CHRISTOPH GELLHAUS TILMANN WURZBACHER

Holomorphic group actions with few compact orbits

Annales de la faculté des sciences de Toulouse 6^e série, tome 10, n° 2 (2001), p. 293-298

<http://www.numdam.org/item?id=AFST_2001_6_10_2_293_0>

© Université Paul Sabatier, 2001, tous droits réservés.

L'accès aux archives de la revue « Annales de la faculté des sciences de Toulouse » (http://picard.ups-tlse.fr/~annales/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Holomorphic group actions with few compact orbits (*)

CHRISTOPH GELLHAUS⁽¹⁾, TILMANN WURZBACHER⁽²⁾*

RÉSUMÉ. — Pour une grande classe de variétés compactes complexes, contenant les images méromorphes des espaces de Kähler compacts, nous montrons le théorème suivant: Soit G un groupe de Lie complexe agissant holomorphiquement sur X tel qu'il y a qu'un nombre fini positif d'orbites compactes. Alors X est un fibré $G \times_I F$, où G/I est le tore d'Albanese de X et F est une fibre de l'application d'Albanese. De plus, F est connexe et son premier nombre de Betti est nul.

ABSTRACT. — For a large class of compact complex manifolds, including for example meromorphic images of compact Kähler spaces, we prove the following theorem: Let G be a complex Lie group acting holomorphically on the manifold X and suppose there is at least one, but only finitely many compact orbits. Then X is a fibre bundle $G \times_I F$, where G/I is the Albanese torus of X and F is a fibre of the Albanese map. Furthermore F is connected and has vanishing first Betti number.

1. Introduction

Holomorphic group actions on a compact complex manifold X with an open set of compact orbits are studied in [GeWu]. There it is proved that X consists only of compact orbits and is itself of a product structure, reflecting the single orbit decomposition of Borel and Remmert, provided there are no

^(*) Reçu le 3 novembre 2000, accepté le 9 juillet 2001

⁽¹⁾ Technische Fachhochschule zu Bochum, Fachbereich Elektrotechnik, Herner Str. 45, D-44787 Bochum, Germany.

⁽²⁾ Laboratoire de Mathématiques, Université de Metz et C.N.R.S., Ile du Saulcy, F-57045 Metz cedex 01, France.

^{*} Corresponding author (email: wurzbacher@poncelet.univ-metz.fr, fax: (33) 03.87.31.52.73)

equivariantly embedded complex tori in the fibres of the Albanese mapping. This condition especially holds true if X is Kähler.

The authors would like to mention that they learned that this result was, in the Kähler case, already proved by D. Snow in 1981 ([Sn]). He used methods, which – in contrast to those of [GeWu] – depend on the fact that the connected automorphism group of a compact Kähler space acts compactifiably (cf. [F], [L]). In the algebraic case parts of this result were obtained by J. Konarski in 1981 ([K]).

Furthermore, Snow showed that the set C of compact orbits of a holomorphic action is analytic, if X is Kähler. In this note we consider the case that C is extremely small, i.e. there are only finitely many compact orbits. For manifolds in Fujikis class C (see [F]), which contains for example Kähler and Moišhezon manifolds, the following observation can be made:

THEOREM. — Let X be in C, $G \times X \to X$ a holomorphic action of a connected complex Lie group such that there is at least one, but only finitely many compact orbits. Then the following holds:

X is a fibre bundle $G \times_I F$, where G/I is the Albanese torus of X and F is a fibre of the Albanese map.

Furthermore F is connected and has vanishing first Betti number.

Remark. — Looking at a \mathbb{C}^n -action as a multidimensional generalization of a holomorphic dynamical system, the case that I is discrete, corresponds to the "suspension" of the discrete dynamical system I on F in a continuous system, the \mathbb{C}^n -action on X.

2. Proofs

Let G always denote a connected complex Lie group. If $G \times X \to X$ is a holomorphic action on a complex space, we refer to X as a holomorphic G-space. In this situation C_G will be the set of compact G-orbits in X.

For smooth X one has the Albanese map $\Psi_X : X \to \text{Alb } X$ (see [Bl]). The equivariance of ψ_X implies that there is an induced Lie group homomorphism $\lambda_X : \text{Aut}_{\mathcal{O}}(X) \to \text{Aut}_{\mathcal{O}}(\text{Alb } X)$. The kernel of λ_X restricted to the connected component of the identity in $\text{Aut}_{\mathcal{O}}(X)$ is called L(X), the "linear" automorphisms of X.

Using the compactness of the irreducible components of the space of analytic cycles in complex spaces in class C resp. Kähler spaces, Fujiki re-

Holomorphic group actions with few compact orbits

spectively Lieberman prove that L(X) carries the natural structure of a linear algebraic group (Cor. 5.8 in [F], Thm. 3.12 in [L]). For a subgroup H of L(X), \overline{H} will denote the Zariski closure with respect to this structure.

Consider now a smooth holomorphic G-space X. We may assume that G acts without ineffectivity. Let $I = G \cap L(X)$ and \overline{I} the closure of I. Furthermore fix a Levi-Malcev decomposition $\overline{I}^{\circ} = R_{\overline{I}^{\circ}} \cdot S_{\overline{I}^{\circ}}$ of \overline{I}° .

LEMMA 1. — Let X be a smooth holomorphic G-space in C and x in X. Assume C_G is not empty. Then the following statements are equivalent:

(1) G(x) is compact.

- (2) I(x) is compact.
- (3) $\overline{I}(x)$ is compact.
- (4) $R_{\bar{I}^{\circ}}$ fixes x and $S_{\bar{I}^{\circ}}(x)$ is compact.

Proof. — Without loss of generality, we assume throughout this proof that G acts effectively on X.

(1) \iff (2) Since $\operatorname{Aut}_{\mathcal{O}}(\operatorname{Alb} X)^{\circ} = \operatorname{Alb} X$ the isotropy groups of the induced *G*-action on Alb *X* is equal to *I* for all points in Alb *X*. Since *C_G* is not empty, this implies that all *G*-orbits on Alb *X* are compact. Thus, *G*(*x*) is compact iff *I*(*x*) is compact.

(2) \implies (3) The group of all g in L(X) which stabilize the compact analytic set I(x) is a Zariski closed subgroup of L(X) (Lemma 2.4 in [F], Prop. 3.4 in [L]). Hence \overline{I} stabilizes I(x) and consequently $\overline{I}(x) = I(x)$.

(3) \implies (4) Since the radical $R_{\bar{I}^{\circ}}$ is a connected solvable subgroup of L(X) the Borel Fixed Point Theorem for class C (cf. the proof of Prop. 6.9 in [F] resp. [So] in the Kähler case) shows that it has a fixed point on each component of $\bar{I}(x)$. Since $R_{\bar{I}^{\circ}}$ is normal in \bar{I} , it acts trivially on $\bar{I}(x)$. Therefore $S_{\bar{I}^{\circ}}$ acts transitively on the \bar{I} -components.

(4) \Longrightarrow (2) Since $G/I = \lambda_X(G)$ is a subtorus of Alb X, I/I° is an abelian discrete group. Thus the commutator group $I' \subset I^{\circ}$ and $I'' \subset (I^{\circ})'$. By a result of Chevalley (Thm. 13 and Thm. 15 of paragraph 14, Chapter II in [Ch]) $(I^{\circ})' = (\overline{I^{\circ}})'$ and this group is Zariski closed in \overline{I} .

It follows that the Zariski closure of I'' is contained in I. Since I is Zariski dense in \overline{I} , the same holds true for I'' in $(\overline{I})''$. Therefore $(\overline{I})'' \subset I$ and a fortiori $S_{\overline{I}^\circ} \subset I^\circ$. This fact shows that $I^\circ(x)$ equals $S_{\overline{I}^\circ}(x)$. Since \overline{I} has only finitely many connected components, the assumptions imply that $\overline{I}(x)$ is compact. Obviously the same holds now for I(x).

The proof of $((2) \Longrightarrow (3))$ shows that indeed $I(x) = \overline{I}(x)$. \Box

COROLLARY 1 (Snow). — C_G is analytic.

Proof. — If the set C_G of compact *G*-orbits is not empty Lemma 1 shows $C_G = C_{S_{\bar{I}^\circ}} \cap (\text{Fix } R_{\bar{I}^\circ})$. Since a fixed point set is obviously analytic it suffices to consider connected semisimple groups S.

A compact S-orbit in a complex space X in class C is a homogeneousrational manifold S/P (Thm. on p. 255 in [F] respectively [BoRe] in the Kähler case). Thus an arbitrary, but fixed Borel subgroup B of S has nonempty fixed point set on each compact orbit.

It follows that the map

$$\phi: S \times (\operatorname{Fix} B) \to X$$
, $\phi(s, x) := s \cdot x$

has image C_S . Factorizing ϕ via

$$\overline{\phi}:S/B imes(\mathrm{Fix}\,B) o X\;,\qquad \overline{\phi}(sB,x):=s\cdot x$$

we realize C_S as the image of an analytic space under a proper holomorphic map. The proper mapping theorem of Remmert (see e.g. [CAS]) yields the analyticity of C_S .

COROLLARY 2. — If C_G is not empty and A a closed G-invariant analytic set, then C_G intersects A in a non-empty set.

Proof. — By Lemma 1 it is enough to show that \bar{I} , which stabilizes A, has a compact orbit on A. This follows from the fact that for all x in X, $\bar{I}(x)$ is a constructible set with respect to the analytic Zariski topology of X since \bar{I} acts meromorphically/compactifiably (Lemma 2.4 in [F], Remark 3.7 in [L]). \Box

Remark. — Lieberman states that $G \cdot A$ is Zariski open in its Zariski closure if G acts compactifiably and A is analytic. Obviously this is wrong even in the algebraic case. What is meant is that $G \cdot A$ contains a Zariski open subset of its (analytic) Zariski closure in X.

Proof of the Theorem. — Without loss of generality we assume that G acts effectively on X.

Holomorphic group actions with few compact orbits

Step 1. Fibre bundle structure of the Albanese map.

By assumption C_G is not empty. Thus the induced G-action on Alb X has only compact orbits, all of them isomorphic to G/I, where $I = G \cap L(x)$. Applying Cor. 2 to the analytic sets

$$\Psi_X^{-1}\big(\lambda_X(G)(\Psi_X(x))\big) = G \cdot \Psi_X^{-1}\big(\{\Psi_X(x)\}\big)$$

it follows that G has at least as many compact orbits in X as in $\Psi_X(X)$. Since $\Psi_X(X)$ is connected the assumptions of the theorem imply that $\Psi_X(X)$ is only one G-orbit, which is a subtorus of Alb X. Universality of the Albanese torus implies that Ψ_X is surjective.

Denoting $\Psi_X^{-1}(\{0\})$ by F it is easily checked that the map

$$G \times_I F \to X$$
, $[g, f] \mapsto g \cdot f$

is G-equivariant and biholomorphic.

Step 2. The topology of the Ψ_X -fibre F.

Stein factorization of Ψ_X together with the universality of Ψ_X yields the connectivity of the Ψ_X -fibres.

Since I stabilizes F the same follows for the Zariski closure \overline{I} in L(X). By Lemma 1 an \overline{I} -orbit in F is closed iff the resp. I-orbit is closed iff the resp. G-orbit is closed. Thus we have only finitely many compact \overline{I} -orbits in F. Since $\overline{I}/\overline{I}^{\circ}$ is finite the same holds true for \overline{I}° . Applying Step 1 to the action $\overline{I}^{\circ} \times F \to F$, Alb F turns out to be \overline{I}° -homogeneous.

In [GeWu] it is shown that the Borel Fixed Point Theorem implies that the restriction morphism

$$\operatorname{Stab}_F\operatorname{Aut}_{\mathcal{O}}(X) \to \operatorname{Aut}_{\mathcal{O}}(F)$$

maps $L(X)^{\circ}$ into L(F) (for F the Albanese fibre as above).

Thus Alb F is homogeneous under a subgroup of L(F), which clearly says that Alb F reduces to a point. By the equality $\frac{1}{2}b_1(Y) = \dim_{\mathbb{C}}(Alb Y)$ for Y in class \mathcal{C} (Cor. 1.7 in [F]) the first Betti number of F must vanish.

Acknowledgements. — We would like to thank J. Winkelmann for interesting discussions. Christoph Gellhaus, Tilmann Wurzbacher

Bibliography

- [Bl] BLANCHARD (A.). Sur les variétés analytiques complexes, Ann. Sci. école norm. super. 73 (1956), 157–202.
- [BoRe] BOREL (A.), REMMERT (R.). Über kompakte homogene Kählersche Mannigfaltigkeiten, Math. Ann. 145 (1962), 429–439.
- [CAS] GRAUERT (H.), REMMERT (R.). Coherent Analytic Sheaves, Springer, Berlin Heidelberg New York Tokyo, 1984.
- [Ch] CHEVALLEY (C.). Théorie des groupes de Lie II. Groupes algébriques, Hermann, Paris, 1968.
- [F] FUJIKI (A.). On automorphism groups of compact Kähler manifolds, Invent. math. 44 (1978), 225–258.
- [GeWu] GELLHAUS (C.), WURZBACHER (T.). Holomorphic group actions with many compact orbits, Comment. Math. Helvetici 64 (1989), 639–649.
- [K] KONARSKI (J.). Properties of projective orbits of affine algebraic groups, Lect. Notes Math., Vol. 956, 79–91, Springer, 1982.
- [L] LIEBERMAN (D.). Compactness of the Chow Scheme: Applications to automorphisms and deformations of Kähler manifolds, Lect. Notes Math., Vol. 670, 140–186, Springer, 1978.
- [Sn] SNOW (D.). Transformation groups of compact Kähler spaces, Archiv der Math. 37 (1981), 364–371.
- [So] SOMMESE (A.J.). Extensions Theorems for reductive group actions on compact Kähler manifolds, Math. Ann. 218 (1975), 107–116.