 ~3 -2~u~~, |x| &#x3E; ~

vj (y) = { -v(y 
+ yj) + v(yj) + j|xj - yj|q-2  xj - yj,y &#x3E;, lyl  ~

-|y|2 ~3 -2~v~~, |y| &#x3E; ~

We need to prove that these functions are USC. Starting with u one must
check that for |x| = E 

-|x|2 ~3 -2 ~u~ ~  u(x + xj) - u(x) - j lxj - yj |q-2  xj - yj, x &#x3E;.

This is satisfied since E  1 xj - yj implies

~2  |xj -yj|2  1 j|xj - yj|q-2 + 1  1 j|xj - yj|q-1 +1.
For v we must check that for |y| =~:

-211vlloo - |y|2 ~3  -v(y + yj) + v(yj) + j|xj -yj|q-2  xj - yj,y &#x3E;,
which is satisfied since

~2  1 j|xj - yj|q-1 +1.

In order to apply Lemma 2.13 we need to prove that for Aj as defined
in claim 1, 

uj(x) + vj(y)  (x, y)Aj x .y 
For that aim we distinguish several cases:
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First case. Suppose that |x|  E and |y|  6. Then |x - y|  2~ 
|xj - yj|.

We prove then that for |x - y 1 1 xj - yj |

uj(x) + vj(y)  (x, y)Aj (x y).
Indeed one has

(x, y)Aj(x y)
= j2q-3q|xj - yj|q-4 (lXj _ Yjl21x - YI2 + (q - 2)  xj - Yj@X _ y &#x3E;2)

and, on the other hand

uj(x) + vj(y) = u(x + xj) - u(xj) - v(y + yj) + v(yj)
- j|xj - yj|q-2  xj - Yj,X &#x3E; +j|xj - yj|q-2  xj - yj, y &#x3E;.

Adding and subtracting j q|x + Xj - y - yj|q - j q|xj - yj|q, one gets

uj(x) + Vj(Y) = 03C8j(x + xj,y + Yj) - 03C8j(xj, yj) + j q|x + xj - y - yj|q
yj|q - j|xj - yj|q-2  xj - Yj,X - y &#x3E;.

Hence

ui (x) + vj (y) - (x, y)A y 
= 03C8j(x + xj, y + Yj) - 03C8j(xj, Yj) + IX + xj - y - yj|q - j q|xj - Yj Iq

q q

- j|xj - yj|q-2 xj -yj,x - y &#x3E;
- j2q-3q (|xj - yj|q-4(|xj - yj|2|x - YI2 + (q - 2)  Xj yj,x - y &#x3E;2)).

Since by the definition of (xj, yj) one has

03C8j(x + xj,y +yj) - 03C8j(xj,yj)  0

it is sufficient to prove that

0  j q|x +xj - y -yj|q - j q|xj - yj|q - j|xj - yj|q-2  xj - yj,x - y &#x3E;

_j2q-3q (|xj - yj|q-4 (|xj - yj 12 IX _ Y12 + (q - 2)  xj - Yj@X _ y &#x3E;2))
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This can be obtained using the convexity inequality in claim 2, with

03B6 = xj - yj |xj - yj| and ~ = x - y |xj - yj|.
Second case. Let us observe first that using the first case with |x|  6

and y = 0 one has

uj(x)  (x,0)Aj (x 0).
Hence for all y

-|y|2 ~3 + uj(x)  (x, 0)Aj x |y|2 ~3
= y y

- (x, 0)Aj (
0 

- (0, y) Aj (
x |y|2 ~3- (x,0)Aj (0 y) - (0,y)Aj (x 0) - |y|2 ~3

C (x,y)Aj (x y) +~Aj~(|y|2 + 2|y| |x|) - |y|2 ~3
c (x, Y) Aj x + kj - 1 Ilyll, ~y~2
 (x,y)Aj 

y 
+ (kj - IE3 ~y~2

 (x,y)Aj ( x
by the choice of E. The case where 1 x &#x3E; 6 and |y|  E is analogous.

Third case. Suppose that |x|, |y|  ~. Then

-|y|2 ~3 - |x|2 ~3  - 2(~Aj~)(|x|2 + |y|2  (x,y)Aj (x y).

We now apply Lemma 2.13 to uj, vj with E = 1 j. Hence (0, Xj) E
J2’+Uj(0), (0, - Yj) E J2’-Vj(O) and

(X, 0 Yj)  Aj + 1 jA2j  2jkj (I -I -1)
in the second inequality we have used claim 1. Noting that
J2,+uj(0) = [J2,+u(xj)] - (j|xj - yjlq-2(Xj _ yj), 0), we see that

(j|xj - yj|q-2(xj - yj), Xj) ~ J2,+u(xj).
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Similarly
(j|xj - Yjlq-2(Xj - yj), -Yj) E J2’-v(Yj).

This ends the proof of Lemma 2.10. ~

Proof of claim 1. - Computing Aj one gets

Aj =j ( Dj + 2D2j - Dj - 2D2j-Dj - 2D2j Dj + 2D2j)
and D j + 2DJ is a symmetric matrix which has a norm less than ~Dj ~(1 +
2q-2q(q - 1)|xj- yj|q-2)  ~Dj~(1 + j-1+2 q)  2~Dj~ for j large enough.

Claim 1 is a direct consequence of

LEMMA 2.14. - For all symmetric matrix A, one has

-3~A~(
I 0 

 
A -A 

 ~A~ ( 
I -I

-3~A~( 0 I) -A A ~A~( -I I)

where IIAII is the norm subordinate to the Euclidean norm i. e. ~A~ =

supx,|x|=1 |Ax| and IxI2 = ¿i X? t .

Proof of Lemma 2.14. - One must prove that for all (X, Y) E IR,2N

One has

t(X, Y) (A -A A A (X, Y) = tX(AX - AY) +t Y(-AX + AY)

= tX AX -t XAY -t YAX +t YAY

= t(X - Y)A(X - Y)
 I I AII t(X - Y)(X - Y)
= t Y) ~A~ (I -I -I I) (X, Y)

~

Proof of Claim 2. - To prove (2.5), let us define on [0, 1] the function
f:

f(t) = 1 q|03B6 + t~|q - 1 q - t  03BE,~ &#x3E; -t22q-3q(|~|2 + (q - 2)  03BE,~ &#x3E;2).
q q
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One observes that f (0) = 0,

f’ (t) = |03BE +t~|q-2  ç +t17, 17 &#x3E; -  Ç,17 &#x3E; -q2q-2t(|~|2 + (q-2)  ç, 17 &#x3E;2).
One has f’(0) = 0 and

f"(t) = (q -2)|03BE + t~|q-4  03BE + t~,~ &#x3E;2
+ lç + t~|q-2|~|2 -2q-2q(|~|2 + (q - 2)  Ç,17 &#x3E;2)  O.

Indeed,

(q - 2)|03BE + t~|q-4  03BE + t~,~ &#x3E;2 + |03BE + t~|q-2|~|2
= |03BE + t~|q-4( ç, 17 &#x3E;2 (q - 2) + t2|~|4(q - 2) +2(q-2)t  03BE,~ &#x3E; |~|2

+ lq 1 2 + t211714 + 2t  ç, 17 &#x3E; |~|2)
= lç + t~|q-4 ((q-2)  03BE,~ &#x3E;2 +|~|2((q -1)(t2|~|2 + 2t 03BE,~ &#x3E;) + 1))
 2q-4( Ç,17 &#x3E;2 (q - 2) + 11712(3q - 2))
 2q-2q(03BE,~ &#x3E;2 (q - 2) + |~|2).

Finally f’ is negative on [0, 1] and f as well. This proves (2.5). 0

We now state and prove a strong maximum principle when there is no
explicit dependence on u in the equation.

PROPOSITION 2.15. - Let 03A9 be a bounded open set in IR,N . Suppose that
F satisfies 1 and 3 with a = 03B2. Let u in C (0), u  0 in S2 be a super-solution
of F(x, B7u, ~~u) = 0. Then, either u is strictly positive inside Q, or u is
identically zero.

Proof. - Using the inequality satisfied by F in its definition, let us

recall, using Remark 2.1, that

F(x,p,M)  |p|03B1(03BBtr(M)+-Atr(M)-)
:= G(p, M)

hence it is sufficient to prove the proposition when u is a super-solution of
G = 0. G does not depend on x and it satisfies the hypothesis of Theorem
2.9.

Let us suppose that xo is some point inside 0 on which u(x0) = 0.
Following e.g. Vasquez [18], one can assume that on the ball lx - ri | =
lx - xo | = R, xo is the only point on which u is zero and that B(x1, 3R 2) C ç2.
Let u1 = inf 

u &#x3E; 0, by the continuity of u. Let us construct a sub-
|x -x1|=R 2

solution on the annulus R 2  lx - xi = p  3:.



-281-

Let us recall that if ~(03C1) = e-’P, the eigenvalues of D 20 are ~"(03C1) of
~’

multiplicity 1 and Ë of multiplicity N-1.
p

Then take c such that

c &#x3E; 
2(N - 1)039B R03BB.

If c is as above, let a be chosen such that

a(e-cR/2 - e-cR) = u1

and define v(x) = a(e-CP - e-cR). The function v is a strict sub-solution of
G = 0. Furthermore

R{ vu on |x -x1| =R 2

v  0  u on |x -x1| = 3R 2,
hence u  v everywhere on the boundary of the annulus. Using the com-
parison principle Theorem 2.9 for the operator G, u  v everywhere on the
annulus, and then v is a test function for u on the test point xo . One must
have, since u is a super-solution and Dv(x0) ~ 0,

-G(Dv(xo), D2v(0))  0

which clearly contradicts the definition of v. Finally u cannot be zero in-
side Ç2. D

Remark 2.16. - A Hopf ’s property
Using the same construction and assuming that xo E aÇ2, replacing

the previous annulus by its "half part" R 2  |x - x1|  R and using the
comparison principle, since v = 0 on |x - xi = R, Dv ~ 0 in 0 and v  u
on the other boundary of the annulus, one gets that

u(x)  a(e-cp - e-cR)

and then taking x = xo - hn and letting h &#x3E; 0 go to zero, one gets

u(x) - u(x0) h 03B1e-cR+ch-e-cR h ~ ace-cR
h h

This, for example, implies that Du(x0) =1= 0 when u is C1.
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3. Liouville’s Theorem

As mentioned in the introduction we consider now F(x, p, X) continuous
and satisfying conditions 1,3 for any x E IRn . In all the section we will

suppose that a = 03B2 in condition 3. Finally we will denote by y the real
number 

03BC = 039B 03BB(N - 1) -1.
Using the comparison’s Theorem 2.9 and the strong maximum principle
in Proposition 2.15 obtained in the previous section we want to prove the
following

THEOREM 3.1. - Suppose that u E C(IRN) is a nonnegative viscosity
solution of

-F(x, Vu, D2u)  h(x)ul in IRN (3.1)
with h satisfying

h(x) = alxl’fi for Ixl large, a &#x3E; 0 and q &#x3E; -(a + 2). (3.2)

Suppose that

0  q  
1+03B3+(03B1+1)(03BC+1) 03BC

then u - 0.

Now recalling Remark 2.1, condition 3 with a = 03B2 implies that if u is a
solution of (3.1) then it is also a solution of

-M-03BB,039B(D2u)|~u|03B1 h(x)uq.

Therefore in the proof of Theorem 3.1 we shall consider this inequation,
using the same notation F for its left hand side. Before giving the proof
of Theorem 3.1, let us define m(r) - infxEBr u(x). Let us note that if u
is not identically zero and satisfies (3.1), the strict maximum principle in
Proposition 2.15 implies that m(r) &#x3E; 0.

We now prove the following Hadamard type inequality

PROPOSITION 3.2. 2013 Let u be a viscosity solution of -F(x, i7u, D2u) 
0 and u  0, which is not identically zero. For any 0  RI  r  R2: 

m(r)  m(R1)(r-03BC-R-03BC2) + m(R2)(R-03BC1 -r-03BC) R-03BC1 - R-03BC2 (3.3)
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Proof. - This is immediate using the comparison principle Theorem
2.9 with b = 0 in BR2 B BR1 between the function u and the function
defined by ~(x) = g(|x|) with g(r) = C1r-03BC + C2 where Ci and C2 are
chosen such that ~(x) = m(R1) on 8BR1 and ~(x) = m(R2) on 8BRI’ since
M-03BB,039B(D2~) = 0. Using Remark 2.1, we can apply the comparison principle
Theorem 2.9 in Br2 B Brl between u and 0. And this gives precisely (3.3).
n

COROLLARY 3.3. - Suppose that u satisfies the assumptions in Propo-
sition 3.2. Then, for r  R1:

m(r)  m(R1)r-03BC r-03BC1.

Just observe that since 1À &#x3E; 0, by letting R2 tend to infinity in (3.3) we
obtain the above inequality.

COROLLARY 3.4. - We still assumes that u satisfies the assumptions in
Proposition 3.2. Suppose that 1  r  ri and r1  2. Then

m(r) - m(r1)  (m(1) - m(2))(r-03BC - ri (3.4)

As a consequence for 0  03B8  1 2
m(r1(1 - 03B8)) - m(rl) &#x3E; (m(l) - m(2))r-03BC103B803BC.

Proof. - We use the inequality

m(r) - m(R2)  
m(R1) m(R2) (r-03BC - R-03BC2)

1 

which is equivalent to (3.3) in Proposition 3.2 with Ri = 1, and R2 = r1  2
and m(R2 ) = m(r1)  m(2) to obtain (3.4).

We then use the mean value theorem and the fact that (1- 03B8’)-(03BC+1)&#x3E; 1
when 1 &#x3E; 03B8’&#x3E; 0. D

Proof of Theorem 3.1. - We use arguments similar to the one used in

[9]. We suppose by contradiction that u 0 0 in IRN, but since u  0 and
u is a super-solution in the viscosity sense, using Proposition 2.15 one has
u &#x3E; 0. We denote by C the constant

C - (m(l) - m(2))03BC m(r1)r03BC1.
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Let 1  r,  R, define g(r) = m(ri) 1 - C(r-r1) - (R-r1) - [(r-r1)+]3 (R-r1)3}. Let

«x) = g(lxl). Clearly for Ixl  R, 03B6(x)  0  u(x). On the other hand
there exists x such that Ixl = ri and u(&#x26;) = 03B6(x).

Let us observe that the definition of C implies that u - ( has a local
minimum on [r1, R]. For this, one proves that for 03B8  1 2, for x such that
r1  Ixl  r1 2, u(x) &#x3E; «x). Indeed, for such x, Ixl = r1(1 - 0)

03B6(x) = g(r1(1 - 03B8))
= m(r1) + (m(1) - m(2))r-03BC1r103B803BC (R-r1)

 m(r1) + (m(l) - m(2))r-03BC103B803BC
 m(r1(1 - 03B8))
 u(x).

Hence a local minimum of u(x) - 03B6(x) occurs for some x such that |x| = f
with r1  r  R.

Let |x| = r, it is an easy computation to see that for r  r1

g’(r) = -m(r1) (C R - r1 + 3(r-r1)2 (R-r1)3)
and

and then

-F(x, ~03B6, D2«X»
 -03BB|~03B6|03B1(039403B6)

 -03BB|~03B6|03B1 (g"(r) + (N - r) g’(r))
 03BBm(r1)03B1+1 C + 3 (R -r1)|03B1(6 2 r C+3)
 m(r1)03B1+1 

C’ (R - r1)03B1+2 (3.5)

using r  r1  R - ri, for some universal constant C’. Since ~03B6(x) ~ 0,
using the definition of viscosity solution

h(x)uq(x)  -F(x, ~03B6(x), D203B6(x)).
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We choose R sufficiently large in order that h(x)  03B1|x|03B3 for |x|  R 2.
Combining this with (3.5), we obtain

ar-03B3m(r)q  ar-ruq(x)  C’m(r1)03B1+1(R - rl)-(a+2).
Since m is decreasing the previous inequality becomes

m(R)  C"m(r1) 03B1+1 qr-03B3 q (R - ri) 03B1+2 q.

Now we choose ri = R , we use Corollary 3.3 and finally we get

m(R)  Cm(R)(03B1+
1) q

R-(03B1+2+03B3) q. (3.6)

First we will suppose that q  03B1+1; hence, using the monotonicity of m(R),
the above inequality becomes

R03B1+2+03B3 q  C"m(R)(03B1+1) q-1  C"u(0) (03B1+1) q -1

Since we are supposing that a + 2 + q à 0, we get a contradiction. This
concludes this case.

Now suppose that q &#x3E; a + 1, this implies that (3.6) becomes

m(R)R03BC  C"R03BC-(03B1+2+03B3) q-(03B1+1). (3.7)

If q  1+-Y+(a+l)(14+11 then 11.- a+2+Î’  0. We have reached a contradiction

since the right hand side of (3.7) tends to zero for R ~ +~ while the left
hand side is an increasing positive function as seen in Corollary 3.3.

This concludes the proof of this case.

We now treat the case q = 1+03B3+(03B1+1)(03BC+1) 03BC. Let us remark that for this
choice of q we have that for some Ci&#x3E; 0, c &#x3E; 0 and r &#x3E; ri &#x3E; 0, with ri
large enough:

-F(x, B7u, D203BC)  ar03B3uq  Cir- (3.8)

We choose 03C8(x) = g(lxl) with

g(r) = 03B31r-03BC03BBlogv r + ’Y2

where 03B31 and q2 are two positive constants such that for some ri &#x3E; 1 and

some r2 &#x3E; r1:
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m(r2) = g(r2),

m(r1)  g(r1),
while v is a positive constant to be chosen later. It is easy to see that

( D 2
= | - 03BC + P logv« r[r-(03BC+2) 10gV r03BC(03BB(03BC + 1)log r 

-(N - 1)A) - 03BB03BCvrr-(03BC+2) logv-1 r + 03BBv(v - 1)r-(03BC+2) logv-2 r]
 -Cr-(03BC+1)(03B1+1)-1(logr)v03B1+v-1.

We have used the fact that À(¡.t + 1) - (N - 1)A = 0.

We can choose v &#x3E; 0 such that va + v - 1  0. Using (3.8) this allows
us to get

-F(x, ~u, D2u)  Cr -(03BC+1)(03B1+1)-1

 Cr-(03BC+1)(03B1+1)-1(logr)v03B1+v-1  -|~03C8|03B1M-03BB,039B(D203C8).
Since u  03C8 on the boundary of Br2 B Br1, one obtains by the comparison
principle that u à aQ everywhere in Br2 B Br1 .

When r2 goes to infinity it is easy to see that 03B32 - 0, and we obtain

u(x)  c|x|-03BC logv Ixl,

for |x|  ri. This implies that

m(r)  cr-03BC 10gV r

for r &#x3E; ri. We have reached a contradiction since

m(r)  Cr-J.L.

Hence u - 0. This concludes the proof of Theorem 3.1. D
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