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RÉSUMÉ. - Nous établissons et étudions un lien entre jougs et formes
symplectiques. Nous montrons que les jougs normalises correspondent
a certaines formes symplectiques. Nous présentons une méthode pour
construire de nouveaux jougs à partir de jougs donnés. Celle-ci est

motivée en partie par la dualite entre la formulation hamiltonienne et
la formulation lagrangienne de la mécanique conservative. Nous nous

proposons quelques variantes de cette construction.
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ABSTRACT. - A relationship between yokes and symplectic forms is
established and explored. It is shown that normalised yokes correspond
to certain symplectic forms. A method of obtaining new yokes from old
is given, motivated partly by the duality between the Hamiltonian and
Lagrangian formulations of conservative mechanics. Some variants of this
construction are suggested.
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1. Introduction

In the differential-geometric approach to statistical asymptotics a central

concept is that of a yoke, key examples being the observed and expected
likelihood yokes.
A yoke on a manifold M is a real-valued function on the "square" M x M

of M, satisfying conditions (2.1) and (2.2) below (Barndorff-Nielsen [7]).
Yokes which are restricted to be non-negative and are zero only on the

diagonal are known as contrast functions. For uses of contrast functions in
statistics see, e.g., Eguchi [16] and Skovgaard [24]. In applications of yokes
to statistical asymptotics we are particularly interested in the values of the

yoke near the diagonal 0~ of M x M, ( c~ 
A suitable neighbourhood of Aj~ in M x M can be regarded as the total

space of the normal bundle of 0~ in M x M and this normal bundle is

isomorphic to the tangent bundle TM of M. Furthermore, a yoke on M
determines a (possibly indefinite) Riemannian metric, which can be used to
identify the tangent bundle TM with the cotangent bundle T*M. .

One of the main contexts in which cotangent bundles occur is in conser-
vative mechanics (see e.g., Abraham and Marsden [I], and Marsden [19]),
where they are known as the phase spaces. The geometrical concept is

that of a symplectic structure. A survey of symplectic geometry and its

applications is given by Arnol’d and Givental’ [3].
The role of Hamiltonians in conservative mechanics and their relation to

exponential families suggest that symplectic geometry may have a natural
role to play in statistics. It is relevant here also to mention the work

of Combet [13] which discusses certain connections between symplectic
geometry and Laplace’s method for exponential integrals.

In view of the results to be described below we think it fair to say that

there exists a natural link, via the concept of yokes, between statistics
and symplectic geometry. How useful this link may be seems difficult to
assess at present. Other links have been discussed by T. Friedrich and
Y. Nakamura. Friedrich [17] established some connections between expected
(Fisher) information and symplectic structures. However, as indicated

in Remark 3.4, his approach and results are quite different from those
considered here. Nakamura ([22], [23]) has shown that certain parametric
statistical models in which the parameter space M is an even-dimensional
vector space (and so has the symplectic structure of the cotangent space of



a vector space) give rise to completely integrable Hamiltonian systems on
M. In contrast to these, the Hamiltonian systems considered here arise in
the more general context of yokes on arbitrary manifolds M and are defined
on some neighbourhood of 0~ in M x M.

Section 2 reviews the necessary background on yokes, symplectic struc-
tures and mechanics. In Section 3, we show that every yoke on a manifold
M gives rise to a symplectic form, at least on some neighbourhood of the
diagonal of M x M, and in some important cases on all of M x M. By
passing to germs, i.e., by identifying yokes or symplectic forms which agree
in some neighbourhood of the diagonal, we show that normalised yokes are
almost equivalent to symplectic forms of a certain type. (However, from
the local viewpoint there is nothing special about those symplectic forms
which are given by yokes, since Darboux’s Theorem shows that locally ev-
ery symplectic form can be obtained from some yoke; see Example 3.1.) In
Section 4, we consider some uses of the symplectic form given by a yoke.

There is an analogy between conservative mechanics and the geometry
of yokes in that symplectic forms play an important part in both areas. In
Section 5, this analogy is used to transfer the duality between the Hamilto-
nian and Lagrangian versions of conservative mechanics to a construction
for obtaining from any normalised yoke g another yoke g, called the La-
grangian of g, which has the same metric as g and is, in some sense, close
to the dual yoke g* of g.

Section 6 considers Lie group actions on the manifold and the associated
momentum map, which takes values in the dual of the appropriate Lie
algebra.

An outline version of some of the material presented in this paper is given
in Barndorff-Nielsen and Jupp [11]. .

2. Preliminaries

2.1 Yokes

Let M be a smooth manifold. We shall sometimes use local coordinates

(cv 1, ... , wd) on M and, correspondingly, local coordinates ... , wd; ;
w’ l , ..., on M x M. Furthermore, we use the notations



For a function on M x M, the corresponding gothic letter will indicate
restriction of that function to the diagonal, so that, e.g.,

In coordinate terms a yoke on M is defined as a smooth function

g : M x M -~ M such that for every w in M:

The coordinate-free definition of a yoke is as follows. For a vector field
X on M, define the vector fields X and X ’ on M x M by X = (X, 0) and
X ~ _ (o, X), i.e., >

where pk : M x M - M is the projection onto the kth factor. Then, for
vector fields X and Y on M, we define ~ Y) M --~ R by

A yoke on M may now be characterised as a smooth function g : M x lV~ -~ R
such that:

(i) Xg(v, c~) = 0 for all w in M,

(ii) the (0, 2)-tensor (X, Y) ~ is non-singular.

An alternative way of expressing (i) and (ii) is that on a~:

(i) 
(ii) d1 d2g is non-singular,

where d1 and d2 denote exterior differentiation along the first and second
factor in M x M, respectively.



Example 
The simplest example of a yoke is the function g defined

by

For all 03C9’, the function 03C9 ~ g(03C9,03C9’) has a (unique) maximum = 03C9’,
so that (2.1) holds. Since ~gi~~ (w)~ is the identity matrix, (2.2) holds. Some
generalisations of this example are given in Examples 5.1-5.3.
Two of the most important geometric objects given by a yoke are a

(possibly indefinite) Riemannian metric and a one-parameter family of
torsion-zero affine connections. The metric is the (0,2)-tensor (X, Y) ~

( ~’), given in coordinate form by the matrix (gi~~~. For a in ?, the
a

a-connection ~ is defined by

0
where V is the Levi-Civita connection of the metric and T is given by

g(TxY ( Z)(W ) = X Y’ Z’g(c~, c~) - Y Z X ’g(cv, w) .
a

Note that T is a ( 1, 2)-tensor. The lowered Christoffel symbols of V at w
are given by

and the (0,3)-tensor corresponding to T is the "skewness" tensor with
elements

For applications to statistics of the metric and the a-connections of expected
and observed likelihood yokes, see Amari [2], Barndorff-Nielsen ([6], [8]) and
Murray and Rice ([21]).
A normalised yoke is a yoke satisfying the additional condition

Except where explicitly stated otherwise, we shall consider only normalised
yokes. For any yoke g, the corresponding normalised yoke is the yoke 9
defined by



and the dual yoke is the yoke g* defined by

Note that g* is necessarily a normalised yoke.
In the statistical context the two important examples of normalised yokes

are the expected likelihood yoke and the observed likelihood yoke. For a

parametric statistical model with parameter space M, sample space X and

log-likelihood function £ : M x X -~ M the expected likelihood yoke on M
is the function g given by

Given an auxiliary statistic a such that the function .c ~ a) is bijective,
the observed likelihood yoke on M is defined as the function g given by

For more about expected and observed likelihood yokes see Barndorff-

Nielsen ([7], [8]), Chapter 5 of Barndorff-Nielsen and Cox [9] and Blaesild
[12].

Differentiation of (2.1) yields the important result

This shows that the matrix is symmetric, a property which is not

obvious at first sight. Similarly, differentiation of (2.5) shows that for a
normalised yoke g we have

Differentiation of (2.7) yields

Similarly, for a normalised yoke g, we have



Differentiation of (2.10) and (2.11) yields

Formulae (2.7) and (2.10)-(2.13) are special cases of the general balance
relations for yokes. See formula (5.91) of Barndorff-Nielsen and Cox [9].

For the applications so far made of yokes to statistical asymptotics the
important part of a yoke is its germ round the diagonal, or even just its
oo-jet at the diagonal. In particular, this oo jet has been used to construct
the associated tensors and affine connections. See, for instance, Blaesild [12]
and references given there. (Recall that two functions on M x M have the
same germ at A~- if they agree on some neighbourhood of A~- and that
two such functions have the same oo jet at A~- if at each point of 0~ their
derivatives of any given order agree.)

By using partial maximisation, it is possible to define a concept of

"profile" yoke. In Remark 3.3 we shall discuss briefly how this concept
fits together with the idea of the symplectic form of a yoke, another concept
to be introduced in Section 3.

2.2 Symplectic structures

Let N be a manifold of dimension k. A symplectic structure or symplectic
form ?y on N is a non-singular closed 2-form on N, i.e.:

(i) ?y is a 2-form (skew-symmetric (0, 2)-tensor) on N;
(ii) at each point n of N, the map TnN ~ Tn N given by X ~ X~

is nonsingular (where X~ denotes the 1-form defined by =

Y) for Y in TnN);
(iii) d?? = 0.

The standard example of a symplectic form is

on where ... , xd are the standard linear coordinates obtained
from a base of and y1, ... yd are the coordinates on obtained from



the dual base. Locally, this is the only example of a symplectic form, because
Darboux’s Theorem (e.g. Abraham and Marsden [1, p. 175]) states that a
2-form ~ on N is a symplectic form if and only if round each point of N
there is some coordinate system ..., xd, ..., yd) in which (2.14)
holds. Note that this implies that k is necessarily even, k = 2d, and that
the d-fold exterior product

is nowhere zero and so is a volume on N.

Formula (2.14) can be used on manifolds more general than Rd. If

x1, ..., xd are coordinates on a manifold M and y1, ..., yd are correspond-
ing dual coordinates on the fibres of T*M then (2.14) defines a canonical
symplectic form r~ on the total space T*M of the cotangent bundle of M.
The symplectic form q can also be derived from the canonical 1-form 00 on
T*M given by

for every v in TT*M. Here TT* M : TT*M -~ T*M denotes the projection
map of the tangent bundle of T*M and : TT*M - T M denotes
the tangent map of TM : T * M ~ M. . In terms of the coordinates

..., xd, y1, ..., yd) on T*M, the canonical 1-form is

Remark 2.1.2014 Aspects of symplectic structures such as:

(i) existence, i.e., determining when a given closed 2-form can be
deformed into a symplectic structure,

(ii) classification, i.e., determining when two symplectic forms are equiv-
alent,

(iii) the study of Lagrangian manifolds (submanifolds of maximal dimen-
sion on which the restriction of ~ is zero),

appear to be mainly of mathematical/mechanical interest and not of any
direct statistical relevance (in this connection, see e.g. McDuff [20] and
Weinstein [25]-[26]).



2.3 Hamiltonians and Lagrangians

There are two formulations of conservative mechanics: the Hamiltonian
formulation takes place on the cotangent bundle and uses the canonical
symplectic form whereas the Lagrangian formulation takes place
on the tangent bundle and leads to the use of second order differential
equations. It is possible to pass from one formulation to the other by
means of fibrewise Legendre transformation, i.e., performing Legendre
transformation in each cotangent space ofM. More precisely, let H be
a Hamiltonian on M, by which in the present context we mean a real-valued
function on T*M. . Then the fibre derivative FH of H is just the derivative
of H along the fibre. In terms of the coordinates (~ 1, ..., xd, , ... Yd)
on T* M used in (2.16) to define ?o,

where ... , xd are kept fixed. Suppose first, for simplicity, that H is
hyperregular, i.e., FH : T*M - TM is a diffeomorphism. Then the
fibrewise Legendre transformation of H is the function ~ : TM 2014~ M defined
by

where a is defined by = v. In coordinate terms,

where

The function if is usually called the Lagrangian corresponding to the
Hamiltonian H.

In the context of yokes we need to relax the condition of hyper-regularity
and assume just that FH is a diffeomorphism from some neighbourhood U
of the zero section of T*M to a neighbourhood FH(U) of the zero section
of T M . Then we can define H on F H ( U ) by (2 .17) .



3. The symplectic form given by a yoke

A yoke yields a symplectic form. Let yoke on M.
Then differentiation of g along the first copy of M yields a mapping

given in coordinate terms by

If g is the observed likelihood yoke (2.6) of a parametric statistical model
then 03C6 is essentially the score. For a general yoke g, the 2-form ~ on M x M
is defined by

i.e.) as the pull-back to M x M by p of the canonical 2-form on T*M, ,
so that for tangent vectors X, Y at some common point of M x M,

where Tp denotes the derivative of p.

Let (c,~ 1, ... , w d ) be local coordinates on M. . Then, taking (c,v 1, ... , c~ d )
as coordinates on the first factor in M x M and (c~‘ 1, ... , w‘d) as coordinates
on the second factor, the coordinate expression for q is

It follows from (2.2) that there is a neighbourhood W of the diagonal of
M x M on which ~ is non-singular. Thus ~ is a symplectic form on W. .
In fact, for a large class of statistical models the expected and observed
likelihood yokes g have matrices [9i;j] of mixed partial derivatives which are
non-singular everywhere on M x M, so that the corresponding symplectic
forms ~ are defined on all of M x M. Note from (3.2) that ~ is special
in containing no terms involving dW2 A or dw~ A . This special
feature is the basis of the characterisation, in Theorem 3.1 below, of those
symplectic forms which arise from yokes.



Example 3.1

For the yoke considered in Example 2.1, the corresponding symplectic
form r~ is the canonical symplectic form on given by (2.14). It follows
from Darboux’s Theorem that every symplectic form arises locally from
some yoke.

Because, in general, r~ is non-singular only on some neighbourhood of
rather than on all of M x M, it is appropriate to consider germs of

symplectic forms. Two symplectic forms, each defined on a neighbourhood
have the same germ at 0394M if they agree in some neighbourhood of

Similarly, two yokes on M have the same germ at 0~ if they agree
in some neighbourhood of It follows from (3.2) that the germ ~r~~ of r~
depends only on the germ [g] of g. Thus we have a function

from the space of germs of yokes on M to the space of germs of symplectic
forms around 

As mentioned in Remark 2.1, a submanifold L of a symplectic manifold
N is called Lagrangian if

(i) = 0, where z : : L ~ N is the inclusion and ~ is the symplectic
form on N,

(ii) dim N = 2 dim L .

It is useful to call a symplectic form on a neighbourhood W of AM
in M x M hv-Lagrangian (or horizontal and vertical Lagrangian) if all the
submanifolds ~~w~ x M) n Wand (M x ~w~~) n Ware Lagrangian, i.e., if the
projections pi : : W -~ M and p2 : W - M are Lagrangian foliations in the
sense of Arnol’d and Givental’ [3, p. 36]. We shall call a symplectic form
r~ on W dhv-Lagrangian (or diagonally-symmetric horizontal and vertical
Lagrangian) if it is hv-Lagrangian and satisfies the symmetry condition

for all tangent vectors X, Y at the same point of M.

THEOREM 3.1.- Let [Y](M), and [dhv L](M) denote the

spaces of germs of yokes on M, of germs of normalised yokes on M, and of
germs of dhv-Lagrangian symplectic forms around respectively. Then
the function given by (3.3) has the following properties:



(i) ~ : [yJ (M) --~ [dhv L](M);
~ [9] _ ~ ~

(iii ) the restriction to [Ny]{M) is a one-to-one map from [NyJ{M)
to [dhv L](M);

(iv ) if M is simply-connected then the restriction of ~ to maps

onto [dhv L](M) and so is a bijection from to [dhv L](M).

Proof

(i) If c is the inclusion (~w~ x M) n W -~ W or (M x ~c~~~) n W -~ W
then dcv2 A = 0. Property (3.4) follows from symmetry of gi;j.

(ii) This follows from gi; j = g2; j .

(iii) Let g and g ~ be normalised yokes which give rise to the same

symplectic form. Then

so that

for some functions ..., ad. It follows from (2.1) that a1 = ... = ad = 0.
Then

for some function Q. From (2.5) it follows that /3 = 0 and so g = g’.

(iv) Any 2-form ~ on an open set in M x M can be expressed locally as

If ~ is dhv-Lagrangian then aij = Cij = 0 and so

Since a symplectic form is closed, we have d1J = 0 and so



Given 03C9 and w’ in M, choose paths 03BE and ( in M such that 03BE(0) = 03C9’,
~(1) = w, ~(o) = W and ~(1) = c,~’. Define ai by

It follows from (3.7) and the simple-connectivity of M that ai does not
depend on the choice of (. Also,

Define g by

It follows from (3.8), (3.4), (3.6) and the simple-connectivity of M that
g(w, c,~’) does not depend on the choice of ~, so that g is well-defined. It is

simple to verify that g is a normalised yoke with r~ as its symplectic form.

Remark 3.1. - Yokes and 2-forms satisfying (3.5) are related to preferred
point geometries. These geometries were introduced by Critchley et al.

([14], [15]) in order to provide a geometrical structure which reflects the
statistical considerations that (i) the distribution generating the data has a
distinguished role and (ii) this distribution need not belong to the statistical
model used. Preferred point geometries are of statistical interest both
because of their relevance to mis-specified models and because various
geometrical objects which arise in statistics are preferred point metrics.
It is convenient here to define a preferred point metric on a manifold M to
be a map from M to (0,2)-tensors on M, which is non-degenerate on the
diagonal. (This is a slight weakening of the definition of Critchley et al.,
who require the tensor to be symmetric and to be positive-definite on the
diagonal.) In terms of coordinates (c,~ 1, ... , w d ), a preferred point metric b
on a manifold M has the form

A yoke g on M determines a preferred point metric on M by

Note that the map from yokes on M to preferred point metrics on M is not
onto (even at the level of germs), because a general preferred point metric



b does not satisfy the integrability conditions (3.6) and (3.7). However, it
follows as in the proof of Theorem 3.1(iii) that the restriction of this map
to the set of normalised yokes is one-to-one.

A preferred point metric b on M determines a 2-form on M x M satisfying
(3.5) by ....

Since this 2-form need not be closed, it is not in general a symplectic form.
It is a consequence of the proof of Theorem 3.1(iv) that if M is simply
connected then the preferred point metrics for which the corresponding 2-
form is symplectic and satisfies (3.4) are precisely those which come from
yokes.

Remark 3.2. . - The construction of the symplectic form of a yoke behaves
nicely under inclusion of submanifolds. Let  : N ~ M be an embedding
(or more generally, an immersion) and let g be a yoke on M. If the pull-
back to N by t of the (0,2)-tensor 9i;j on M is non-singular (as happens,
in particular, if the metric of g is positive-definite) then g pulls back to a
yoke g o (t x t) on N. It is easy to verify that the corresponding symplectic
form r~~ satisfies r~~ = (t x c~ .

Remark 3.3. - The construction of the symplectic form behaves nicely
under taking profile yokes. Let p : : M - N be a surjective submersion

(= fibred manifold) and let g be a yoke on M satisfying 0

(so that -g is a contrast function). The profile yoke of g is the function
9 N x defined by

We can choose implicitly a section s : N x N ~ M x M of p x p (i.e., a
function s with (p x p) o s the identity of N x N) such that

Then the symplectic form r~~ of 9 satisfies

For example, let M be the parameter space of a composite transformation
model with group G, let p be the quotient map p : : M - M/G, and let
g be the expected likelihood yoke. Then the corresponding profile yoke



g is -7, , where I is the Kullback-Leibler profile discrimination considered
by Barndorff-Nielsen and Jupp [10]. The tensors and on M/G
obtained by applying Blaesild’s [12] general construction to the yoke g are
the transferred Fisher information p!i and the transferred skewness tensor
piD of Barndorff-Nielsen and Jupp ~10~.

Remark 3.4.- A rather different connection between statistics and

symplectic structures is given by Friedrich [17]. His construction requires
a manifold M, a vector field X on M and an X-invariant volume form A
on M. These give rise to a 2-form r~ on P(M, A), the space of probability
measures on M which are absolutely continuous with respect to A. If X has
a dense orbit then ~ is a symplectic form on P(M, a). .

4. Some uses of the symplectic form of a yoke

In symplectic geometry important ways in which a symplectic structure
r~ is used are:

(i) to raise and lower tensors;

(ii) to transform (the derivatives of) real-valued functions into vector
fields;

(iii) to provide a volume H, thus enabling integration over the manifold
(in mechanics, over the phase space, i.e., the cotangent space).

We now apply these to the symplectic form r~ of a yoke g on M. Recall
that ~ is defined on some neighbourhood W of 0394M in M x M.

4.1 Raising and lowering tensors

A symplectic form q enables raising and lowering of tensors in the
same way that a Riemannian metric does. In particular, the "musical

isomorphism" {(, which raises 1-forms to vector fields, and its inverse D (which
lowers vector fields to 1-forms) are defined by



for 1-forms a and vector fields X and Y. For the symplectic form (3.2) of
a yoke, the coordinate expressions of # and Dare

where is the (2.0)-tensor inverse to The construction in Section 5

of the Lagrangian of a yoke can be expressed in terms of }t; see (5.2).

4.2 The vector field of a yoke

A yoke g on M gives rise as follows to a vector field Xg on W. . The

derivative dg of g is a 1-form. Raising this using )} yields the vector field
= Xg . In coordinate terms, Xg (v, w~) is given by

By Liouville’s Theorem on locally Hamiltonian flows (see, e.g., Abraham

and Marsden [1, pp. 188-189]), the flow of Xg preserves the volume Q on W
defined by (2.15). If g is an observed likelihood yoke, then the vector field

Xg describes a joint evolution of the parameter and the observation.

The vector field Xg can be used to differentiate functions. Let h be

a real-valued function on M x M. Then the derivative of h along Xg is

dh(Xg ). An alternative expression for dh(Xg ) is

where ~h, g~ is the Poisson bracket (with respect to the symplectic form r~
of g ) defined by

(See, e.g., Abraham and Marsden [1, p. 192].) It is clear from (4.3) that
{g, g~ = 0. This suggests that one way of comparing two normalised yokes
h and g is by their Poisson bracket. In coordinate terms we have



Remark 4.1.2014 The Poisson bracket with respect to a fixed symplectic
structure is skew-symmetric. However, because the symplectic structure q
used in (4.3) depends on g, the skew-symmetry property

does not hold in general here.

The behaviour of ~h, g~ near the diagonal of M x M is explored in
Proposition 4.1. It shows that the 3-jet of ~1~, g~ at the diagonal cannot
detect differences in metrics between two normalised yokes hand g but
that some differences in skewness tensors can be detected.

PROPOSITION 4.1.- Let h and g be normalised yokes on M with
skewness tensors

Then:

~ t=0;

~ ~r; _ ~;r = ~ i
_ = = ~i
= Wrs;t = = = g), where g) is the

tensor defined by

[3] indicating a sum of three terms obtained by appropriate permu-
tation of indices.

Furthermore, if



then

Proof. - Part (o) is immediate from (4.4) and (2.8). Differentiating
(4.4) with respect to 03C9 and applying (2.8) yields (i). Repeated differentiation
of (i) then shows that k satisfies (2.9)-(2.11). Differentiating (4.4) twice
and three times with respect to c~, using Leibniz’ rule for differentiation of

products. and applying (2.8), (2.9) and (2.10), we obtain (ii) and

Differentiation of (ii) now yields (iii).
Differentiation of (4.5) together with (4.6) and (2.9)-(2.11) yields

from which (4.7) follows.

Differentiating (4.4) four times with respect to w, using Leibniz’ rule for
differentiation of products, and applying (4.10), we obtain

Differentiation of (4.7) now yields (4.8). D



Example 4.1

Let g be the expected likelihood yoke of the family of samples of size n
from a normal distribution with unknown mean p and unknown variance
0"2. Then

Consider a location-scale model with probability density functions

for some function q. Suppose that for samples of size n from a distribution
in this family there is no non-trivial sufficient statistic (as happens, for

example, in a family of hyperbolic distributions with given shape). Take as
an ancillary statistic ... , an ) , with

where  and ? denote the maximum likelihood estimates of p and c-. Let h
be the corresponding observed likelihood yoke. Then

where



with

Another way in which vector fields can arise from statistical models is given
by Nakamura ([22], [23]). He considers parametric statistical models (e.g.,
regular exponential models) in which the parameter space M is an even-
dimensional vector space and the Fisher information metric i is given by

for some potential function ~. The metric can be used to raise the derivative
of 03C8 to a vector field (d’lj;)ij on M, given in coordinates by

where is the inverse of the matrix . If M has dimension 2k then

it can be given the symplectic structure of the cotangent space T*V of
a k-dimensional vector space V. Nakamura shows that the vector field

(d~)~ is Hamiltonian and is completely integrable, i.e., there are functions
f1, ... , fk on M which are constant under the flow of the vector field,
satisfy = 0 for 1  i, j  k, and such that df1, ..., d fk are linearly
independent almost everywhere (see Abraham and Marsden [1, pp. 392-
393]). We have found no non-trivial analogue in our symplectic context of
Nakamura’s complete integrability result.



4.3 The volume of a yoke

Recall from (2.15) that a yoke g on M gives rise to a volume Q on some
neighbourhood W of the diagonal in M x M. For many yokes of statistical
interest W can be taken to be all of M x M. However, for a general yoke,
W will be a proper subset of M x M. The main way in which volumes are
used is as objects to be integrated over the manifolds on which they live,
so in such cases there is no obvious choice of manifold over which Q should
be integrated. (One possibility is to integrate S2 over the maximal such W
but the interpretation of the value of this integral is not clear.)
An alternative way of using the volume Q is to compare it with other

volumes on W, , in particular with the restriction to W of the geometric
measure obtained from the metric of g. More precisely, the yoke g gives a
(possibly indefinite) Riemannian metric on M and so a volume on M given
in coordinate terms as

where [ . denotes the absolute value of the determinant. The corresponding
product measure on M x M is the volume with coordinate form

It follows from (2.9) that (4.11) can also be written as

Since Q is given in coordinate form as d! w~ ) I volume (4.11 ) can be
written as d! M, where the function h : W ~ R is given in coordinate form
by

Note that, in general, h is not a yoke. However, h can be used to obtain
further yokes from g. . For any real A define M x M - R by

Since h = 1 on the diagonal, the following proposition shows that is a

normalised yoke with the same metric as g. Note that the germs at 0~ of
hand depend only on the germ of g.



PROPOSITION 4.2. - Let g be a normalised yoke on M and h : M x M --~

II8 be any function such that h = 1 on the diagonal 0~. Then

(i) the product hg is a normalised yoke on M having the same metric
as g;

(ii) the function

satisfies

Proof. - These are simple calculations. D

Remark 4.2. - Note that if k in Proposition 4.2 satisfies also

the matrix + is non-singular {4.14)

then k is rather like a yoke but need not satisfy (2.1). Note also that

conditions (4.13) and (4.14) provide a generalisation of the concept of a
normalised yoke. Also, in contrast to the definition of a yoke, (4.13) and
(4.14) involve the two arguments in a symmetrical way.

Remark 4.3. - Let k be a function on M x M satisfying (4.14). Define
gk : M x M -~ 1I8 by

Then gk is a normalised yoke on M. .

Remark 4.4. - One context in which the "adjustment factor" h of (4.12)
occurs in statistics is in a variant of the p*-formula for the distribution of
the score 

, _ ~ _ ~ ,

A suitable starting point for this is the p*-formula

for the distribution of the maximum likelihood estimator. Here [ )[ is the

determinant of the observed information matrix j = ili, a) evaluated



at ili. For an extensive discussion of this formula and its applications
see Barndorff-Nielsen and Cox [9]. The expression v | a) d1 ... 
represents a volume on M. Changing the variable in (4.15) from ~ to the
score s* gives the p*-formula

for the distribution of s*. The expression p* (s*; w a) dsl ~ ~ ~ dsd represents
a volume on the cotangent space to M at w . Now j defined by

= is an inner-product on TWM, so that j-1 is an inner-product
on The geometric measure of j -1 is a measure on represented

Then 
_u..

is a ratio of measures on TWM. Let j-1~2 be any square root of j-1 and
define the standardised score s* by

Barndorff-Nielsen [8, sect. 7.3] derived

as an approximation to the density ofs*. . Note that p* (s*; W a) is (4.16).
Define h M x l~l -~ R by

Since the observed likelihood yoke (2.6) is g, given by

we have, neglecting an additive constant,

where h is the "adjustment factor" defined in (4.12). From Proposition 4.2,
k satisfies (4.13). By differentiating (4.12) twice, we obtain



where

is one of the tensors introduced by Blaesild [12].

5. The Lagrangian of a yoke

Let g be a yoke on M. As discussed after equation (3.2), we can choose
a neighbourhood W of 0~ in M x M such that the restriction to W of p,
where p is defined by (3.1), is a diffeomorphism onto . We define the

Hamiltonian of g as the function H : y~(W ) ~ Il8 given by

In coordinate terms, H is given by

where w’ is determined by

It follows from (2.2) that we can choose W such that the restriction to
p(W) of the fibre derivative FH of H is a diffeomorphism onto its image.
By the definition in subsection 2.3, the Lagrangian corresponding to H is
fI R, the fibrewise Legendre transform of H. However, it
is convenient to refer to

as the Lagrangian of g. An alternative expression for g is

In coordinate terms, 9 is given by

Because the restriction to W of FH is a diffeomorphism, it follows from
(5.1) that 9 is equivalent to H. Since 9 is similar to g in being a function
defined on a neighbourhood of A~f in M x M, it is often convenient to

consider 9 rather than fl.



Example 5.1

Let g be the expected likelihood yoke of the family of d-variate normal
distributions with known covariance matrix £. Then

so that g is quadratic and g = g .

Example 
Consider a regular exponential model with log-likelihood function

where the canonical parameter (w) and the canonical statistic t take values
in (appropriate subsets of) a finite-dimensional inner-product space. Then
the expected (or observed) likelihood yoke g of this model is

where

Calculation gives

where

Then

so

i.e., 9 = g* (g* being the dual yoke of g).



Example 5. 3

In quantum statistical mechanics the state space is a space M of non-

negative Hermitian operators with trace 1 (see. e.g., Balian [4, p. 75]). The
von Neumann relative entropy is the function S M x M ~ R defined by

where if

with U unitary then

The function g, defined by

is a normalised yoke on M with Lagrangian 9 = g* .

Remark 5.1. Examples 5.1, 5.2 and 5.3 are special cases of the

following. Let V be an open subset of a vector space and let 03C8 : 
be a smooth function with non-singular second derivative matrix. Then g
defined by

is a yoke on V. A straight-forward calculation shows that 9 = g*. Thus, in
particular, 9 = g* for the expected or observed likelihood yoke of a regular
exponential model. However, Example 5.4 shows that this pleasant property
does not always hold even for transformation models. Note that V with the
metric of the yoke g is dually flat in the sense of Amari [2, p. 80].

Example 5..~
Consider the set of von Mises distributions with given concentration

parameter K. The parameter space and sample space are the unit circle
and the model function is

where w is the mean direction and a(/;) = Io denoting the
modified Bessel function of the first kind and order zero. Then the expected
likelihood yoke g is given by



where A(K) = with I1 denoting the modified Bessel function of
the first kind and order 1. Putting

and using straight-forward calculations, we obtain

so

Since g(w, w’) = g(w’, w), we have g = g* and so g ~ g* . Also,

so

and  ~ g.

Remark 5.2.2014 The first term on the right hand side of (5.3) is reminis-
cent of

which is the (quadratic) score statistic in the case where g is an observed
or expected likelihood yoke. Thus

can be regarded as a "mixed score statistic" and

can be regarded as a "dual score statistic" .



Now we consider how close 9 is to g and show that 9 is closer to g* than
to g.

THEOREM 5.1. Let g be a normalised yoke and denote by g* the dual

yoke of g. Define the "skewness tensor" Trst of the yoke g by

as in ~~.,~~ and denote by ~{‘~}, ~* ~a~ and the a-connections of g, g*
and g, respectively. Following Blaesild define the tensor r s;tu by

as in (/.1 7). Then:

(I) § is a normalised yoke;

(it) § has ihe same metric as g and g*;

(iii) r st; " glst; " gr st; - TTSt

r s;t * gls;t " gTsjt + Tr st

#r;st = gl;st = gr;st - Tr st

;r st " g*;r st " g;r st + Tr st i

(iv) #r;st - st;r = -Tr st;

(y ) Q(") = v* (") = v(~");
(Vi) r stu; - g*r stu; " -%rs;tu [6]

r st;u - " %rs;tu [6]

r s;tu - g2s;tu " -%rs;tu [6]
r ;stu - * %rs;tu [6]

;r stu - g*;r stu * -%rs;tu [6] .

Proof. - Differentiation of (5.3) with respect to wr yields

and so



by (2.8). Differentiation of (5.4) with respect to ws and evaluation at 03C9 = w’
gives

Similarly,

Since g is a normalised yoke, we see from (2.9) that

and so (i) and (ii) follow. Evaluating the second derivative of (5.4) = c,~~,
we obtain

From (2.10), (2.11) and (2.4), we have

Combining (5.8) with (5.9) and (5.10) gives

Differentiation of (5.5), (5.6) and (5.7) gives



Combining (5.12), (5.13) and (5.14) with (5.11) yields

Together with the derivatives of (5.6) and (5.7), these give (iii). Equations
(iv) and (v) now follow from (iii) and (2.3).

Evaluation of the third derivative of (5.4) at w = f.J)’ gives

Using (2.12) and (2.13) in (5.15), we obtain

The other equations in (vi) follow on differentiating the left-hand equations
in (iii). 0

Remark 5.3. - If construction (5.3) is applied to a yoke g which is not
normalised then, in general, the resulting function g is not a yoke.

Remark 5.4. - Theorem 5.1 shows that g is " 3rd order close" to g* on
the diagonal, i.e., they have the same 3-jet there. This closeness can also be
measured by the derivative dg(lYg* ) of g along the vector field Xg* defined
as in (4.1). Because g and g* have the same 3-jet on the diagonal, it follows
from Proposition 4.1 and Theorem 5.1 that the 3-jet on the diagonal of

dg(Xg* ) is zero, i.e., if we put h = dg{Xg* ) then

Furthermore,



Remark 5.5. - The expression (5.3) for 9 suggests the variants g+ and
g - of g defined by

where g* is the dual yoke of g.
Calculations similar to those in Theorem 5.1 show that, if g is a

normalised yoke, then g+ and g- are normalised yokes with the same metric
as g and

Thus g+ and g- are "further away" from g than 9 is.
The difference between g+ and g- can be expressed in terms of the

Poisson bracket (4.3) as

Remark 5.6. - A simple calculation shows that the operations of duali-
sation and taking the Lagrangian of a yoke commute. i.e.,

6. Group actions and momentum maps

In both mechanics and statistics, important simplifications occur in the
presence of the extra structure provided by a group action. In mechanics
a group action represents the symmetries of a Hamiltonian system; in
statistics a group action on a parametric statistical model represents the
symmetries of the model, which is called a (composite) transformation
model. In both mechanics and statistics the presence of such a group action
can be used to great advantage in simplifying calculations. In mechanics the
principal construction associated to a group action is that of a momentum
map from the cotangent bundle to the dual of the Lie algebra of the group.
Momentum maps provide invariants of the system under the flow given by



the Hamiltonian. We now consider the construction of the momentum map

for a yoke.
Let G be a group acting on the manifold M, let LG denote the Lie algebra

of G and let LG* denote the dual of LG. Given a yoke g on M, we can
use dig : M x M - T*M to pull the momentum map (in the sense of

mechanics) from T*M back to M x M. For X E LG, consider a path Q in
G with /3(0) the identity element of G and with /?~(0) = X. The momentum
map of the action is

given by

Thus

where 9 : T* M ~ LG* is defined by

for a in T~M and X, /3 are as above.

An alternative expression for J is

where

with {3 as above. In coordinate terms J is given by

where 81, ..., en are coordinates on G around the identity.
Note that if g is the observed likelihood yoke (2.6) of a parametric

statistical model then d1g is essentially the score and so J is given by taking
the score on 1-parameter subfamilies which arise through 1-parameter
families of transformations. This is reminiscent of the definition of score

in semi-parametric and non-parametric models.



Recall that G acts on LG by the adjoint action, in which y in G takes X
inLGto

where Q is as above. The dual action of G on LG* is the coadjoint action.
defined by

for a in LG* and X in LG. If the yoke g is G-invariant (as is the case for the
expected or observed likelihood yoke of a composite transformation model)
then the momentum map is G-equivariant with respect to the product action
on M x M and the coadjoint action on LG*. In this case, the neighbourhood
W of OM in M x M on which ~ is defined can be chosen to be G-invariant.
Then the symplectic form q and the vector field Xg are also g-invariant.
Further, by Noether’s Theorem (Marsden [19, p. 34]), the momentum J is
preserved under the flow of Xg.

Let p be an element of LG* and denote by G~ the isotropy group of
p, i.e., G~ - ~-y E G ~ y ~ ~c = ~~. Suppose that p is a regular value of J
(i.e., the derivative of J at (w,w’) is surjective at all points of J-1 (~c)) and
that G~ acts freely and properly on J-1 (~). Then J-1 (~c) is a submanifold
of M x M and the reduced phase space is a manifold. Let

: J-1 (~c) --~ ~l x M denote the inclusion and J-1 (~c) -~ 
denote the projection. It is a simple consequence of the Symplectic
Reduction Theorem (Abraham and Marsden [1, p. 299], Marsden [19, p. 36])
that there is a unique symplectic structure ( on J-1 (~C)/G~ such that

This says that the (possibly singular) 2-form obtained by restricting
the symplectic form r~ to the G~-invariant set ~7-1 (~c) can be obtained by
pulling back a (unique) symplectic form ( on the corresponding Gu-orbit
space 

Example 6.1

The bivariate normal distributions with unknown mean and covariance
matrix equal to the unit matrix form a composite transformation model
with parameter space M = JR 2 and group G = SO(2) with the usual action
of the rotation group SO(2) on The expected (or observed) likelihood
yoke is 

..



It is useful to identify R2 with the complex plane C, writing

and to identify SO(2) with !7(1), writing a typical element of SO(2) as eZe.
Then

and eZe takes (z, w) to e28w~. Clearly, g is G-invariant. The symplectic
form x~ of g is

The mapping

identifies LG = so(2) with R and so LG* with R* = R. With this

identification, the momentum mapping J is

Since G is abelian, G~ = G for all J.t in M. Note that the function

is G-invariant and that its restriction to J-1 (~) can be considered as the
projection

for any  in M. Put

Then a calculation shows that, for J.l ~ 0, the symplectic form

on satisfies (6.1).



Example 6. 2

A model analogous to that considered in Example 6.1 is given by
the hyperbola distributions (Barndorff-Nielsen [5]) on the branch H =
{ (x, y) I x2 - y2 = 1, x > 0~ of the unit hyperbola in R~. The parameter
space is M = (0, oo) x R and the probability density functions have the form

where

with

and is an appropriate function of cv . The group G = R acts on M and
on H via the homomorphism

from M into GL(2). Under this action the hyperbola distributions form a
composite transformation model. By restricting the concentration (w * w)
of 03C9 to be equal to a given positive constant 03BA, we obtain a submodel with

parameter space equivalent to H. The expected (or observed) likelihood
yoke is

where C(K) is an appropriate function of K. Clearly, g is G-invariant. The
symplectic form 1J of g is

where

The momentum mapping J is

Since G is abelian, G,~ = G for all Jl in M. Put



Then the function

is G-invariant and its restriction to J-1 (~c) can be considered as the

projection

for any  in R. A calculation shows that, 0, the symplectic form

on satisfies (6.1).

Example 6.3

Now consider the hyperboloid distributions (Barndorff-Nielsen [5], Jensen
[18]) on the branch H2 = ~ (x, y, z) ~ x2 _ y2 _ z2 = 1, x ~ 0} of the unit
hyperboloid in The model function is

where

for

and a( w) is an appropriate function of w. By restricting the concentration
of w to be equal to a given positive constant K, we obtain a

submodel with parameter space equivalent to H2. The group G = R acts
on H2 via the homomorphism

from R into GL(3). Under this action the submodel forms a composite
transformation model. The expected likelihood yoke is



where C(K) is an appropriate function of K. Because the product * and the
function c are G-invariant, so is the yoke g. The symplectic form r~ of g is

where

The momentum mapping J is

Since G is abelian, G  = G for all  in M. The function

is G-invariant and its restriction to J-1 (~c) can be considered as the

projection

for any p in ?. A calculation shows that the symplectic form

on J ~(~)/(9~ satisfies (6.1).
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