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Effective estimates for global relations
on Euler-type series (*)

DANIEL BERTRAND (1), VLADIMIR CHIRSKII (2), JOHAN YEBBOU (3)

ABSTRACT. - In his work [Ch 1], [Ch 2], the second author has given a
precise upper bound for the smallest prime for which a given non-trivial
algebraic relation between values of Euler-type series ceases to be satisfied.
This bound depends on the crucial, but ineffective, constant appearing in
Shidlovsky’s lemma. Using the relations of [BB], [Be 2] on the exponents of
irregular differential equations and a method of the third author, we here
make Shidlovsky’s constant, hence the above bound, entirely effective.
Furthermore, the upper bound is replaced by a sequence of intervals, and
the non-vanishing by a lower bound, all again entirely effective.

RÉSUMÉ. - L’article comporte deux volets : d’une part montrer qu’il y a
une infinité de nombres premiers pour lequels une relation de dépendance
algébrique non triviale entre valeurs de séries de type Euler cesse d’être
satisfaite ; d’autre part, donner une version effective de cet énoncé. Le
premier but est atteint au moyen d’un raffinement des techniques du sec-
ond auteur, qui permet d’évaluer par défaut la répartition de ces nom-
bres premiers. Pour remplir le second objectif, on établit une version
entièrement effective du lemme de zéros de Shidlovsky : celle-ci repose
sur une méthode du troisième auteur pour calculer les exposants d’une

équation différentielle en une singularité irrégulière, jointe à la relation de
Fuchs généralisée.
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1. Statement of the results

Let K be an algebraic number field of degree 03BA over Q. In 1981 E.
Bombieri [Bo] introduced the notion of a global relation. Let P(y1, ... , ym)
~ K[y1,...,ym], 03BE E K, fi(z) E K[[z]], i = 1,...,m. The relation

P(f1(03BE),...,fm(03BE)) = 0

is called global if it holds in every completion Kv of K for which all fi(03BE)
converge.

Suppose that the considered power series are algebraically independent
over K(z) and converge at 03BE in all non-archimedean completions Kv of K
(with a possible exception of a finite number of them). Expecting that no
non-trivial global relation occurs, one can try to characterize, in terms of
numerical data attached to K, 03BE, the fi’s and the (non-zero) polynomial P,
the set S = S(g, -P(f1,.., fa» of all prime numbers p for which there exists
a valuation v on K extending the p-adic one such that when computed in
Kv:

P(f1(£),...,fm(03BE)) ~ 0.

In [A], Y. André gave a conditional criterion for this set S to be infinite
when the f i’s are holonomic Gevrey series of arithmetic type of positive or-
der (cf. [A], Thm. 3.2.1, assuming Conj. 3.1.3). His method is of a qualitative
nature, and it seems difficult to quantify it, let alone make it effective. On
the other hand, quantitative upper bounds for the least element of S were
obtained in [Ch 1], [Ch 2] in the (slightly less general) case of F-series. The
aim of this paper is to sharpen the latter result on F-series in two ways:
firstly, by showing, unconditionally, that S is infinite, and secondly, by giv-
ing an entirely effective description an infinite number of disjoint intervals
of R which S meets.

Recall that for given positive real numbers cl, c2, c3 and a natural integer
d, the class F(K, Cl, C2, c3, d) consists of power series f(z) = 03A3~n=0 ann!zn
for which:

1. for all n = 0, l, ... , an E K, and exp(cin) is an upper bound for the
size of an (i.e. the maximum of the moduli of the algebraic conjugates of
an ; for more on sizes and heights, see Remark 1.5 below);

2. there exists a sequence dn of positive integers dn = do,ndn such that
for all indices n  k  0, dnak lies in the ring of integers ZK of K, while do,n
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is divisible only by prime numbers p  c2n satisfying or dpd0,n  c3 ( logp n +
n p2). In particular, f is a Gevrey series of arithmetic type, of order 1 (1).
A typical example is given by Euler’s series f(z) = 03A3~n=0n!zn (cf. [Re]),
which satisfies the differential equation z2 f’ + (z - 1 ) f +1=0.

We consider such F-series f 2, ... , fm and assume that

3. the vector t(f1(z) ~ 1, f2(z), ... , fm(z)) is a solution of a differential
system D with coefficients Ai, j E K(z) :

m

Y’ = A(z)Y : y’i = 03A3Ai.j(z)yi, i = 1,...,m. (D)
j=1

We denote by q = deg(D) and H(D) the degree and height of the differen-
tial system D. On letting T(z) ~ K[z] be the monic polynomial of minimal
degree such that T(z)Ai,j(z) e K[z] for all i, j , this means that the col-
lection of polynomials T, TAi,j has degree q and height H(D) in the sense
of Remark 1.5 below. We further denote by no := no(D) the well-known
Shidlovsky’s constant appearing in the theory of E, G and F-functions (cf.
[Sh], Chapter 3, Formula (83) ) . This constant is the main source of ineffec-
tivity in this subject; it will be dealt with in Theorem 1.2.

In what follows, we fix a non-zero ordinary point ~ K of the system
D:

03BE = a b, a ~ ZK, b ~ N, 03BET(03BE) ~ 0
and set h(g) = ln(l + size(g)) + ln b, which is essentially the logarithm of
the height H(03BE) of 03BE. We also write Disc(K) for the discriminant of the
number field K, and associate to the numerical data above the numbers
c4 = ci + Ind + 4 4C2C3 + 2c3 + 5, c5 = m2c4 + 2, and

No = max(no(D), (ln2+1 03BADisc(K))2, exp(4(2(m+3)+c4(m-1))2),
exp(h(03BE)2 + deg(D)(h(03BE) + 2) + 2 In H (D) + 1)).

Let further

Ho = ex p (N0 In N0(1-m+3+(m-1)c6 (ln N0)1 2 (A)

(1) Conversely, the denominators of Gevrey series of such type, if holonomic, satisfy
the first condition p  c2 n, but we do not know whether the second one always holds.
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Notice that this real number Ho is effectively computable in terms of the
data CI, C2, c3, d, m, K = [K : Q], Disc(K), H(03B6), deg(D), H(D), and the
constant n0(D).

Now, consider the positive functions in the real variable x &#x3E; 3 defined

by 

l(x) := e(ln x)1 2.

u(x) = m(x + 1) - [x(lnx)-2],
where [.] denotes the integral part, and set

D (x) = 1 ( x ), Pupper (x) := u(x ln x (1 + 2(m + 3 + (m-1)c5) (1n(x/ln ln x)1 2)).

(B)
Note that when x assumes values in a quickly increasing sequence of real
numbers, the intervals [Plower(x), Pupper(x)] are disjoint and tend to 00.

THEOREM 1.1. 2013 Assume that the F-series fi (z) =- 1,f2(z),...,fm(z)
are linearly independent over K(z) and constitute a solution of (D). Let 03BE
be a non-zero ordinary point of D, and recall the notations (A), (B) above.
Let further

039B(y1,..., ym) = hl y1 + ° ° ° + hmym
be a nonzero linear form with coefficients hi ~ ZK and height

H(A) = maxi=1,...,mH(hi).

Then for any H  max(H(A), Ho), there exists a prime number p with

Plower (ln H)  p  pupper (ln H)

and a valuation vlp on K such that in Kv

039B(03BE) = 039B(f1(03BE),..., fm(03BE)) ~ 0,

and more precisely such that in this Kv

|039B(*03BE)n  H-m- vlnlnH .

Making these bounds on p and |039B(03BE)|v effective therefore reduces to the
question of finding an upper bound for no (D) depending effectively on the
data m, 03BA, deg(D), H(D) of the differential system D. This can be achieved
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under certain conditions on the differential system D, cf. [Br]. At about the
same time, J. Yebbou (unpublished, but see [Be 1]) proved the existence
of an effective upper bound for no (D) in the general case. Developping his
method, we shall here show:

THEOREM 1.2. For any differential system (D) over K(z), there
exist two positive real numbers C, c, effectively computable in terms of q =

deg(D), m, and K = [K : Q], such that

n0(D)  C(03BA,m,q) H(D)c(03BA,m,q).
More precisely, we can take

c(03BA,m,q) = Log2C(03BA,m,q) = (203BA(q + 1)m)(2(q+1)m)8m.

Remark 1.3. Since our main concern is with effectivity, we made no
attempt to get sharp bounds in Theorem 1.2. It is likely that on using
Corel’s notion of exponents for differential systems [Co], the upper bound
for c(03BA,m,q) can be considerably reduced. A natural question is whether
it can be reduced to c(03BA,m,q) = 1 (as shown by the differential equation
y’ = lfy, H E N, n0(D) is at least linear in H(D)).

Remark 1.4. To handle polynomial relations of arbitrary degree K  1
instead of linear ones (as in the introduction of the paper, assuming in
particular that the functions f1,..., fm are homogeneously algebraically
independent over K(z)), we can apply Theorem 1.1 to the set of monomials
of degree K in these series. Indeed, for kl + ... + km = K, the series
Yk11 ... fkmm belong to the F-class with parameters

ci + ln 2, C2, (c3 + 1)K, d1+[ln K],
and consitute a solution of the differential system SymK(D), which has
rank (m + K - 1) degree  deg(D) and height  (m + K)m+KH(D).
As for Theorem 2, it is more efficient to replace it by the relation

n0(SymK(D))  (m + K)2Kn0(D),
which immediately follows from [BB], top of p. 191.

Remark 1.5 (heights). 2013 In this paper, we use the following definitions
on heights and degrees. Let Q be the algebraic closure of Q in C, and let
Z be the ring of algebraic integers. We define:
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e the height H(a) of an algebraic number 03B1 as the maximum of the

denominator den(a) E N and of the size size(a) of a, where as in [Sh],
den(03B1) is the minimal positive integer d E Z such that da lies in Z, and
size(03B1) is the maximum of all the archimedean absolute values of a (the
height of a in the sense of [Sh], i.e. the height of its minimal polynomial
over Z, will not be not used hère).

Thus, a non-zero element 13 of a number field K of degree r, over Q
satisfies H(1 03B2)  H(03B2)203BA-1; in particular, H(03B2)-203BA+1  |03B2|  H(03B2)).

e the height H(P) of a collection P = (P1,..., Pt) of polynomials
Pi e Q[X] as the maximum of the least common denominator of all the
coefficients of all the Pi’s and of all the heights of these coefficients; the
degree deg(P) of P as the maximum of the degrees of the Pi’s (note that
the height H(P) of a polynomial P coincides with that of [Sh] only when
P has integral coefficients).

Thus, all roots E of a non-zero polynomial P E K[X] of degree q are
algebraic numbers of degree  rq and height H(~)  qH(P)203BA.

e the height H(A) (resp. degree degA) of a collection A = (Al,..., At) of
rational ficnctions Ai E Q(X) as the height (resp. degree) of the collection of

polynomials T, TA1,..., T At, where T is the monic polynomial of minimal
degree in Q[X] such that all the T Ai’s lie in Q[X]; this applies in particular
to the set of coefficients A = (Aij; 1  i, j  m) of the differential system D
considered in this paper, so that the notions of height H(D) := H(A) and
degree deg(D) := deg(A) of D are well-defined.

For a collection A = (A1,..., At ) of rational functions Ai K(X), we
also say that A has "height and degree at most H1(A), degl (A)" if there ex-
ists a non-zero polynomial Tl such that Tl, T1A1,..., Tl At lie in ZK[X] and
form a collection of polynomials of height at most Hl (A) and degree at most
degl (A). One easily checks that one may take Hl (A) = H(A)2, deg1(A) =
deg(A). Conversely, a Gelfond-type lemma shows that for any choice of
Tl and consequent H1(A), deg1(A) = ql, we have: deg(A)  degl (A) and
H(A)  (2q1)q1H1(A)203BAq1. These estimates will be used at the beginning of
the proof of Theorem 1.1, and at the end of the proof of Theorem 1.2.

2. Proof of Theorem 1.1

We shall prove Theorem 1.1 under slightly less restrictive conditions on
the constant Ho from Formula (A) and on the functions ~, u, Plower, Pupper
from Formulae (B) of §1.
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We start with the same hypotheses 1, 2, 3 as in §1 on the fi’s and D, and
use the same notations c1, c2, c3, d, c4, c5, n0(D). We further fix a non zero
polynomial T1(z) E ZK[Z] such that TI(z)Ai,j(z) E ZK[Z] for all i, j, and
denote by degl (A) and Hl (A), respectively, the maximum of the degrees
(and, respectively, heights) of T1(z) and of all T1(z)Ai,j(z). We assume that
03BE = b E K is not a zero of Tl. We further denote by c = c(K) the constant
which comes from Siegel’s lemma, see, e.g. [Sh], page 105. This constant
is effectively computable in terms of the degree r, and the discriminant
Disc(K) of K, and indeed, one may take c(K) = 2(Disc(K))1 203BA, in view of
the well-known Bombieri-Vaaler version of Siegel’s lemma.

Let [x] be the integral part of a real number x, and consider all positive
integers N E N such that

N  no (D) (2.1)

N  2m ln N + (m + 2)(lnN)2 1 (2.2)
N  exp(4(2(m + 3) + c4(m - 1)))2 (2.3)

c4[N(ln N)-1 2 &#x3E; ln(N + 1) + ln c + ln m

N &#x3E; (ln c) 2
ln N &#x3E; h(03BE)(ln N)1 2 + deg1(A)(h(03BE) + 2) + ln H1(A). (2.4)

Suppose further that a decreasing function 03B5(x) is given with

lim 03B5(z) = 0, and that either

lim 03B5(x)(ln x)1 2 = +~. (2.5)
x~+~

in which case we set 03B51(x) = (m + 3)03B5(x),

or that

e(x) = (ln x)-1 2, (2.6)
in which case we set si (x) = (m + 3 + (m - 1)c5) (ln x)- 2 (this second case
is the one considered in §1). We then require that N also satisfy

03B5(N) )ln N &#x3E; ln b + ln d. (2.7)

Let No be the minimal natural number for which all these hypotheses about
N hold, and set

H0 = exp (N0 ln N0(1-03B51(N0))). (A’)
Notice again that this real number Ho is effectively computable in terms of
the data CI,C2,c3,d,m, 03BA, Disc(K), H(03BE), deg(D), H(D), the chosen func-
tion E and the constant n0(D).
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Finally, we consider the positive functions in the real variable x &#x3E; 3
defined by

l(x) := XE(X) (2.8)

u(x) m(x + 1) - [z(ln x)-1 2]. (2.9)

and set

Plower(x) = l(x ln x), Pupper(x) := u(x ln x)(1+203B51(x ln x))). (B’)

Note again that when x assumes values in a quickly increasing sequence of
real numbers, the intervals [Plower(X), Pupper(x)] are disjoint and tend to
00.

We now claim that Theorem 1.1 holds in the more general setting when
Formulae (A) and (B) of §1 are respectively replaced by (,,4’), (B’). Notice
than on using the estimates on deg1(A), H1(A) and c(K) given above, we
do retrieve in our "second case" the statement of Theorem 1.1.

The arguments leading to this sharpened form of Theorem 1.1 are close
to those of [Ch2], and we shall here only develop the new aspects of the
proof.

LEMMA 2.1. Let fi, i = 1, ... , m and 03BE be as in Theorem 1.1. Let N

satisfy (1)-(4). Then there exist linearly independent forms

m

03BBk = 03A3 hk,iyi, k = 1, ..., m

with coefficients hk,i E ZK such that

H(hk,i)  exp(N ln N + c5N(ln N)1 2)

and such that for any prime p with 3C3  p  u(N) and any vlp, the v-adic
numbers 039Bk(03BE) := 03A3mi=1 hk,ifi(03BE), k = 1,..., m, satisfy

|039Bk(03BE)|v  Uu(N)!|v exp (03BAv 03BA((c3 + 2) logp u(N) + c3u(N)p-2) ln p).

(Here rv = [Kv : Qp], 03BA = [K : Q])
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The proof of this lemma is similar to those of Lemmas 14-16 from [Sh,
pp. 107-114].

Now, m - 1 among the forms A1,..., Am, together with A, are linearly
independent over K. Since the numeration of these forms is at our disposal,
let A, A2, ... , Am be linearly independent. Their determinant A then is a
nonzero element of ZK. In any Kv with p as in the Lemma, we proceed
as follows. We take the products of fi(Ç) and of the i-th column of 0394
and add them all to the first column, which now contains the elements
039B(03BE), 039B2(03BE),..., 039Bm(03BE) in the local field Kv. In this way, we get

m

0394 = 039B(03B6)03941 + E 039Bi(03BE)0394i (2.10)
i=2

where Di is the determinant of the minor of the i-th element of the first
column of 0. We shall evaluate 6 by making a convenient choice of the
natural number N.

In what follows, V~ and Vo are respectively the set of archimedean and
non archimedean valuations on K, and we put Vo = VI U V2 U V3, where Vl
consists of all v |p such that

l(N)  p  u(N); (2.11)

V2 consists of all v’s above primes p  l(N), V3 of all v’s above primes
p &#x3E; u(N). We further use IIi to denote a product over Vi, 03A0i,j for a product
over Vi U Vj, and so on.

Let H be any positive real number such that H  max(H(A), Ho), and
let N be the largest positive integer such that

(N - 1)ln(N - 1)(1 - 03B51)((N - 1)))  ln H  N ln N(1 - 03B51(N)). (A’)

By the definition (A’) of Ho, the number N is  No, and in particular,
satisfies (2.1)-(2.4). Lemma 2.1 then gives

03A0~|0394|v  m!H exp ((m-1) N ln N + (m - 1)c5N(ln N)1 2).
Since 0 is a non-zero algebraic integer in K, 03A02,3|0394|v  1 and the product
formula rI = 1 implies

03A01|0394|v  (m!H exp ((m-1)N ln N + (m - 1)c5 N(ln N)1 2))-1. (2.12)
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We also deduce from Lemma 2.1 that

m

03A01|03A30394i039Bi(03BE)|v  03A01 max|039Bi(03BE)|v
i=2

 03A01,2 p(03BAv 03BA((c3+2)logp u(N)+c3u(N)p-2))·03A01|u(N)!|v.
But clearly

IIi 2 exp (Kv ln p ((c3 + 2) logp u(N) + c3u(N)p-2))  exp ((3c3 + 2)mN),
while for N as above,

03A02]u(N)!]v  exp ( - u(N) ln l (N) - u(N)(2 + 41n2)).

Since 03A01,2|u(N)!|v = (u(N)!)-1, we finally get
m

03A01|03A30394i039Bi(03BE|v  exp(-mN ln N + (m+2)N ln N03B5(N)). (2.13)
i=2

Now if (03BE) = 0 in all Kv with v|p, l(N)  p  u(N), then (2.10), (2.11),
(2.12), (2.13) would imply

- ln m! - ln H - (m - 1)N ln N - (m - 1)c5N(ln N) 2
(2.14)

 -mN ln N + (m+1)N ln N03B5(n).
Then in both cases (2.5) or (2.6) we would get, with the corresponding
function 03B51(N), that

N ln N(1 - 03B51(N)) - ln H  0, (2.15)

and this contradicts (A"). We have thus established the non vanishing of
the v-adic evaluation of 039B(03BE) for at least one place v E Vl. Furthermore,
(A") implies that

ln H 
 N  lnH ln ln H(1 + 203B51( ln H ln ln H

)), (2.16)

so that in view of Formulae (B’) and (2.11), such a place v E Vi lies above
a prime p in the interval [Plower(ln H), Pupper (ln H)].

We have just proved that for N as in (2.16) we have
m

03A01|0394|03BD &#x3E; 03A01|03A30394i039Bi(03BE)|v
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and therefore (2.10) implies that

03A01|0394|n = 03A01|039B(03BE)03941|v.
Hence for some place v E Vl (above a prime p as above), we deduce from
(2.12)

|039B(03BE)|v  (m!H exp((m-1)N ln N + (m-1)c5N(ln N)1 2))-1, (2.17)

and (2.17) with (2.16) finally implies

|039B(03BE)|03BD  H-m vlnlnH. (2.18)

This estimate shows that we are completely effective: to check the non-
vanishing of 039B(f1(03BE),..., fm(03BE)) in one of these fields Kv, it suffices to trun-
cate the series f2’s at their initial terms, where the number N of terms to be
considered is effectively bounded from above in terms of H(A) and the pa-
rameters défining the constant Ho of Theorem 1.1. More precisely, assuming
that Ho satisfies (A’), that H0  exp exp (8m2 (m + 3 + (m - 1)c5)2), and
that H = max(H(039B), H0), we may simply truncate the series f1,..., fm at
any order

N  803BA(m + 1) (lnlnH) . 

3. Proof of Theorem 1.2

Let D be any differential system as in §1, and let S be its set of singu-
larity, i.e. the union of the zeroes of the denominator T of the Ai,j’s and
(possibly) of the point oo E P1(C). We have to bound the constant ro ap-
pearing in Shidlovsky’s lemma [Sh], p. 93, Lemma 8 (and we then obtain
the bound n0  2ro by p. 99 (83)). By Theorem 1 of [BB] (applied to the
linear case h = 1, and noticing that s is then bounded by the order m of
D) , Shidlovsky’s lemma is valid with

ro = Clm + C2m2

where Cl and C2 can be made explicit in terms of D as follows:

- in view of [BB], Lemma 2bis, C2 is bounded from above by q := degA.
Indeed, we are here considering only one point 03B2, viz. 13 = 0, so ~’ = 0 in
the notations of this lemma;



-252-

Daniel Bertrand, Vladimir Chirskii, Johan Yebbou

- defining Ci requires a local analysis of D: for each a E S, let r03B1 be
the largest non-positive real number such that all the solutions of D near
a have generalized order  Ta, in the sense of [BB], Prop. 1. Then, we may
take Ci = -£aes Ta.

Denoting by R(D) the maximum of the absolute values of the r03B1’s,
a ~ S, we shall finally derive:

n0(D)  2(q + 1)m2(R(D) + 1).

3.1 The case of differential equations

In order to bound R(D) from above, we first assume that D = DL is
the companion form of a differential equation Ly = 0 (i.e., with respect to
Theorem 1.1, that the components of the F-series consist of a solution f
of Ly = 0 and of its derivatives f(k) of order k  m - 1; the hypothesis of
linear independence on the f i’s then means that L is the annihilator of f in
K(z)[d/dz].). Thus,

L = (d/dz)m + a1(z)(d/dz)m-1 +... + am (z) ~ K(z)[d/dz]

is a differential operator of order m, where a = (a1,..., am) is a collection
of elements of K(z). We let T e K[z] be their monic common denominator,
and recall from §1, Remark 1.5, that the height H(a) and degree deg(a) of a
(which we also simply call the height H(L) and degree deg(L) of L in what
follows) is the height of the collection of polynomials T, Ta1,..., Tam. We
set q = deg(L).

In these conditions, L admits at a E S a set of m exponents el, ... , em
in the sense of [Be 2], Proposition 2. Comparing their definition to the
generalized orders of D L , we obtain

r03B1  min(0, min Re(e03B1j)) - qm - (m - 1),

where Re(z) is the real part of the complex number z. Denoting by S(L) the
maximum of all the absolute values of the exponents of L at all singularities
cx of L, we may then take

R(DL)  S(L) + (q + 1)m.

Under the current assumption D = DL, our task has thus turned into
finding an effective upper bound for the absolute values of the exponents
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of L at any given singularity a in terms of the data "’, m, q = deg(L), H(L)
attached to the coefficients ai(z) of L. We shall indeed prove:

LEMMA 3.1. Let L E K(z)]d/dz] be a monic differential operator of
order m, degree deg(L) = q, and height H(L). The exponents of L at any
of its singularities have absolute values at most

C 2(36(q+1)m03BA)9(q+1)2m3m H(L)(503BA)(q+1)m)9(q+1)2m3m.

The proof of Lemma 3.1 proceeds in three steps: we first study the
fuchsian case, then the case where irregular singularities with unramified
determining factors are allowed, and finally the general case.

The fuchsian case

As a preparation for the general case, we first bound Irai | when a is
a regular singularity of L. In this case, the exponents are the usual expo-
nents of Fuchs theory, i.e. the zeroes of the indicial polynomial PL,03B1(X) E
K(03B1)[X] of L at a, so that their absolute values are bounded from above
by m H(PL,03B1)2[K(03B1):Q]. Let us first compute the height of this polynomial
when a = 0. Then, T(z) has a zero of order at most m at 0, ziai(z) is holo-
morphic at 0 for all i’s, and the differential operator zm L reads in terms of
the derivation 03B8 = zd/dz:

zmL = 03B8m + b1(z)03B8m-1 +... + bm(z),
where for each i = 1,..., m, bi is a linear combination of 1, zal, ... , ziai with
constant integral coefficients of absolute value  (2m)m (this is a rough up-
per bound for the coefficients of the matrix expressing the zj (d/dz)j in terms
of the 03B8k). Therefore, the indicial equation PL,0(X) = xm + b1(0)Xm-1 +
... + bm (0) satisfies:

H(PL,0)  (2m)m+1H(L)203BA.

Putting t = z-1, td/dt = -zd/dz, we obtain the same bound for H(PL,~).

For a general finite a, we set

t = z - a , L = (d/dt)m + a03B11(t)(d/dt)m-1 + ... + a03B1m (t) E K(03B1)(t)[d/dt],
where the a03B1i(t) = ai(t + a) form a collection of rational functions in
K(03B1)(X) of degree q and height

H(a03B1)  q2qH(a)qH(a) C (2q)qH(L)303BAq
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(recall that a is a zero of T, hence has height  qH(L)2,). Since [K(a) :
Q]  rq, the indicial polynomial of L at a finally has height

H(PL,03B1)  (2m)m+1((2q)qH(L)303BAq)203BAq  (4qm)203BAmq2 H(L)603BA2q2.

Thus, Lemma 3.1 holds with

S (L ) K m((4qm)203BAmq2 H(L)603BA2q2)203BAq,
hence n0(DL)  m(4mq)503BA2mq3 H(L)1203BA3q3 whenever L is fuchsian over
P1 (C) -a situation which does not occur for F-series, but which would
be automatic if dealing with G-functions.

The irregular unramified case

We now assume that 03B1 is an irregular singularity of L. When cx is finite,
this implies that q &#x3E; 1 (in fact, q &#x3E; 1 is automatic for F-series), and we
shall henceforth suppose that q  1. By the same method as above (taking
t = 1 / z when L is written in terms of 0, replacing a(z) by a03B1(t ) : := a (t + a)
when a is finite), we may restrict to the case a = 0. In the final estimate
for 03B5(L), we’ll just have to replace H(L) by (2q)qH(L)303BAq and 03BA by fB;q.

Embedding K(z) in the field K((z)) of meromophic formal series, we
view L as an element of K((z))[d/dz]. Each exponent of L (at 0) is then a
zero of the indicial polynomial PL,03B1=0,03C9 attached to a ’determining factor’
w of L. We here bound their height under the assumption that all the deter-
mining factors of L at 0 are polynomials (rather than Puiseux polynomials)
in 1.z

We must first determine the determining factors themselves. As shown
by J. Yebbou [Ye], this can be achieved by a direct formula when m  3,
but the general case requires an iterative computation, as follows. The first
point in this computation is that the determining factors of L are invariant
under truncation of the coefficients of L up to z-adic order m (q - 1). This
is shown in [BV], Theorem on p. 52 (for a more direct, though not explicit,
proof of this fact, see [Ro] and the contemporary work of B. Malgrange, as
quoted in Robba’s paper.) Thus, we can replace L by

L = (dldz)- + ã1(t)(d/dz)m-1 +... + âm (z) E K[z, z-1][d/dz],

where the âi’s are Laurent polynomials in z satisfying

Vi = 1,...,m,ãi ~ ai mod. zm(q-1).
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The corresponding collection of rational functions à admits T = zt,
where t = or d0(T)  q, as common denominator, and satisfies de g(ã)
 m(q - 1) + t  2mq. Since the power series expansion of zt/T is ma-
jorized by 03A3i0H(T)203BA(i+1)(1 + z)(q-1)izi, while the common denominator
of its first m(q-1) terms is bounded by H(T)203BB(m(q-1)+1), we eventually get

H(L) := H(ã)  2mq.mg2.2mq2H(L)203BAmq+1  8mq2H(L)303BAmq.

View z"zL = (03B8) = 0"2 + 1(z)03B8m-1 + ... as a polynomial in 0 = zd/dz
(its coefficients i(z) = 03A3-tjmqi,jzj therefore form a collection of Laurent
polynomials of height H()  (2m)mH()), and consider a positive slope
s of its Newton polygon. By our current assumption in this paragraph, the
slopes, which lie betwen 0 and q, are integers, so that the determining factors
for this slope have the shape

03C9 = 03BB0 zs + 03BB1 zs-1 +···+03BBs z.

They are characterized by the fact that the Newton polygon of (03B8 + 03C9)
has a horizontal side (i.e. that the minimal value of the z-adic valuations
of its coefficients is reached by one of positive index). The terms btj of
the operator (03BB) := (03B8 + 03BB zs) = 03A3i,j03BBi,jzj03B8i are linear forms in the i,j’s,
whose coefficients are polynomials in À of degree  m and height  (2ms)ms
(note that (03B8 + 03BB zs)i = 03A30j,k,~i dijk~ z-ks03BB~03B8j, where the dijk~ are integers
of absolute value  (i + 2)!si ), so that each btj can be viewed as an
element of K[03BB] of degree  m in À and height (2ms)2msH(). Now, Ao
can occur as highest term of a determining factor 03C9 of degree s only if
one of these polynomials Éfj vanishes at À = 03BB0: indeed, for a generic À,
the Newton polygon of (03BB) has a side of minimal slope s, which can break
down (providing a new slope  s -1 ) only if one of its monomials of minimal
valuation vanishes. Therefore, Ào is an algebraic number of degree  03BAm

and height H(03BB0)  (2ms)503BAmsH()203BA.
We can repeat this process to get 03BB1 from the now known (03BB0) =

om + 03BB01(z)03B8m-1 +..., whose coefficients 03BB0i(z) = 03A3-t-msjmq03BB0i,jzj form
a collection of Laurent polynomials of height 

H(03BB0)  (2ms)2ms+1H()H(03BB0)m  (2ms)803BAmsH()303BAm,
defined over a number field of degree  03BAm, and whose Newton polygon
does present a slope  s - 1. In the end, we obtain that 03C9 is a element

of K03C9[1 z] of degree s, where 1  s  q, KW is a a number field of degree
 03BAm2, and

H(03C9)  (2ms)(8s03BA)2ms2H()(3k)sms2.
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To compute the exponents corresponding to this determining factor,
we must go back to L (truncating at L would not be enough). Writing
zmL = D(0), we know by now that the Newton polygon of D(0 + cv) has a
side of slope 0, hence an indicial polynomial PL,o,W := PDw of positive degree
(equal to the length of that side), and the exponents corresponding to 03C9 are
precisely the roots of PD,,, cf. [Be 2]. The coefficients of DW are rational
functions bi (z) E K03C9(z), admitting zq’T(z), for some q’  mq, as common
denominator. Expressing them as linear forms in those of D(03B8) (which have
height  (2m)m+1H(L)) and recalling that H()  8mq2 H(L)303BAmq, we
deduce as above that their height is bounded by

H(b03C9)  (2mq)(8q03BA)qmq2(8mq2H(L)303BAmq)(303BA)qmq2  2(32qK,m)2q H(L)(303BAm)3q2.
An analysis similar to the Fuchsian case gives:

H(PL,0,03C9)  (2m)m+1(H(b03C9))203BAmq,
so that all the exponents of L at 0 have absolute value at most

mH(PL,0,03C9)203BAmq  2(34qkm)2q2H(L)(503BAm)3q2.

The irregular ramified case

In general, the slopes at an irregular singularity (say again at cx = 0)
are not integral, but the general theory (see, for instance, [BV]) implies that
they all become integers after extension of scalars from C((z)) to C((z1/m!)).
More precisely, setting t"2! = z, and Km = K(e203C0i/m!), the differential
operator L turns into a differerential operator Lm E Km(t)[d/dt] whose
slopes at t = 0 are integers. In the process, the exponents of L are mul-
tiplied by m! (but are unchanged when expressed in the parameter z), K
becomes 03BAm ~ rmm, the degree q of L is turned into deg(Lm) ~ mmq,
while H(Lm) ~ m2m H(L). Applying the previous result to Lm, we derive
that in the general case, the exponents of L at 0 have absolute value at most

2(34qmm03BAmm+1 )2q2m2m (m2mHL (503BAmm+1 )3q2m2m

~ 2(35qm03BA)6q2m3m H(L)(503BAm)6q2m3m .

The same bounds holds when the singularity is at oo. Replacing H(L) by
(2q)qH(L)303BAq and 03BA by Kq to deal with singularities a at finite distance, we
finally obtain the upper bound

03B5(L)~ 2(36qm03BA)9q2m3m H(L)(503BAqm)9q2m3m,
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and the proof of Lemma 3.1, hence of Theorem 1.2 (under the current
assumption D = DL ), is completed, with c(03BA,m,q) = Log2C(03BA,m,q) =
(203BAqm)(2qm)4m (when q ~ 1; the case q - 0 is easily settled by a direct
study).

3.2 From differential équations to général systems

Finally, we show how to reduce the estimates for a general differential
system of rank m as in §1 :

Y’ = A(z)Y (D)

to the case, treated just above, of a differential equation Ly = 0. This is
achieved by an effective version of the existence theorem for cyclic vectors,
according to which there exists a matrix P E GLm(K(z)) such that A[P] =
P-1AP - P-1 P’ is the companion matrix of a differential equation Ly =
0, for some differential operator L E K(z)[d/dz] of order m. The gauge
transformation V = P-1 Y then turns the solutions Y of Y’ = AY into the
solutions V of V’ = A[p]V, which, on setting V = t(y,y’,...,y(m-1)), are
in bijection with the solutions y of Ly = 0.

As in §1, Remark 1.5, we denote by H(D) = H(A) (resp. deg(D ) =
deg (A) ) the height (resp. degree) of the collection of rational functions Ai,j E
K(z) formed by the entries of the matrix A, by T E K[z] their monic
common denominator, and we set deg(D) = q. Our task thus consists in
constructing a differential operator L (i.e. a matrix P) as above, and then

1) bounding from above the data H(L), deg(L) corresponding to L in
terms of K, m, q, H(D), deg(D) on the one hand;

2) bounding from above the maximum 7Z(D) of the absolute values of
the generalized orders r03B1 ~ 0 of D (cf. beginning of §3) in terms of 03B5(L) on
the other hand.

The first task is achieved by the following

LEMMA 3.2. - Let K be a number field of degree 03BA over Q, and let D
be a differential system of rank m over K(z), with degree deg(D) = q and
height H(D). There exists a differential operator L E K(z)[d/dz] of order
m, degree deg(L) ~ 5(q + 1)m 2 and height

H(L) ~ ((2m + q)H(D)) 1641«q+1)m4

such that D and the differential equation Ly = 0 are equivalent over K(z).
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Proof. - Consider the differential operator U ~ DU := U + tAU on
(K(z))m, and denote by Ei = t(0,..., 0,1, 0, ... , 0) the standard basis of
(K(z))m. To a given element 03B3 of K, we associate the vector

U = 03A3j=0,...,m-1(z-03B3)j(03A3~=0,...,j(-1)~(m-1)! ~!(j-~)!D~(Ej-~))
of (K(z))m, and we let Q = Q, be the m x m matrix whose columns are
the m x 1 vectors

U03B3, DU03B3,...,Dm-1U03B3.
According to [K], det(Q03B3) is a non-zero element of K(z) apart from at most
m(m - 1) values of -y, or as soon as q is not a pole of the matrix tA. Under
either assumption, DmU03B3 can be expressed as a linear combination

DmU03B3 = -03A3i=0,...,m-103B1m-1DiU03B3
with coefficients ai E K(z) depending only on q and A. We can then consider
the matrix P = ’Q-1, and a standard computation shows that

A[p] := P-1AP - P-1P’ = t[Q-1 (tA)Q + Q-1Q’]

is the companion matrix to the differential equation Ly = 0, where

L = L03B3,A = (dldz)m + a1(z)(d/dz)m-1 + .... + 03B1m(z).

We now fix some natural number -y E Z, 0 ~ 03B3 ~ m2 satisfying the above
requirement det(Q03B3) ~ 0. Denoting by Tl (z) E ZK[z] a suitable common
denominator (relative to the ring ZK [z]) of the corresponding rational func-
tions ai, we shall compute upper bounds ql, Hl for the degree and height of
the collection of polynomials Tl , Tl ai E ZK [z] in terms of m, q, H (A). Un-
der these conditions, deg(L) ~ qi, while H(L) ~ (2q1)q1H203BAq11 by Gelfond’s
lemma, so that our first task will be completed. Let ô be the least common

denominator of the coefficients of the polynomials T, TAi,j, and let Tl = 8T.
Note that T1, T1Ai,j form a collection of polynomials in ZK [Z] of degree q
and height H1(A) ~ H(A)2, and that TID maps the ZK-module (ZK[z])m
of integral polynomial vectors into itself.

By Cramer’s rule, 03B1m-i = -det(U03B3,...,DmU03B3,...,Dm-1U03B3) det(U03B3,...,DiU03B3,...,Dm-1U03B3) 0,...,
m - 1, which by Leibniz formula may be rewritten as

03B1m-i= -Tm2+m(m-1)/21 det(U03B3,...,DmU03B3,...,Dm-1U03B3) det(Tm1U03B3,...,(T1D)i(Tm1U03B3),...,(T1D)m-1(Tm1U03B3)).
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Since T1D maps polynomial vectors of degree d into polynomial vectors of
degree ~ q + d, and since Tm1U03B3 E (ZK[z])m has degree ~ m + qm, the
bottom term A := det(TrU-y,..., (T1D)m-1(Tm1U03B3)) appearing in the last
quotient is an integral polynomial of degree ~ 2(q+ 1)m2. A rougher analysis
of the upper term then implies that Tl := T2m21 0394 is a common denominator
for the ai’s with respect to the ring ZK Z] . The degree of Tl is ~ 4(q+ 1)m2,
while its height is bounded from above by

H(Tl ) C (2m + q)14m2 Hl (A)4m2.

Indeed, T1D maps polynomial vectors of height h and degree d in (ZK[Z])m
into polynomial vectors of height ~ m(q+d+1)hH1(A)+(q+d)dhH1(A) ~
(m + d) (q + d + 1)hH1 (A), while the height of Tm1U03B3 is bounded from above
by (m + q)8m HI(A)m (recall that the height of 03B3 is ~ m2).

A similar computation on the numerators Tl ai shows that their degrees
are bounded by 5(q + 1)m2 = ql, while their heights are

~ (2m + q)16m2H1(A)6m2 = H1. Our differential operator L = L,,,A there-
fore satisfies

q := deg(L)  5(q + 1)m2 ; H(L)  (2m+q)164(q+1)03BAm4H(A)12003BA(q+1)m4.
This concludes the proof of Lemma 3.2, and in conjunction with our previous
step, implies that

L C 2(36mk)92m3mH(L)(5km)92m3m  (2H(A))(2k(q+1)m)(2(q+1)m)7m

Our second task is easier to achieve: since the C-linear map y - Y =

pt (y, y’, .., y(m-1)) yields an isomorphism between the spaces of solutions
of Ly = 0 and of Y’ = AY, the generalized orders r03B1  0 of the system (D)
at any of its singularities a are bounded from below by 03BD03B1(P) - 03B503B1(L) -
(m - 1) - qm, where 03B503B1(L) (resp. 03BD03B1(P)) denotes an upper bound for the
absolute values of the exponents of L at a (resp. for the order of P at a).
Since P =t Q-103B3, we infer from the analysis of the determinant A above and
of its minors that 03BD03B1(P)  4(q + 1)m2 at all 03B1’s (including oo), so that

R(D)  S(L) + 5(q + 1)m2,

and Shidlovsky’s constant for a general system (D) may at long last be
bounded from above by n0(D)  C(k, m, q) H(A)c(k,m,q), with

c(K, m, q) = L092C(K, m, q) = (2k(q + 1)m)(2(q+1)m)8m.
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