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Diagonal Padé approximants
to hyperelliptic functions

HERBERT STAHL(1)

RÉSUMÉ. - Nous étudions le problème de convergence des approxi-
mants de Padé diagonaux. Comme point de départ nous rappelons cer-
tains résultats généraux de convergence en capacité. Ensuite, une étude
détaillée de la convergence de la suite des approximants de Padé diago-
naux est proposée pour la classe des fonctions hyperelliptiques. L’étude
de la localisation des pôles des approximants est d’une importance déci-
sive. Après avoir éliminé certains pôles dits "spurious", nous montrons
la convergence localement uniforme pour la suite des approximants ainsi
modifiés. Ces résultats nous permettent de conclure que, sous certaines

restrictions, la conjecture de Baker-Gammel-Wills est valable pour la
classe des fonctions hyperelliptiques.

ABSTRACT. - The convergence of diagonal Padé approximants is inves-
tigated. Starting with a review of general results that are connected with
convergence in capacity the investigation then concentrates on a detailed
study of diagonal Padé approximants to hyperelliptic functions. Special
emphasis is given to the study of spurious poles. Locally uniform conver-
gence is proved after clearing diagonal Padé approximants from spurious
poles, and it is shown that under certain conditions the Baker-Gammel-
Wills conjecture holds true for hyperelliptic functions.
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1. Introduction

The central topic of the paper is the convergence of diagonal Padé
approximants.

DEFINITION 1.1. - Let the function f be analytic al inftnity. The Padé

approximant [m/n] of degree m, n ~ N to the function f developed at in finity
is the rational function

where (pmn, qmn) is a pair of Padé polynomials Pmn E Pm, qmn E Pn
qmn ~ 0, satisfying the relation

By O(.) we denote Landau’s big "oh", and by Pn the set of all complex
polynomials of degree at most n. It is not difficult to verify that the Padé
approximant [m/n] exists and is uniquely determined by (1.2). Uniqueness,
however, is not guaranteed for the Padé polynomials pmn and qmn; they
can alivays be multiplied by a non-zero constant, but there may also exist
more essential non-uniqueness (cf. [Pe, chap. V], or [BaGM, chap. I]). In
what is called the normal case, the Padé approximants [m/n] have a contact
with the function f at infinity of exact order m + n + 1. In general this
contact may be larger and, what is perhaps more surprising, also smaller
than m + n + 1. These apparent irregularities are only some of the difficulties
that have to be dea,lt with in the convergence theory of Padé approximants.
The possibility of so-called spurious poles is another more serious difficulty
(cf. Definition 2.1, below). A closer study shows that the two phenomena
are not independent. Spurious poles ivill play a major role in the present
investigations.

Padé approximants are rational analogues of Taylor polynomials devel-
oped at infinity. Infinity as the point of development has been chosen in
Definition 1.1 since it leads to simple notation, and Padé approximants are
directly connected with (algebraic) continued fractions in this case (cf. [Pe,
chap. V]). (In several respects the investigations in the paper can be consid-
ered as a continuation of earlier studies about the convergence of continued

fractions.)
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The Pa,dé approximants [n1/n] are called diagonal if m = n. The diagonal
sequence {[n/n]} together with the shifted diagonal {[n-1/n]} of the Padé
table {[m/n]}m,n~N contain the convergents of the corresponding continued
fraction of a function f (cf. [Pe, chap. V]). Corresponding continued
fractions are the main object of investigation in T. J. Stieltjes’ famous paper
[Sti]; however, the emphasis in the present paper is somewhat different.

More details will follow below.

The main difficulties for a convergence theory for Padé approximants
are caused by the possibility of spurious poles of the Padé approximants.
These are poles that cluster in the domain of analyticity of the function
f, or they cluster at a pole of f with a total multiplicity that exceeds the
order of the pole of the function f that has to be approximated. Thus, the
presence of spurious poles makes locally uniform convergence impossible.
It seems that the name "spurious", because of their unwanted nature, was
coined by George Baker in the 60’s. A more formal definition is given in
the next section. Typically, these poles are paired with nearby zeros of the
approximant, and they "cancel out" asymptotically as n ~ oo. Even in the
case of a function f as simple as the square root of a polynomial of fourth
order, the sequence of diagonal Padé approximants [n/n], n G N, can have
spurious poles clustering everywhere in C (cf. Theorem 6.6).

One way to circumvent the difficulties caused by spurious poles is to use
a notion of convergence that allows for a certain number or a certain density
of such poles. In the present paper this will be convergence in capacity. In
the next section we assemble general results in this direction, which have
been established in recent years. Although the notion of convergence in
capacity is not strong enough for many purposes in analysis or in numerical
applications, the results, nevertheless, give a good overview of the global
convergence behavior of the approximants. They give us information about
the shape of the domain in which diagonal Padé approximants typically
converge. In contrast to discs, which are typical convergence domains of
Taylor series, a geometric description of the convergence domain is more
complicated, but nevertheless possible (cf. Theorems 2.3-2.5, below).

It seems that the mere knowledge of analyticity of the function f is

practically never sufficient to ensure locally uniform convergence of diagonal
or close-to-diagonal Padé approximants. Additional knowledge about the
structure of the function always seems to be necessary. Thus, for instance
in his fundamental paper [Sti], which is now seen as the starting point of the
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analytic theory of continued fractions, T. J. Stieltjes considered functions
of the form

where p is a positive measure supported on the negative half-axis R-,
and proved that the corresponding continued fraction converges locally
uniformly in C B m - if a certain condition is satisfied, which is equivalent
to the moment problem of p being determinate. Complementary results
were proved by A. A. Markov and Hamburger (cf. [Kr] and [Ham]). In

the Markov case the measure M in (1.3) has compact support, while in the
Hamburger case, it can have unbounded support in R. In all three cases it
is essential that the following three assumptions hold:

(i) ,f is of the form (1.3),

(ii) p is a positive measure, and

(iii) supp(p) C R. In many methodological respects these results belong
more to real than to complex analysis.

A rather different approach to studying and understanding the conver-
gence of continued fractions was started by C. G. J. Jacobi [Ja] in 1830,
continued by C. W. Borchardt [Bo] and G. H. Halphen [Ha] and brought
to a certain conclusion (as far as the convergence aspect is concerned) by
S. Dumas in his thesis [Du], supervised by A. Hurwitz. In the investiga-
tions, elliptical, hyperelliptical and algebraic functions play a basic role.
Dumas investigated the development in continued fractions of the square
root (z - a1)··· (z - a4) with al, ..., a4 E C, ai f aj if if j. A central
place in our investigation is taken by the development at infinity, i. e., by

This development was also the object of investigations in [Ja] and was
then generalized in [Bo] and [Ha]. In (1.4) the zeros a1,...,a4 may be
complex, and the complex nature of the function f already underlines the
difference between the Stieltjes, Markov, and Hamburger theory. Dumas

showed among other things that, with respect to convergence, there are
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three cases to be distinguished. The distinction depends on the arithmetic
character of the integral

where C is an integration path connecting infinity on the first sheet

with infinity on the second sheet of the Riemann surface R defined by
y2 = (z - a1)··· (z - a4). In the first two cases the continued fraction in

(1.4) converges to f locally uniformly outside of finitely many arcs and a
finite set of points. A totally different convergence behavior appears in the
third case: there exist two infinite sets 03A31, 03A32, both dense in C, and the
continued fraction in (1.4) converges pointwise to f on 03A31, but diverges at
each point of E2. Hence, the convergence behavior is rather irregular in the
third case, and is not locally uniform anywhere in C. More details about
Dumas’ results will be given in Section 6. For a more complete historic
survey of the development of the theory from the time of Jacobi up to the
20’s in the present century, we recommend Chapter 5 of [Br].

In a broad sense the material of Section 3 can be seen as a continuation

and an extension of Dumas’ investigations. Instead of the continued

fractions (1.4) we now study diagonal Padé approximants, which are the
same in substance, and instead of the square root of a fourth order

polynomial, we study now the approximation of hyperelliptic functions (for
a definition see (3.1) at the beginning of Section 3). A central place is taken
by the investigation of spurious poles. Their number and distribution is

studied, and it is shown that in case of a hyperelliptic function f, diagonal
Padé approximants can have only a finite number of them. An upper bound
is given for this number. In connection with the study of the distribution of
spurious poles the Jacobi inversion problem on a compact Riemann surface
plays a central role. As an application of this investigation it is possible
to prove the Baker-Gammel-Wills conjecture with some restrictions: the

function has to satisfy an additional condition, and it may be necessary to
vary the point of development slightly away from infinityr. It is probable that
these restrictions are not really necessary and it may be possible to eliminate
them. Baker-Gammel-Wills have conjectured in [BGW] that if a function
f is meromorphic in the unit disc, then at least an infinite subsequence
of diagonal Padé approximants (developed at the origin) will converge to
f locally uniformly in the unit disc minus the poles of f. In general the
conjecture may well be false. It turns out that in the case of hyperelliptic
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functions the conjecture does not only hold in discs, but also in the larger
convergence domains that will be introduced in the next section, and which
are typical for Padé approximants.

The outline of the paper is as follows: in the next section we survey

general convergence results associated with convergence in capacity. In

Section 3 we formulate and discuss new results about the convergence
of diagonal Padé approximants to hyperelliptic functions. The results of

Section 3 will be proved in Sections 4 and 5. Proofs that are connected

with the Jacobi inversion problem, i.e., the proofs of Theorem 3.3 and
3.8, are given in Section 5. In Section 6 a principal result from Dumas’
dissertation is reproduced.

2. General Convergence Results

Convergence results are discussed that hold true for a large class of
functions. These functions are characterized only by analyticity properties,
however a price has to be paid for this generality: the form of convergence
that can be proved is rather weak, in our case it is convergence in capacity.
This concept of convergence allows spurious poles to cluster inside of the
domain of convergence. Special emphasis will be given to functions with
branch points. The section is closed by a more formal definition of spurious
poles.

Results in the present section are connected with (logarithmic) capacity
in several respects. The capacity is denoted by cap(.) (for its definition see
[StTo, Appendix I], or any other book on potential theory). One of the

reasons why capacity plays such an omnipresent role in the subject stems
from the fact that capacity is extremely well suited for measuring a filled
lemniscate, i. c., the set on which the modulus of a given monic polynomial
is small. ive start the review of general results by the

POMMERENKE-NUTTAL THEOREM ([Nul], [Po2]).2013 Let the function f
be analytic (and single-valued) in the domain C B E, where E ç rc is a

compact set with cap(E) = 0. Then for any compact set V C C and s &#x3E; 0

we havie

Motivated by this Theorem convergence in capacity is defined as an

analogue to convergence in measure.
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DEFINITION 2.1. - A sequence of functions ln, n = 0, 1, 2,..., is said

to converge in capacity to f in a domain D ç C if for every E &#x3E; 0 and

every compact set V Ç D ~ rc we have cap 1 z ~ V ||(f - fn)(z) ( &#x3E; 03B5} ~ 0
as n - 00.

From (2.1) it follows that the diagonal Padé approximants [n/n] converge
in capacity to f in C if the assumptions of the Nuttall-Pommerenke Theo-
rem are satisfied. But even more, (2.1) shows that we have a convergence
speed faster than geometric outside of some exceptional sets that become
small in capacity as n - oc. It is not necessary to exclude the singularities
of the function f from the convergence domain since cap(E) = 0.

In [Po2] the Nuttall-Pommerenke Theorem has been proved not only for
diagonal sequences of Padé approximants, but also for arbitrary sectorial
sequences {[m/n]}, i. e., for sequences with A &#x3E; 0 such that

The theorem has been extended to fast approximable functions f in [Go].
These are functions that can be rationally approximated faster than geo-
metrically on a set of positive capacity. In [Go], the connection between
fast approximable functions and the property of single-valuedness has also
been investigated.

The assumption cap(E) = 0 is essential in the Nuttall-Pommerenke

Theorem since in [Lu] and [Ra] it has been shown by counterexamples that
if the function f has a set of singularities  C (C of positive capacity, then
it is no longer necessarily true that the diagonal sequence {[n/n]} converges
in capacity to f.

The situation is somewhat different if the function f has branch points,
for instance if f is an algebraic function. In this case the set of singularities
E may be of capacity zero, but the function f is not single-valued in
C B E. Since rational functions are single-valued, the function f cannot be
approximated by [n/n], even in capacity, throughout UB E. Approximation
is possible only in subdomains D ç C in which the function f is single-
valued. Hence, in the case of functions with branch points, some cuts in C
are necessary in order to make f single-valued. It will turn out that Padé

approximants determine such cuts in a very interesting way .
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Let D C U be a domain with oo e D and cap(8D) &#x3E; 0. Then the Green

function 9D(z, w) exists in D (for a definition see [StTo, Appendix V]), and
we define

It follows that 0 ~ G(z)  1 for all z E D, G(z) &#x3E; 0 for z E D B {~}
and we have G(z) = 1 for quasi every z E ~D (cf. [StTo, Appendix V]). P:
property is said to hold quasi everywhere on a set S’ C C if it holds for al
z e S’ except on a subset of outer capacity zero. Capacity is usually definec
only for bounded sets in C. However, the definition of capacity zero can b(
extended to C in an obvious way by a Moebius transform.

THEOREM 2.2 ([St3, Theorem 1.1 and 1.2]).2013 Let E C be a compac
set wish cap(E) = 0, let the function f be locally analytic in CB E, assum
that f has branch points, and let the branch, which is still denoted by f, b
analytic at infinity. Then there exists a domain D = D f C 7Z-, called th

convergence domain, with oc E D, cap(~D) &#x3E; 0, and for all compact set.
V C D and 03B5 &#x3E; 0 we have

and if 0  s  G(z) for all z E V, then also

The limit (2.4) implies that the sequence {[n/n]} converges in capacity
to ,f in the domain D. In contrast to the Nuttall-Pommerenke Theorem

the convergence is now only geometric (up to exceptions on the subsets that
are allowed under convergence in capacity). The limit (2.5) shows that the
value G(z) is the exact convergence factor at the point z E D, but again
this holds only up to exceptional sets.

In [St3] Theorem 2.2 has been proved not only for diagonal sequences,
but also for close-to-diagonal sequences {[n/n]}, i. e., for sequences with
numerator and denominator degrees satisfying

A typical application of Theorem 2.2 is the approximation of algebraic
functions f. In this case the set E of singularities is finite, and the diagonal
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Padé approximants [n/n] approximate one branch of f in a domain D that
differs from CC by several cuts that connect branch points of f (cf. Theorem
2.4, below). For the special case of a hyperelliptic function f the convergence
behavior of diagonal Padé approximants [n /n] will be studied in more detail
in the next section. For the results proved there Theorem 2.2 provides only
a general frame.

In the next two theorems, among other things, a geometric description
of the convergence domain Df is given, which is independent of the

approximation problem.

THEOREM 2.3

(a) If the function f is analytic at infinity, then there exists a domain
D C C, which is uniquely determined by the following three condi-
tions :

(i) oo e D and f has a single-valued meromorphic continuation
in D.

(ii) cap(~D) = infû cap(~), where the infimum extends over all
domains  that satisfy condition (i).
(iii) D = U D, where the union extends over all domains .D that
satisfy the two conditions (i) and (ii).

(b) If the function ,f satisfies the assumptions of Theorem 2.2, then the
domain determined by the conditions (i)-(iii) is identical with the

convergence domain D f of Theorem 2.2 up to a set of capacity zero.

Part (a) of Theorem 2.3 has been proved in [St1, Theorem 1 and 2], and
part (b) has been proved in [St3, Theorem 1.4]. In [St1] condition (i) refers
to analytic and not meromorphic continuation of f throughout D. However
the difference is irrelevant since poles are isolated and denumerable, and
therefore form a set of capacity zero. It may be interesting to note that the

convergence domain is always dense in C, but more specific information is

given in the next theorem, which contains a description of the topological
structure of the complement F of the convergence dolnain D.

THEOREM 2.4

(a) Assume that the function f satisfies th e assumptions of Theorem
2.2. Then the comtalement F af the convergence domain D has the
structure
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where Fo ç C is a compact set, with cap(Fo) =0, F0B E consists
of points that are isolated in C B (E n Fo), the Jj, j E l, are open

analytic arcs, and I ~ 0.
(b) The Green function gD(z, ~) has identical normal derivatives on both

sides of the arcs Jj, i. e.,

where ~/~n+ and ~/~n- denote the normal derivatives on both sides
of the arcs Jj .

Relation (2.8) is called the symmetry property of the Green function

gD(z, 00), and like-wise it is said that the domain D possesses the symmetry
property if oo E D and both properties (2.7) and (2.8) hold true. The

symmetry property (2.8) implies a characterization of the analytic arcs Jj,
j E I, by quadratic differentials.

COROLLARY 2.5. - Let h*D(z, 00) be the conjugate harmonic function to
9D(z, 00) (which is not single-valued) and define

so that Q is analytic in CB (E ~ Fo) and has a zero of order 2 at infrnity.
Let h*D(z, ~) be normalized in such a z.aay that Q(z)z2Iz=oo &#x3E; 0. Then the

arcs Jj, j E I, are trajectories of the quadratic differential Q(z) dz2, i.e.,

where 03B1j : [0, 1] - C is a smooth representation of the arc Jj, j E I.

Theorem 2.4 and Corollary 2.5 follow from [St2], Theorem 1 and the

associated corollary. In case of an algebraic function f, the function Q in
(2.9) is rational and all its poles lie at branch points of the function f, but
not all branch points ha,ve to be poles of Q. The fact that the arcs J j , 
j ~ I, are trajectories of the quadratic differential Q( z) dz2 can be used for
calculating the arcs Jy numerically.

Before we continue with the presentation of new results we will discuss
a concrete example. The given function possesses two symmetries, which
facilitates the détermination of the convergence domain D. In general, the
détermination of D can cause serious problems and satisfactory methods
for doing so apparently still do not exist.
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Example. - M7e consider the function

The function has four branch points at ZI, .... 4 = ±exp(±i03C0/6) and a,

double pole at the origin. Thus, E = {z1,...,z4,0}. Let D = Df
denote the convergence domain in accordance with Theorem 2.2. We have

D = CB(J1~J2), where J1 and J2 are two arcs that connect the points
Z2 with z3 and zi with z4 , respectively, (see figure 2.1). These arcs are

trajectories of a quadratic differential, with

The function (2.3) can be defined in this case by
r

In figure 2.1 the poles of the Padé approximant [40/40] are shown. Close

to the origin lie two simple poles that approximate the double pole of f

Fig. 2.1 The poles of the Padé approximant [40/40] together with the two
trajectories J1 and J2 of the quadratic differential (2.12) that connect

the pairs of points (zl, z4) and (z2, z3).
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at the origin. The remaining 38 poles lie close to the arcs JI and J2. It

follows from the results in Section 6 that in this special case the diagonal
Padé approximants [n/n], ’n G N, converge locally uniformly to f in

CB(J1~J2~{0}), and locally uniformly in the spherical metric in CB(J1~J2).
A similar result to that of Theorem 2.2, but in a rather different setting,

has been proved in [GoRa, sect. 3] (see also [St3, Theorem 1.7]). There it has
been shown that if the domain D C C possesses the symmetry property,
i. e., if the complement of D is of the form (2.7) and the Green function
gD (z, oo) satisfies the symmetry condition (2.8), and if further the function
f is single-valued and analytic in D and has sufficiently nice boundary
values on ~D B Fo (for a precise statement of the last condition see [St3,
Theorem 1.7]), then the conclusions (2.4) and (2.5) of Theorem 2.2 hold
true. These results show that much less analyticity of the function f is

needed than demanded in Theorem 2.2. The results in [St3] further show
that the symmetry property (2.8) is typical for convergence domains of
diagonal Padé approximants. Since in the present paper our main interest
is the approximation of hyperelliptic functions, the additional analyticity
assumed in Theorem 2.2 always holds. This argument, of course, also holds
in the case of algebraic functions.

In all results discussed so far only convergence in capacity has been proved
and discussed. Under assumptions as general as those in Theorem 2.2 locally
uniform convergence is in general not true. The reason for this is that poles
of the Padé approximants [n/n] may cluster inside the convergence domain
D. It ha.s already been mentioned earlier that such poles are called spurious
because of their unwanted nature. Their investigation will be one of the
central topics in the next section. A formal definition of the spuriousness of
poles has to be based on their asymptotic behavior, since only if n tends to
infinity does the character of the poles of the approximants [n/n] becomes
fully clear.

We prepare the definition of spurious poles by discusing an interesting
difference between rational and polynomial approximation that may shed
light on the underlying problem. Let us consider the power series of a

function f analytic at the origin. All zeros of the partial sums of this
power series have to leave the disk of convergence as n tends to infinity,
except for those zeros that approximate zeros of the function f. This

behavior is a rather immediate consequence of the argument principle or
Rouché’s Theorem. In case of rational approximation such a conclusion
can, however, not be drawn. Now, neither all zeros nor all poles of the
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approximants have to leave the convergence domain (for convergence in
capacity). The argument principle or Rouché’s Theorem only guarantees
that besides those zeros and poles that approximate corresponding zeros
and poles of the function f, the other poles and zeros have to appear in pairs
so that they are neutral with respect to the argument principle, but they
need not leave the convergence domain. Such pairs of poles and zeros really
exist and can cluster inside the convergence domain. In a neighborhood
of such clusterpoints uniform convergence is impossible. It is clear that in

polynomial approximation such poles cannot exist.

DEFINITION 2.2. - Let [n/n] be a diagonal Padé approximant to the
function f and let 1’1 be an infinite subsequence of N. Spurious poles are

defined in two circumstances.

(i) For each n E N let the approximant [n/n] have a pole at zn E C and
Zn ~ zo as n - oc, n E N. If the function f to be approximated
is analytic in a neighborhood of zo, and if the approximants [n/n]
converge in capacity to f in a neighborhood of zo, then the poles of
the [n/n] at the points Zn, n E N, are called spurious. If zo = 00,
then the convergence zn ~ zo has to be understood in the spherical
metric (for a definition see (3.14), below).

(ii) Let the function f have a pole of order ko at zo e U and let the total
order of poles of the approximants [n/n] near zo be kl = k1n &#x3E; ko
for each n E N, i. e. , [n/n] has poles at points Znj, j = 1, ..., mn,
with total order k1n and Znjn ~ zo as n - oc, n E N, for any
selection of jn ~ {1, ..., Mn}. If the approximants [n/n] converge in
capacity to f in a neighborhood of zo, then poles of order k1n - ko of
the approximant [n/n], n ~ N, are considered as being spurious.

It has already been mentioned that spurious poles of the approximants
[n/n] are paired with zeros of the same approximant, and asymptotically
the distance between zeros and poles becomes arbitrarily small (for a more
detailed description see Theorem 3.6, below).

In Theorem 1.8 of [St3] it ha,s been shoBB7n that almost all poles of the
Padé approximants [n/n] converge to the boundary OD of the convergence
domain. This implies that almost all poles are non-spurious.
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THEOREM 2.6. - Let the function f satisfy the assumptions of Theorem
2.2 and let k,, be the total number of spurious poles of the approximant
[n/n]. Then

The limit (2.14) gives a rather rough estimate of the possible number of
spurious poles. It has been conjectured by J. Nuttall in [Nu2] among many
other results that in case of an algebraic function f the number of spurious
poles is bounded. In the next section such an upper bound is proved for
hyperelliptic functions.

3. Approximation of Hyperelliptic Functions

The convergence of diagonal Padé approximants to a hyperelliptic func-
tion f is investigated. Central topics are the behavior of the approximants
near poles of the function f, the number and the distribution of spurious
poles of the approximants, the convergence after pole elimination, a proof
of the Baker-Gammel-Wills conjecture under an additional condition, and
the necessity to move the point of development away from infinity in some
cases. All results stated and discussed in the present section will be proved
in the Sections 4 and 5.

Throughout this section the function f is assumed to be hyperelliptic,
analytic at infinity, and to have 2m branch points (m ~ 1) at a1,..., a2m ~
C with a, 0 aj for i ~ j. Such a function can be represented by

and ri and r2 rational functions. The sign of the square root should be
chosen in such a way that y = zm + ... near infinity. Let R denote the

Riemann surface defined by the equation y2 = (z - a1)···(z - a2m), and
denote by 7r : R - C the canonical projection. The Riemann surface 7-’- is
compact, has two sheets, and genus g = m -1. The function f can be lifted
to R, where it is a meromorphic function. In the present section we use the
same symbol f for the function defined on C as well as its lifting to R.
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A hyperelliptic function f satisfies the assumptions of Theorem 2.2.

Hence, there exists a convergence domain D = D f C CC, in which the

sequence {[n/n]}n~N of diagonal Padé approximants converges to f in
capacity. It is not difficult to verify that the complementary set F = C B D
consists of finitely many analytic, closed arcs Jj, j e I, (cf. Theorem 2.4,
above). These arcs connect subsets of the set la,, ..., a2m} of branch
points; each subset contains an even number of points. In the most typical
situations there exist exactly m arcs Jj, j = 1, ... , m, each one connecting
a pair of branch points.

Since the function f is single-valued in the convergence domain D (cf.
Theorem 2.3, above), the lifting 03C0-1(D) of D onto the Riemann surface
R is an open set consisting of two domains B1 and B2. The complement
IZ B (Bl ~ B2) consists of a chain of closed curves separating Bl and B2, and
it is denoted by 0393. Its projection x(r) = F consists of the arcs Jj, j e I.
Thus, we have

In the present section the function f is almost always considered as a

function defined on D C C, however in some situations it is necessary to

consider f as a function on R. If this is the case, then it is assumed that the
function f has identical values in D and Bl.

The first theorem in the present section is concerned with those poles
of the Padé approximants [n/n] that do not cluster on F = ~D. Most

interesting is the upper bound (3.3) for the number of spurious poles.

THEOREM 3.1.2013 Let the function f be hyperelliptic and analytic at

infinity.

(i) Let f have a pole of order k at zo E D. Then for each n E N
sufficiently large the Padé approximant [n/n] has one or several poles
near zo with a total order of at least k, and all these poles converge
to zo as n - oc. If the total order k1 = k1n of these poles is larger
than k, then k1n - k of the poles of the approximant [n/n] near zo
are spurious, the approximant [n/n] has k1n - k zeros near zo, and
these zeros converge also to z0 as n ~ oc.

(ii) Let n f denote the number of poles of the function ,f (lifted to R) on

r, and let n+r2 and nr2 denote the number of zeros and poles of the
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rational function r2 in the representation (3.1) on F, taking care of
multiplicities. Then the Padé approximant [n/n], n EN, has at most

spurzous poles.

Remarks

(1) If the Padé approximant [n/n] has poles of total order k1n near zo,
and if k1n is larger than the order of the pole of f at zo, then it already
follows from Definition 2.1, (ii), that the surplus order k1n - k of poles has
to be considered as spurious. This phenomenon is reflected by the fact that
the approximant [n/n] has one or several zeros near zo of the same total
order k1n - k.

(2) The poles of the approximant [n/n] considered in (i) and (ii) of
Theorem 3.1 are the only ones that do not cluster on F = ~D. From

(3.3) it follows that at most ko + m - 1 + n f + n+r2 - nr2 poles of [n/n]
can cluster outside of F, where k0 denotes the total order of all poles of the
function f in D.

(3) Of course, the upper bound (3.3) is much stronger than the estimate
given in Theorem 2.6 under less restrictive assumptions. However, it seems
that the upper bound (3.3) is in general not sharp. In order to have a sharp
result we consider a more restricted situation in the next corollary. The

corollary follows immediately from Theorem 3.1.

COROLLARY 3.2. - Let the function f be hyperelliptic and analytic at
infinity. Let the rational function r2 be defined by representation (3.1), and
assume that r2 has no zeros or poles on F = 8D and that th e meromorphic
continuation of f has no poles on F. Then the Padé approximant [n/n],
n E N. has ai most 11’1, - 1 spurious poles.

Remark. - Note tha,t g = rn - 1 is the genus of the Riemann surface

R associated with the function ,f . T’he assumptions of Corollary 3.2 imply

nj = n+r2 = ng = 0, and therefore the number (3.3) is equal to m -1 under
these assumptions.

In principle we consider in the present paper only Padé approximants
developed at infinity, but in the next theorem, where we show that the
upper bound (3.3) is sharp under the assumptions of Corollary 3.2, it will
be necessary also to consider Padé approximants developed at a point (0 e (C
near infinity.
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DEFINITION 3.1. For 03B60 ~ C the Moebius transform

maps (0 to 00, and therefore the function  := f 01/,-1 is analytic at inftnity
if f is analytic at (o. Let [n/n], n EN, be the diagonal Padé approximant
to f developed at infinity, i. e., [n/n] is defined by (1.1) and (1.2). Then

the rational function

is the Padé approximant [n/n] to f developed at (o. From (1.1) and (1.2)
it follows, after some calculations, that

with Pnn and qnn polynomials of degree not greater than n.

THEOREM 3.3. Let the function f be hyperelliptic and analytic at

infinity, and let the assumptions of Corollary 3.2 be satisfied. For almost all
(0 E CC in a neighborhood of infinity as point of development the following
holds true: for any selection of m - 1 points 7rl,..., 7rm-1 E D there exists
an infinite subsequence N C N such that the Padé approximants [n/n],
n ~ N, developed at (0 have m - 1 spurious poles 03C01n, ..., 03C0m-1,n ~ C and

If some 7r, = 00, then the convergence (3.7) has to be understood in the

spherical metric.

Remarks

(1) Theorem 3.3 shows that the upper bound (3.3) for the number of
spurious poles is sharp under the assumptions of Corollary 3.2. For the

proof of Theorem 3.3 the assumptions of Corollary 3.2 are essential. At the
end of Section 5 the question of what may be true without these assumptions
will be discussed.

(2) Since the points Jri , ... , 03C0m-1 are arbitrary, Theorem 3.3 shows that
spurious poles of the sequence {[n/n]}n~N cluster everywhere in D, and
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consequently the Padé approximants [n/n], n e N, cannot converge locally
uniformly to f on any subdomain of D. (From Theorem 2.2 we know that
the approximants converge in capacity everywhere in D).

(3) At the end of Section 5 we will discuss which weaknesses of the method
of the proof of Theorem 3.3 make it necessary to exclude certain points as
points of development.

From Theorem 3.3 we know that under the assumptions of Corollary 3.2
the upper bound m - 1 in (3.3) is sharp, however this bound is not sharp
in general (cf. the discussion at the end of Section 5). At present, it is not

fully clear what a sharp upper bound might be. That the zeros of r2 on F
have to be considered in (3.3) in some way is shown by

LEMMA 3.4. - Let 0  03B11  a2  03C0 be chosen in such a way that the

numbers cxl, 03B12, 03C0 are linearly independent over the rational numbers Q, and
choose c0, c1, c2 E R such that

is analytic at infinity. Then there exists an infinite subsequence N ç N such
that lhe Padé approximant [n/n], n E N, has two spurious poles. Further,
for any ( E C B [-1, 1] there exists an infinite subsequence fi ç N such
that ai least one spurious pole of [n/n], n E N, converges Io ( as n - oc,
n ~ N.

Remark. - It follows from the Theorems 2.2 and 2.3 that the Padé

approximants [n/n], n E N, of the function f defined in (3.8) has CB[-1, 1]
as its convergence domain D. The Riemann surface R associated with

the function f is of genus 1 - 1 = g = 0. The two functions f and
r2 := (· - cos03B11)(· - cos a2) have no poles on rand F = [-1, 1],
respectively, but r2 has two zeros on F = [-1, 1], i.e., n f = 0, ng = 0,
and n+r2 = 2. Thus, the number in (3.3) is equal to 2, and Lemma 3.4 shows
that for the function (3.8) the upper bound (3.3) is sharp.

The function GD in (2.3) has been defined with the help of the Green
function gD(z, ~) of the convergence domain D. Since in case of a

hyperelliptic function f the complement F = CB D consists of finitely
many arcs, it is a regular set with respect to the Dirichlet problem in D,
and we have gD(z, (0) = 0 for all z ~ F = ~D. This implies that



- 139 -

In the next theorem an estimate is proved for the speed with which poles
of the approximants [n/n] are attracted by poles of f in D as n - oo.
It turns out that this speed is slower the nearer the poles of f lie to the
boundary âD.

THEOREM 3.5.2013 Let the function f be hyperelliptic and analytic at

infinity, let 03C01,...,03C0k e D be the poles of f in the convergence domain

D, taking account of the order of the poles by repetition of points. Let

further 7r1n, ..., 7rknn E C be poles of the approximant [n/n] that converge
to the poles of the function f in D in accordance with Theorem 3.1 (i).
Then a selection of k poles 7r jn, j = 1,...,k, and their pairing with the
poles 03C01,..., 7rk can be done in such a way that

where ord(03C0j) denotes the order of the pole of f at 03C0j, 03B5 &#x3E; 0 is arbitrary,
and k0j is the maximal number of spurious poles clustering ai 03C0j. (From
Theorem 3.1 (ii), we know that koj is bounded by the number (3.3)).

Remark. - An appropriate selection of the poles 03C01n,..., 03C0kn is neces-

sary since near a pole 71" j of the function f there may be a certain number
of spurious poles of [n/n] that may converge more slowly or even not at all
to 7r j . 

With the same methods used in the proof of Theorem 3.5, it is possible
to prove that the distance between spurious poles and the corresponding
zeros of the approximant [n/n] tends to zero as n - ~ with a speed that
also depends on the location of the limit point of the spurious poles in D.

THEOREM 3.6.2013 Let the funetion f be hyperelliptic and analytic at

infinity, and assume that there exists an infinite subsequence N C N
such that the Padé approximant [n/n], n E W, has k spurious poles at

03C01n,...,03C0kn ~ C with repetion taking care of orders of poles, and assume
that 03C0jn 2013 7r j E D as n - oo, n ~ N, for j = 1,..., k. Then to

each spurious pole 03C0jn corresponds a zero (3, of the approximant [n/n],
j = 1,..., k, n E N, such that
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where s &#x3E; 0 is arbitrary and ord1(03C0j) denotes the number of poles of [n/n],
n ~ N, spurious or non-spurious, converging to 7rj. If 7rj = 00, then in

(3.11) the Euclidean distance has to be replaced by the sphericallnetric.

Next, we address the convergence problem. From Theorem 2.2 we know
that the Padé approximants [n/n], n 6 N, converge in capacity to ,f in the
domain D C C. There are, in principle, two ways for obtaining locally
uniform convergence in subdomains of D: either one removes spurious
poles from the approximants [n/n], n e N, by one or the other method,
or one selects an infinite subsequence from {[n/n]}n~N that has no spurious
pole on the subdomain of D, on which one wants to have locally uniform
convergence. Of course, with the second strategy, the non-trivial question
of whether or not such a subsequence exists, immediate arises. The

assertion that such subsequences exist is known as the Baker-Gammel-

Wills conjecture (more about this in Theorem 3.8).

For pole-removal we consider two possible procedures. The first one

generates locally uniform convergence only in subdomains of D, where the
function f is analytic. The élimination of spurious poles of [n/n] near a
pole of f is more complicated, since there, the two types of poles, spurious
poles and poles that approximate a pole of f, are intermingled.

DEFINITIONS 3.2 (pole-clearing)

(i) Let r be a rational function. Do C C a subdomain of C with a

smooth boundary ~D0 such that r is analytic on ODO, 00 fi:. (9DO,
and ~D0 ~ 0. Then

is again a rational function. Ils degree is not larger than that of r.
In (3.12) the integration path ODO has to be positively oriented if
oc « Do and negatively otherwise. The rational function  has no
poles on Do, and it is called pole-cleared on Do.

(ii) Let r be a rational function, and let (7r. (j) E U2 j = 1, ..., k, be k
pairs of poles and zeros of r. Then

is called pole-cleared by factoring out pairs of poles and zeros.
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Remarks

(1) Definition (3.12) is equivalent to the following procedure: represent
r by partial fractions and drop all fractions with poles in Do.

(2) For approximation purposes pole elimination by factoring out pairs
of poles and zeros is helpful only if the distance between poles and zeros in
each pair tends to zero with n - oo. Because of Theorem 3.6 this holds

true in the case of spurious poles of Padé approximants [n/n], n G N.

Let o denote the spherical metric defined as

THEOREM 3.7. Let the function f be hyperelliptic and analytic at

infinity.

(i) Let Do be a subdomain of the convergence domain D with Do g D,
assume that the function f is analytic on Do, and let the rational
functions [n/n], n EN, result from pole-clearing the Padé approxi-
mants [n/n] on Do. Then the sequence of pole-cleared approximants
[n/n] converge to f locally uniformly in Do as n ~ 00.

(ii) Let Dl be an arbitrary subdomain of the convergence domain D
with Dl C D. Let 03C01n,..., 03C0knn be the spurious poles of the
Padé approximant [n/n], n EN, on Dl. In accordance with

Theorem 3.1 (i) and Theorem 3.6 there exist corresponding zeros

03B61n,...,03B6knn E le of [n/n]. Let [n/n], n E N, be the rational

functions resulting from factoring out the kn pairs (03C0jn, (jn) of poles
and zeros from the Padé approxz*mants [n/n] as done in (3.13). Then
the sequence of approximants [n/n] converges to f in the domain Dl
locally uniformly Ín the spherical metric as n - 00.

Remark. - In both parts of Theorem 3.7 nothing has been said about
the speed of the convergence. It can be shown that the speed is geometric,
and that the convergence factor is given by
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with s &#x3E; 0 arbitrary, the maximum is taken over Do in part (i), and over
D1 in part (ii), and the function GD has been defined in (2.3).

The last topic in the present section is concerned with the Baker-

Gammel-Wills conjecture, which deals with the existence of infinite subse-
quences of {[n/n]} that converge locally uniformly. The original conjecture
in [BGW] has been formulated for a function f meromorphic in the unit disc
D and for diagonal Padé approximants developed at the origin. We give
here a formulation that is adapted to Padé approximants [n/n] developed
at infinity.

BAKER-GAMMEL-WILLS CONJECTURE

If the function f is meromorphic outside the closed disc D(r, 0) with radius
r &#x3E; 0 and center at the origin, then there exists an infinite subsequence
N C N such that

locally uniformly in U B D(r, 0), omitting poles of f.

We show that the conjecture holds true for hyperelliptic functions if some
additional conditions are satisfied. Of course, discs are not typical for the
problem. Therefore we first prove a more general result and then deduce
the conjecture as a corollary.

THEOREM 3.8. - Let the function f be hyperelliptic and analytic at

inf-inity, and let the assumptions of Corollary 3.2 be satisfied. For almost all
(o E CC in a neighborhood of infinity as point of development the sequence
of Padé approximants [n/n], n ~ N, has the following property : there exists
an infinite subsequence N ç N such that

holds locally uniformly for z E D, where D is the convergence domain (from
Theorem 2.2) and p is the spherical metric as defined in (3.14).

Remarks

(1) Since GD (z)  1 for z E D, it follows from (3.17) that the subsequence
{[n/n]}n~N of diagonal Padé approximants converges to f locally uniformly
in D B 1 poles of f}. The convergence holds true in the whole domain D in
the spherical metric, and GD gives the exact convergence factor.
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(2) From (3.17) it further follows that there exists an infinite subsequence
N Ç N such that the diagonal Padé approximants [n/n], n ~ N, have no
spurious poles.

It has been shown in [Pol] that the projection 7/J along radii onto a
closed disc does not increase the capacity of a compact set K C C, i. e.,
cap(K) ~ cap(03C8(K)). From Theorem 2.2 and 2.3 it therefore follows that if
the branch points ai,..., a2m of the hyperelliptical function f are contained
in the disc D(r, 0), then the whole set F = CBD C D(r, 0). Hence, from
Theorem 3.8 we deduce

COROLLARY 3.9.2013 If the function f is hyperelliptic and analytic at

infinity, and if it satis,fies the assumptions of Corollary 3.2, then for almost
every (0 e U near infinity as a point of development, the Baker-Gammel-
Wills conjecture holds true for the sequence of diagonal Padé approximants
[n/n], n 6 N.

At the end of Section 5 it will be discussed, whether the conditions and
restrictions in Theorem 3.8 and Corollary 3.9 are really necessary.

4. Proofs of Results from Section 3, Part I

In the present section all results of Section 3 are proved, except the two
Theorems 3.3 and 3.8. We start by introducing some terminology, and then
study limit relations between zeros of the Padé polynomials Qn and Pn
and zeros and poles of the remainder function Rn. All three objects, the
polynomials Qn, Pn, and the remainder Rn, will be introduced in (4.8),
below. After some preparation, Theorem 3.1 is proved, followed by the
Theorems 3.5, 3.6 and 3.7. The section is closed by the proof of Lemma 3.4.

As before we denote by R the Riemann surface defined by the square
root

The canonical mapping is denoted by 7r : 1(, - C, and as in (3.2) the
surface R is broken down into the three sets Bi. B2 , and r such that 7Q. =

B1 U 0393 U B2. The two domains Bl and B2 lie over the convergence domain
D and we have z(F) = F. In order to have a complete decomposition of R
in two sheets, we assume that the chain of curves F is broken down into two
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sets Fi and F 2 such that F = Pl UP2 and over each point of FB la,, ..., a2m}
lies exactly one point of each set 03931 and F2. On this basis we can define
the two branches 03C0-1j : C - Bj U 0393j, j = 1, 2, of the inverse 03C0-1 of the
canonical projection 7r. As a general rule we denote by z a point on the
Riemann surface R, and for z E R B {a1,..., a2m} we consider z also as
a local coordinate endowed with the Euclidean or, if necessary, with the

spherical metric (3.14). In many situations it is useful to write z(j) for z
if z E Bj U f j, j = 1, 2. Thus, 00(1) and ~(2) denotes infinity on the first
and second sheet, respectively. As a rule, points on C will be denoted by
(. Further, we introduce the covering transformation ~ : R ~ R as the
map that satisfies 7r 0 )0 = 7r and )0 =f idR. Thus, we have ~(B1) = B2,
p(82 ) = Bl, cp(r) = r, and the branch points ai,..., a2m are fixed points
of p.

From definition (2.3) of the function GD, the fact that F = OG consists
of an union of finitely many analytic arcs, and from the symmetry property
(2.8) in Theorem 2.4, it follows that there exists a function -* locally analytic
on RB{~(2)} and satisfying

Indeed, log|03A6(z)| = -gD(03C0(z),~) for z e Bi and = gD(03C0(z),~) for

z e B2. The symmetry property (2.8) guarantees that log|03A6(z)| is harmonic
throughout RB {~(1), ~(2)}.

The existence of the function V can also be proved directly without
reference to the results in Section 2 by tools from the theory of compact
Riemann surfaces (cf. [Sp, chap. 10.1]). Contrary to |03A6|, the function W itself
is in general not single-valued; it has a simple zero at ~(1), a simple pole
at 00(2), and is different from zero elsewhere. These properties determine
W up to a constant factor.

From (4.2) and (2.3) it follows that

For any s &#x3E; 0 we define an open neighborhood U of F by
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Let Cl and C2 denote the two chains of curves ~U ~ Bj, j = 1, 2, and define
 := 03C0(U), C := 7T(Cl) = 1f’(C2)’

Throughout the next two sections f is a hyperelliptic function defined on
the Riemann surface R, and it is analytic at ~(1). Representation (3.1) of
the function f lifted to R can be written as

where ri and r2 are rational functions defined on C, and the square root

(4.1 ) is considered to be defined on R with

VVe have y 0 ’P = -y.

The asymptotic behavior (n ~ oo) of zeros and poles of certain sequences
of functions is of central interest. For the description of poles and zeros
we use multisets, i. e., sets in which the same element can be repeated
several times. By Z(g) and P(g) we denote the multiset of zeros and poles,
respectively, of a meromorphic function g in its natural domain of definition.
Thus, for instance, P( f ) is the set of all poles of the function f on R taking
account of multiplicities by repetition of elements. By SIDo we denote the
restriction of a multiset S to elements that are contained in Do, and by #(S)
we denote the number of elements in S. All other set-theoretic symbols are
used in the usual way. For sequences of finite sets a notion of convergence is

defined in the following way: we write Sn ~ S as n ~ oo, if #(Sn) = #(S)
for n &#x3E; no and there exist bijections 1Pn : S ~ Sn such that

The distance in (4.7) is either the Euclidean or the spherical distance on C
or on the Riemann surface R.

The defining relation (1.2) of Padé approximants lifted to R with the
right-hand side denoted by Rn and the whole relation multiplied by zn
yields
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where Rn and f are functions on the Riemann surface R and the polynomi-
als Qn and Pn are functions on C, Rn is called the remainder function, and
Pn and Qn are thepadé polynomials. with [n/n] = .Pn/Qn. The remainder
function Rn has a zero of order at least n + 1 at ~(1) and at a pole of order
not larger than n plus the order of a possible pole of f at ~(2). From (4.8)
it follows that

Because of the special role of the two points ~(1) and ~(2) modified zero
and pole sets are introduced for Rn by

Thus, for instance, Z(Rn) contains ~(1) only if Rn has a zero of order larger
than n + 1 at 00(1).

Since the function Rn is meromorphic on the compact Riemann surface
R, the number of its poles and zeros on R are identical, and from (4.9) and
(4.10) it follows that

Thus, we know that both sequences of multisets {P(Rn)}n~N and

{(Rn)}n~N contain only a bounded number of elements. Consequently,
any infinite subsequence N C N contains an infinite subsequence, which
again is denoted by N, such that there exist two multisets ZR and PR with
elements from R and

As distance function in the convergence (4.12) we use the spherical metric
lifted to R. From (4.11) and the definitions in (4.10) it follows that

’l’he dehnmg relation (1.2) tor radé approximants can be multlplied by
any non-zero constant, and therefore the same is true for the remainder
function Rn defined in (4.8). An appropriate normalization of Rn is

essential for the result in the next lemma. Let the fixed point zo E
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r B (ZR U PR U ~n~N(Z(Rn) ~ P(Rn))) be chosen. For the purpose of

normalization we assume that

and in order to also fix the argument of the values of Rn, we further assume
that in the development

the leading coefficient satisfies A &#x3E; 0. We note that if in relation (4.8),
and simultaneously in relation (1.2) for a given n among all admissible
polynomials Qn ~ 0, a polynomial of minimal degree is chosen, then the
condition (4.14) together with the condition A &#x3E; 0 in (4.15) determines Rn
uniquely. In the next lemma, however, such a perfect normalization is not
necessary. It is enough that condition (4.14) is satisfied.

LEMMA 4.1. We have

locally uniformly fo

Proof. - For z1, z2 ~ R B {z0}, z1 ~ z2 , we define the function

h(zo, Zl, Z2; .) by the following properties: The function is harmonic in

7Q, ) 1 Zl, z2}, h (zo, Zl, Z2; zo) = 0, and it has logarithmic poles at zl and
z2 with residues -1 and 1, respectively. The unique existence of such a
function follows from [Sp, chap. 10.1]. It is not difficult to prove that if Z2
is kept fixed and zi tends to z2, then

locally uniformly for zEn B tZ21. Let the functions hn be defined as

hn(z) := log |Rn(z)|-n log |03A6(z)|, and let h be the function that is harmonic
in R ) (ZR U PR ~{~(1)}), h(z0) = 0, and h has logarithmic poles with
residue -1 at the elements of ZR~{~(1)} and with residue 1 at the elements
of PR, taking account of multiplicities of elements by adding up the residues.
The existence of the functions h follows from the existence of the function

h(z0, z1, z2;·).
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The convergence (4.12) implies that there exist bijections 1/Jn : ZR
Z(Rn) and pn : PR ~ (Rn), n E N, such that

and from the convergence in (4.12) together with (4.17) it then follows that
hn - h as n - oo, n E N, locally uniformly in R B (ZR U PR ~{~(1)}).
The last limit together with the definition of hn implies that

locally uniformly for zEn B (ZR U PR~{~(1)}). Assertion (4.16) follows
from(4.19).D
We note that in (4.19) we have proved a stronger asymptotic relation than

that in (4.16). In (4.19) we have proved what is called power-asymptotics,
while in (4.16) only n-th root asymptotics are stated. However, (4.16) is

sufficient for the investigations in the present paper.

Using representation (4.5) and the equation y o p = -y, we can eliminate
the polynomial Pn from (4.8), which yields the representation

for the denominator polynomial Qn. The parameter s &#x3E; 0 in definition

(4.4) of the neighborhood [T = Ug of F can be chosen so small that we have

S|U = 51r for the multiset S := ZR~PR~Z(f)~P(f)~03C0-1 (Z(r2) U P(r2)).
Such a choice of 6* &#x3E; 0 is always possible since the set S is finite. The sets
U, C, and Cj, j = 1, 2, are defined as above in connection with (4.4). It

follows from (4.4), the limit (4.16) and the inequalities in (4.3) that for
n e AT sufficiently large the function R, o 7r Il is uniformly smaller than
Rn o 03C0-12 on Û. From (4.20) and Rouché’s Theorem we therefore deduce
that the number of zeros of Qn in Ù depends only on the growth of the
function arg(Rn o 7r21 /r2Y 0 7rî 1) on  = i9Û. This yields the formula

yve ha,ve used definition (4.10) and have taken into account that arg(y(z))
grows by 203C0m on the chain of curves C2.
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Considering relation (4.8) on Bl and inserting representation (4.20) for
Qn yields a representation for the numerator polynomial P,. We have

With the same arguments as used for the derivation of (4.21) it follows from
(4.22) that

As in the case of the remainder functions Rn in (4.10), so also for the
denominator and numerator polynomials Qn and Pn we introduce modified
definitions of zero sets by

The definition takes account of the possibility that the degrees of the

polynomials Pn or Qn may be less than n. With (4.24) we always have
#((Qn)) = #((Pn)) = n for all n ~ N.

From (4.21), (4.11), and (4.23) we learn that only a finite number of zeros
of the polynomials in the sequences {Qn}n~N and {Pn}n~N can cluster
outside of F = ~D. Hence, we can assume that N contains an infinite

subsequence of N, which we continue to denote by N, such that there exist
finite multisets ZQ and Zp of points from the convergence domain D = CBF
with

If e &#x3E; 0 in the definition of U = U03B5 has been chosen sufficiently small, then
it follows from (4.21), (4.11), and (4.23) that the sets ZQ and Zp have no
elements in . The elements of ZQ and Zp are the only cluster points of
zeros of the polynomials Qn and Pn outside of F as n - oo, n e N.

From the equations (4.21), (4.11), (4.23), and the limits in (4.25) we
deduce
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LEMMA 4.2. - We have

In the second equality of (4.26) we have used the equation #(Z(f)) =
#(P(f)) and the décomposition (3.2).

The representations (4.20) and (4.22) together with the limit (4.16) and
the inequalities in (4.3) yield

LEMMA 4.3. - We have

locally uniformly for z E CB (F U ZQ) in th e first limit, and locally uniformly
for z G C B (F U Zp) in the second one.

The limits in (4.16) and (4.27) together with relation (4.8), the inequali-
ties in (4.3), and Rouché’s Theorem show that in the neighborhood of each
pole of the function f o 7r Il in the convergence domain D = CC B F, the
denominator polynomial Qn has zeros of at least the same order as the pole
of f o 03C0-11. If the order of the zeros of Qn is higher, then the numerator
polynomial Pn has also to have one or several zeros in the same neighbor-
hood with a total order that is equal to the difference. Analogous results
hold true in neighborhoods of zeros of the function f o 7rll in D with the
role of the polynomials Qn and Pn interchanged. In the next lemma these
connections are expressed in terms of the limit sets ZQ and Zp.

LEMMA 4.4. - We have

Lemma 4.4 shows that zeros of the denominator polynomials Qn, n e N,
cluster at each pole of f o 7rl1 in the convergence domain D with at least
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the same total order as that of f o 1rl1. It follows from Definition 2.1,
the relations (4.28), and the limits (4.25) that for the elements of the set
ZQ n Zp there exist three possibilities:

(i) they are cluster points of spurious poles of the approximants [n/n],
n E N,

(ii) they are cluster points of common zeros of the Padé polynomials Qn
and Pn, n E N, that cancel out in [n/n], or

(iii) they are equal to ~(1) and both Padé polynomials Qn and Pn,
n E N, have at the same time degrees smaller than n.

From these considerations it follows that

We consider the partitioning

and derive from the first equations in (4.26) and (4.28) that

With (4.9), (4.10), and (4.12) it then further follows thaï

which yields

LEMMA 4.5. - We have

Note that the number #(P(f)|0393) - #(P(r2)|F) is always non-negative.

We are now prepared to start with the proofs of the Theorems 3.1, 3.5,
3.6 and 3.7.
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Proof of Theorem 3.1

(i) First we consider only Padé approximants [n/n] with n e N, where
N C Il is an infinite subsequence as used in the Lemmas 4.1 through 4.5.
Let zo e D be a pole of order of the function f o 03C0-11. Since f is analytic
at ~(1) we have z0 ~ oo. From the first equation in (4.28) of Lemma 4.4 we
know that near zo the denominator polynomials Qn, n E N, have exactly k
zeros more than the numerator polynomials Pn, and all these zeros converge
to zo as n - oo, n E N. Consequently, the approximants [n/n], n E N,
have poles of a total order at least k, which are converging to zo as n ~ ~,
n E N.

In the case that the total order of the poles of [n/n] converging to zo is
larger than k, it remains to show that [n/n] possesses the zeros that are
typically associated with spurious poles. If there are more than k poles
(in the sense of total order), then the same holds true for zeros of the
polynomials Qn, n E N. From (4.25) and the first equation in (4.28) of
Lemma 4.4 it follows that the additional zeros of Qn converge to points in

ZQ ~ ZP. It then follows again from (4.25) that the numerator polynomials
Pn, n E AT, have the same number of zeros converging to zo. If some zeros

of the polynomials Pn and C,?n are identical, then they cancel out in [n/n],
and the number of (spurious) poles and zeros of [n/n] is reduced by the
same number.

All conclusions are valid so far only for the subsequence lV C N used
in the Lemmas 4.1 through 4.5, but the construction of this subsequence
guarantees that any potential, infinite, exceptional subsequence of N con-
tains an infinite subsequence for which the conclusions hold true. Hence,
all conclusions of part (i) are proved for the full sequence N.

(ii) The part (ii) of the theorem follows directly from the inequalities (4.29)
and (4.33). ~

Proof of Theorem 3.5 and 3.6. .2013 It turns out that it is best to prove
both theorems together. Let x e D and let f o 7rll have a pole of order
k1 ~ 0 at x. The case k1 = 0 is not excluded, i, e., f o 03C0-11 may be analytic
at x. We shall show that the estimates (3.10) and (3.11) hold true for all
poles of the approximants [n/n], n ~ N, converging to x.

By vo = v(,f o 7rrB x) we denote the valuation of f o 7r Il at the point
X, i. e., VO is equal to the order of a zero of f o 7r Il at x or equal to the
negative of the order of a pole of f o 7ri 1 at x. We have v0 ~ -k1. Set



- 153 -

k2 := vo + k1. Then we have min(ko, k1) = 0. Let the infinite subsequence
N C N be selected as in the Lemmas 4.1 through 4.5, and assume that
also the convergence in (4.12) and (4.25) holds true. From Theorem 3.1 we
know that for each n E N the denominator polynomial Qn, n E N, has
zeros of total order k3 ~ k1 in a neighborhood of x, and the zeros converge
to x as n ~ ~, n ~ N. We can assume that the total order is constant

for all n E N by choosing a subsequence. Set k4 := k3 + vo and denote the
k3 zeros of Qn in a neighborhood of x by 03C0jn, j = 1,..., k3. According to
Theorem 3.1 (i) the numerator polynomial Pn, n G 7V, has k3 - k1 zeros in
a neighborhood of x. If the function f o 03C0-11 has no pole, but a zero of order
h2 = vo at z, then Pn has in addition k2 zeros in a neighborhood of x. The
k3 - k1 + k2 = k4 zeros of Pn near x are denoted by (jn, j = 1,..., k4. We
define

anc

In contrast with the functions f and Rn, the new functions f and Rn are
defined on C. For 03B5 &#x3E; 0 sufficiently small the function f is analytic and
different from zero, the function n analytic, and the polynomials Pn and
Qn, n. E N, are different from zero on D (x, s) if N starts with n sufficiently
large. Indeed, this is the case if the punctured disc D(x,03B5) B {x} does not
contain any element of ZQ or Zp and if the lifted set 7ri 1 (D(x,03B5)B{x}) C
R does not contain any element of Z( f ), P(f), ZR, or PR.

By C we denote the circle ~D(x,03B5). Since all polynomials pn and qn,
n E N, are of identical degree k2 + k3 = k1 + k4, and since all zeros of qn
and pn converge to x as n - oo, n E N, we have

uniformly for ( e C. From (4.27) in Lemma 4.3 together with (4.35) and
(4.36) we deduce that
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uniformly for ( E C. From (4.16) of Lemma 4.1 together with (4.35) we
deduce that

uniformly for 03B6 E C. Inserting (4.35) into equation (4.8) yields

From the limits (4.36), (4.37), and (4.38) the asymptotic relation

follows uniformly for ( e C. In (4.40) equality (4.2) has been used. Since

pn and qn are monic polynomials of identical degree, we have (Pn/qn)(() =
1 + O(03B6-1) as ( - oo. Further, we know that all zeros of qn lie inside

of C and Pn is different from zero on D(x,03B5) for n e N sufficiently large.
Consequently we have

and with (4.39) and (4.40) we deduce that

locally uniformly for ( e C B D(x, s).

Since the function |03A6| is continuous in R B {~(2)}, for any 6 &#x3E; 0 there

exists 03B5 &#x3E; 0 such that the right-hand side of (4.42) is strictly smaller than

|03A6(03C0-11(x))| + 6. With the first limit in (4.36) it therefore follows from

(4.42) that
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The sequence N has to start with n sufficiently large. The estimate

(4.43) will be the major tool for finding an appropriate pairing of the
k2 + k3 = k1 + k4 zeros of the polynomials Pn and qn. Set

The lemmiscate En consists of the components E1n,....Elnn. We show that
in each component El, the two polynomials pn and qn have an identical
number of zeros. Indeed, let us complete the two lists of zeros by setting
03B6jn := x for j = k3 + 1,..., k3 + k2 and the list of poles by setting 7r jn := x
for j = k4 + 1,..., k4 + ki . All zeros 03B6jn and 7r,,, converge to x as n ~ oo,
n E N, j = 1,...,k2+k3 = k1+k4, and we have En Ç D (z, s) for all n e N
if l’V starts with n sufficiently large. Assume without loss of generality that

03C01n,...,03C0l1nn are the only zeros of qn in Ein. From (4.43) and (4.44) we
know that Iqn(()1 I &#x3E; |pn(03B6) - qn(()1 ( for all 03B6 ~ ~E1n. It therefore follows

from Rouché’s Theorem that Pn and qn have the same number of zeros in

E1n’ In the same way the conclusion follows for the other components of

En.

Since qn is a monic polynomial of degree k1 + k4, it follows from (4.44)
that

(cf. [La, chap. II, S4]). Further we know that for any continuum Iî c C we
have diam(K) ~ 4 cap(K) (cf. [La, chap. II, S4]). Hence, for any pair of
zeros 7r jn and 03B6jn, j = 1,..., k1 + k4, in the same component Eln, we have

In the case k1 &#x3E; 0 let us consider the k1 zeros 03B6jn = x, j = k4+1,..., k1+k4
of pn . Using the definition of co in (4.43) together with (4.2), it follows froin
(4.46) that there exist k1 zeros of the denominator polynomial Qn, which
we number as 7r jn, j = 1, .... ki, and which are not at the same time zeros
of the numerator polynomial Pn, and we have

For the remaining k4 = k3 -f- VO = k3 - k1 zeros 7r jn of the polynomial Qn
near there exist k4 corresponding zeros of Pn in a neighborhood of x that
can be numbered as (jn, j = k1 + 1,...,k1 -E- k4, in such a way that
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From (4.46) the asymptotic estimate (3.10) in Theorem 3.5 follows for the
pole of f at x and the subsequence N. From the construction of N in

the préparation of the Lemmas 4.1 through 4.5 it is clear that any infinite

sequence contains an infinite subsequence for which our conclusion holds
true. Hence, exceptional subsequences are impossible and the conclusion is
proved for the full sequence N. Since x was an arbitrary pole of f in D, this
concludes the proof of Theorem 3.5. Note that ord(7r + ko = k1 + k4 -
k2 + k3 if-c = 03C0j.

From (4.47) we conclude in the same way that the asymptotic estimate
(3.11) in Theorem 3.6 holds for all sequences of spurious poles that do not
cluster at oo. Note that k1 = 0 has not been excluded, and this is the case
if the function f is analytic at x e DB{~}. However, the case x = oo had
been excluded in the analysis so far. This case can be treated in principle
in the same way. One only has to use convergence in the spherical metric,
and to do necessary adaptations in several formulas. 0

Proof of Theorem 3.7. - From (1. 1), (1.2), and (4.8) the formula

for the approximation error follows. As already done in the proofs of the
Theorems 3.1, 3.5 and 3.6, we first analyse the situation that the problem
is restricted to an infinite subsequence N ç N, for which the Lemmas 4.1
through 4.5 hold true. Let V be an open set with V C DB{~} and V does
not contain any point of the sets ZQ or 03C0 (P(f)IB1)’ Since V n zQ = 0,
the first limit in (4.27) of Lemma 4.3 holds uniformly on V, and because of
V ~ 03C0(PR|B1) = ø, it follows from the limit (4.16) in Lemma 4.1 together
with (4.9) that

uniformly for ( E 11. From (4.48) and the limits (4.27) and (4.49) it then
follows that

uniformly for all ( E V.
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(i) Let Do be a domain with the properties stated in part (i) of Theorem
3.7. We first assume that 00 fi. Do. Then there exists an open set V with
V ~ D B {~}, ~D0 C V, and both sets V U Do and Do contain the same
poles of the function f o 1rl1. Let further ki, n E N, be open sets with
Vn C VU DO, D0 ~ Vn, let the approximant [n/n] have the same set of poles
on vn and Do, let ôii be smooth, and let there exist a constant el such
that length (~Vn) ~ ci for all n E N. By [n / n] we denote the approximant
[n/n] pole-cleared on Vn in accordance with Definition 3.2 (i). Because of
our assumptions pole-clearing on Vn and on Do has the same effect. From
(3.13) it follows that

Using definition (4.2) of the function 0 we deduce from (4.50) and (4.51)
that 

uniformly for ( e Do. Since the right-hand side of (4.52) is smaller than 1,
this proves that [n/n] converges to ,f uniformly on Do as n ~ 00, n e N.
As the right-hand side of (4.52) does not depend on the selection of the
subsequence N, the result is also proved for the full sequence N. If oo E Do
formula (4.51) has to be changed in an obvious way.

(ii) Let now Do be a domain as assumed in part (ii) of Theorem 3.7. It is

possible to choose two open sets V1, V2 with Vj ~ D, j = 1, 2, V1 U V2 P Do,
the two sets Vl U V2 and Do contain the same poles and zeros of the function

f o 03C0-11, and both sets contain the same cluster points of zeros of {Qn}n~N,
i. e., ZQ|V1~V2 = ZQ ID--. Assume further that on V1 the function f o 7rl1
has no poles, on V2 it has no zeros, and ~Vj n ZQ = 0 for j = 1, 2. As in
Theorem 3.7 let (7r,,,, 03B6jn), j = 1,..., kn, n ~ N, dénote pairs of poles and
zeros of [n/n] that belong to spurious poles on Do, and define

Since all poles and zeros considered in (4.53) cluster inside of 171 or inside
of V’2, and since their number is bounded, it follows from (3.11) in Theorem
3.6 that
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uniformly for ( E 01,’l ~ ~V2. The asymptotic estimate proved in (4.50)
holds uniformly on âvi ~ ~V2. With (4.54) and (3.14) in Definition 3.1 (ii),
we therefore deduce that

uniformly on ~V1, and since f ~ 0 on OV2, we further deduce that

uniformly on ~V2. The pole-cleared approximants [n/n] are analytic on
V1. Hence, (4.55) hold uniformly on V1. Since f o 7rl1 has no zeros on
v2 the same is true for [n/n] if n E N is sufficiently large, and hence
(4.56) holds uniformly on V2. Both limits (4.55) and (4.56) together prove
unifori-n convergence on Do in the spherical metric for the subsequence N.
Convergence for the full sequence N follows in an obvious way as before. D

Proof of Lemma 3.4.2013 Set r2(03B6) := (( - cos 03B11)(03B6 - cos a2). It

is well known (see for instance [StTo, Lemma 6.3.3]) that the defining
condition (4.8) or (1.2) for the Padé polynomials Pn and Qn implies that
the denominator polynomial Qn satisfies the orthogonality relation

and each polynomial Qn e Pn, Qn ~ 0, that satisfies (4.57), satisfied

also (4.8) with an appropriately chosen polynomial Pn e Pn. Since the

weight function r2(03B6)1-03B62 changes its sign on [-1, 1] only twice, the
polynomial Qn can have at most 2 zeros outside of [-1, 1]. Therefore the

Padé approximant [n/n] can have at most 2 spurious poles. Note that

CB [-1, 1] is the convergence domain D from Theorem 2.2 for the sequence
{[n/n]}.

A connection between the polynomials Qn and the Chebychev polyno-
mials of the second kind

plays a basic role in the sequel. The polynomials lin satisfy the orthogonal-
ity relation
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Let (an, bn) e R2 be the solution of the system

Since it has been assumed that the 3 numbers 03B11, 03B12, 03C0 are linearly inde
pendent over Q, the values sin 03B11 and sin a 2 are algebraically independent
(cf. [Si, S12]), which implies that the determinant of the system (4.60
is different from zero, and hence the solution (an, bn) E R2 exists and i:

unique. From (4.60) together with (4.58) we deduce that the right-hanc
side of

has zeros at the two points cos 03B1j, j = 1, 2. The concrete form of the left-
hand side of (4.61) then follows from a comparison of the two orthogonality
relations (4.57) and (4.59).

In Lemma 4.6, below, it will be shown that the linear independence over
Q of the three numbers cxl, 03B12, 03C0 implies that the set

in dense in R2. Let the conformal mapping 03C8 : C B [-1, 1] ~ C B D(0, 1/2)
be defined by ( ~ e«) := (03B6 + 03B62-1) /2. The polynomials Un possess
ratio asymptotics, i. e. , the limits

and

hold true locally uniformly for ( G C B [-1, 1]. The identity (4.61) can be
rewritten as

Let x E C B [-1, 1] be given arbitrarily and define
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Because of the denseness of the set (4.62) in nt 2 there exists an infinite
subsequence N C N such that

From the assertions (4.63) through (4.67) we then deduce that for each
n E N the polynomial Qn has a zero 03B6n such that

It remains to show that the zero (n generates a spurious pole of the Padé
approximant [n/n]. Indeed, if (n is not a spurious pole, then 03B6n is also a

zero of the numerator polynomial Pn in (4.8). It follows from (4.66) that
with 03B6n also 03B6n is a zero of Qn and Pn, n e W. We consider the polynomials

Inserting them into (4.8) yield that

From (4.70) it then follows, as at the beginning of the proof, that Qn satisfies
the orthogonality relation (4.57). Since deg(n) = n - 2 and Qn r2 satisfies
relation (4.59), we have Qnr2 = Un, which in turn implies with (4.58) that
sin ((n + 1) arccos(cos 03B1j)) = sin(n + 1)03B1j = 0 for j = l, 2 and n E N.

However, these last equations contradict the assumptions that the numbers
03B11, 03B12, and 7r are linearly independent over Q. Hence, it is proved that (n,
n E N, is a spurious pole of the approximant [n / n]. 0

LEMMA 4.5. - Let (an, bn) E R2, n E N, be the solution of the system
(4.60), and assume that the numbers 03B11, a2, 7r are rationally independent.
Then the set {(an, bn)| n = 1, 2,...} is dense in R2.

Proof. - After some trigonometric calculations it follows from (4.60)
that
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If in (4.71) the numbers an, bn, cot(n + 2)cxl, cot(n + 2)a2 are replaced
by the variables a, b, x, y, respectively, then (x, y) Ho (a, b) defines a
mapping 03A8 : R  R ~ R  R, which is surjective and continuous if R x M
is endowed with the spherical metric. The surjectivity can be verified most
easily by considering simultaneously the two expressions a = a(x, y) and
(b - l)/a = (b(x, y) - 1)/a(x, y).

Since the numbers 03B11/203C0, 03B12/203C0, 1 are linearly independent over Q, it
follows from Weyl’s uniform distribution Theorem (cf. [Ch, chap. VIII])
that the set of simultaneous remainders

is dense in [0, 27r) x [0, 203C0). Hence, the set

is dense in R x R, and the lemma follows from the properties of the mapping
03A8. ~

5. Proofs of the Theorems 3.3 and 3.8

For the proofs of the Theorems 3.3 and 3.8 some elements of the theory of
compact Riemann surfaces are essential. A fundamental role is played by the
Jacobi inversion problem. With its help we can understand the asymptotic
distribution of the zeros of the remainder function Rn introduced in (4.8). It
turns out that in distinction to all poles and all other zeros of the remainder
function Rn , the distribution of m - 1 zeros of Rn is only very indirectly
determined by properties of the function f. However, the concept of the
Jacobi inversion problem allows us to understand the distribution of these
last m - 1 zeros. As a consequence we get information about the asymptotic
distribution of spurious poles. The section is closed by a discussion of

possible generalizations.

The terminology used in the theory of Riemann surfaces is based on

the book [Sp] by G. Springer, where Chapter 10 is especially relevant. As
before R denotes the concrete Riemann surface defined by the equation
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y2 = (( - a1)··· (( - a2m), and for all points on R B {a1,...,a2m} a local
coordinate z is defined by the projection 7r : R ~ C. As before points on C
are denoted by (. As in (3.2) Bl and B2 denote the two domains in R lying
over the convergence domain D = C B F, we write z(j) if z lies in B j, and
7r7 and 7r2l denote the two branches of the inverse mapping 7r-1 mapping
D onto B, and B2, respectively.

The Riemann surface R is of genus g = m - 1, and the g differentials

form a basis in the space of Abelian differentials of the first kind, where
y is defined as in (4.1) (cf. [Sp, chap. 10.10]). In the previous section we
ha,ve used multisets for the description of poles and zeros of meromorphic
functions. In the Riemann surface theory it is usual to use divisors for

this purpose: For a point a E R by Da we denote the elementary divisor,
which is a mapping Da : R ~ {0, 1} defined by Da(a) = 1 and Da(z) = 0
for z e R B {a}. Divisors form a multiplicative Abelian group generated
by elementary divisors. Multiplication is defined by addition of its values.
Thus, divisors assume their values in Z, and they are different from zero
only at finitely many points in R. To each meromorphic function h on R a
divisor ( h) is associated by assigning a positive integer to each zero that is
equal to its order and a negative integer to each pole of the function again
equal to its order. Thus, if h has the zero set Z(h) = {z1, ..., zl} and the
pole set P(h) = {03C01,...,03C0l}, then the divisor ( h ) is given by

If y is a simple arc on R issuing from z2 E Rand leading to zi E R, then
ây denotes the divisor

and correspondingly a chain of arcs y defines a divisor generated by more
than two elementary divisors. In both cases, (h) and ~03B3, the sum of

positive and negative values is equal, i. e., the degree of these divisors

deg(D) := EzcR D(z) is equal to zero (cf. [Sp, chap. 10.4]).

Let the curves a1,..., ag , bl , ... , bg form a, homology basis on R, let
)01, ... pg be the canonical basis of the Abelian differentials of the first
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kind associated with this homology basis. Such a canonical basis is defined
by the following normalization of the period integrals:

and (Im(Bij))i,j=1,...g is a positive definite matrix. In many situations it is
more comfortable to use the basis {~1, ..., ~g} instead of the differentials
in (5.1). The two matrices (Aij) and (Bij) together form the period matrix.
On Cg an equivalence relation

is introduced by defining (5.5) to hold true for c = (c1,..., cg), c’ =

(Ci ... , c’g) E Cg if and only if there exists ni, ... , n2g E Z, such that

As a consequence of the Riemann-Roch Theorem (cf. [Sp, chap. 10.5])
we have

PROPOSITION 5.1. Let 1 (1 &#x3E; g = m - 1) points 1r1,...,1rz and l - g
points z,+1, ... , zl be given on R.

(a) It is always possible to choose g points z1,..., zg E R in such a

way that a meromorphic function h on R exists with an associated
divisor as defined in (5.2), i. e., P(h) = 17rl,...,7rll and Z(h) =
{z1,..., zl}.

(b) The g points z1,...,zl E R of part (a) are uniquely determined by
the given 21 - g points 7rl, ..., 1rZ, zg+1,...,1 Zl if and only if no non-
trivial Abelian differential  of the first kind exists with zeros at the
g points z1,..., zg.

Remark. - The multiplicity of points in a divisor corresponds in the
same way as the multiplicity of elements in a multiset with the order of
zeros or poles of the associated function.
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Proof

(a) Let D denote the diviser D1r1 ... D03C0lD-1zg+1··· D-1zl. The Riemann-Roch
Theorem (cf. [Sp, Theorem 10.10]) says that

where deg(D) = ¿zEn D(z) = g is the degree of the divisor D, i(D) thj
dimension of the space of all Abelian differentials on R with divisors tha
are multiples of D (for a detailed definition see [Sp, chap. 10.4]), and r(1/D
is the dimension of the space L(1/D) of all meromorphic functions h on T
with a divisor (h) that is a multiple of 1/D, i.e., h can have poles only a
7rl, ..., 7rl and has to have zeros at zg+1, ... zl. It follows immediately fron
(5.7) that r(1/D) ~ 1, and therefore there exists (if 1 &#x3E; g) a non-constant
meromorphic function h in L(1/D). Let Il be the number of its zeros an(
poles. We have 1 - g  l1  1. Without loss of generality we assume h ha:
poles at 7rl, ..., 03C0l1. Besides zg+1,..., zl, there exist l1-g zéros z1,... zl1-g
of h. If we add to this list the points 7rll +1, ... , 7rl as zl1-g+1, ..., zg, ther
part (a) is proved. (If 1 = g, then the selection zj = 7r j = 1,..., g, works)

(b) Assume that h and  are two functions with the properties of th(
function h introduced in the proof of part (a). Let z1,...,zg and 1,...,g
be the points selected in connection with h and h, respectively. Se1

hl := h/h. Then we have

where Do and Do are integral divisors of degree g. From the Riemann-Roch
Theorem it follows that

Since Do is integral, i(D0) is the dimension of the space of all Abelian

differentials of the first kind having zeros at the g points z1,..., zg. If

such a differential does not exist w-e ha,ve i(DO) = 0, and r(1/D0) = 1

in (5.9). As Do is an integral divisor, L(1/Do) contains the constant
functions, and r(l/Do) = 1 therefore implies that it only contains constant
functions. Hence. h1 ~ const., and consequently (5.8) implies that zj = zj
for j = 1,..., g. It is clear that in case of i(Do) &#x3E; 0 the function hl is not

necessarily constant, and therefore different sets of Zj’S and j’s exist. 0
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From (5.1) we conclude that any Abelian differential e of the first kind
can be represented as 

with .P a polynomial of degree at most g - 1. Hence, the differential 03C8 can
have zeros at more tha,n g - 1 points z1,...,zl ~ R, l ~ g, if, and only if, at
least two points lie over the same basis point, i.e., there exists at least one

point zj with an image ~(zj) among the points z1,..., zl, where p is the

covering transformation p : R ~ R, i. e., 03C0 = 03C0 o p and ~ ~ idR. These
observations are summarized in

LEMMA 5.2.2013 For g points z1,...,zg G k there exists a non-trivial

Abelian differential e of the first kind having zeros at z1, ..., zg if and only if

The discrete set

defines a lattice in cg called the period lattice (cf. [Sp, chap. 10.8]), and

is called the Jacobian variety of the Riemann surface 7.’-. Its definition

depends on the choice of the basis )01, ..., ~g, but any other choice leads to
an isomorphic variety. Note that the use of the symbol r here has a different

meaning from that in (3.2). There exist 2g vectors Fi,..., F2g E Cg linearly
independent over R and

For each c E Jac(Z) the coordinates Ii = li(C) E [0, 1), i = 1,..., 2g, are

uniquely defined by
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In the Jacobi inversion problem properties of two rather similarly defined
mappings J and J are studied. The first mapping is defined as

’l’he definition depends on the reference point ~(2) E R. lt is shown in

[Sp, chap. 10.8], that j is locally homeomorphic and that, what is more

important, it is surjective.

One can consider j as a mapping of divisors associated with chains f of
a.rcs that connect the g points ~(2), ... , ~(2) with 9 points Zl, ... , zg E R,
i. e., divisors of the form

The concept can be generalized by considering the set Div0(R) of all divisors
D with deg(D) = 0, i. e., divisors D that have the same number of positive
and negative values. For each D E Divo(R) there exists a chain of arcs
such that ~03B3 = D, but, in contrast with (5.17), the number of points
in the numerator and denominator is not necessarily equal to g. From

Abel’s Theorem (cf. [Sp, Theorem 10.7]) we know that for a given diviser
D E Divo(TZ) there exists a meromorphic function h on R with (h) = D if
and only if for a chain 1 of arcs with 81 = D we have

Divisors D that are defined by a meromorphic function h on R, i. e., 
D = (h), are called principal, and the set of all principal divisors is denoted
by DivP(R). It is immediate that they form a subgroup of the Abelian
group Divo(Z). The mapping

can be seen as an extension of J (see (5.16)). The mapping J is therefore
also surjective. With the mapping J, Abel’s Theorem can be formulated as
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Ker(J) = Divp(R). Hence, passing to the factor group Div0(R) B Divp(R)
induces a bijective mapping J : Divo(R)/ Divp(R) -Jac(R), [D] ~ J(D).
In the sequel we shall use only the two maps J and J.

We have seen that with the map J, Abel’s Theorem can be rephrased as:
Any D E Div0(R) belongs to DivP(R) if and only if J(D) = 0. Note that
by (5.13) addition and a topology is induced in Jac(R) from Cg. The only
conclusions we need from the Jacobi inversion problem are contained in the
following

PROPOSITION 5.3. - Let G1,..., Gg C R be g open sets satisfying

Then there exists an open set Go Ç J ac(R) with the following property : If
2l - g points 03C01,..., 03C0l, zg+1,...,zl E R, l ~ g, are given, the divisor D is
defined as

and if zl, ..., zg E Rare g points selected in accordance with part (a) of
Proposition 3.1, then

implies that

and the g points zl, ..., zg are uniquely determined on R by th e condition
of part (a) in Proposition 3.1.

Proof. - Set G := G1 x... x G. C Rg and define Go := -J( G) 9
Jac(R). Since j is locally homeomorphic, the set Go is open in Jac(R).

Assume that J(D) E Go holds true with the divisor D defined in (5.21).
From the definition of Go it follows that there exists z = (z1,..., zg) E G
such that 

Comparing the definitions of  and J in (5.16) and (5.19), respectively,
shows that (z) = J(Dz) with the divisor Dz defined in (5.17). From

(5.24) we deduce that
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The definitions (5.17) and (5.21) together show that

From Abel’s Theorem and (5.25) we then know that there exists a meromor-
phic function h on R such that (h) = DDz, which shows that the points
z1,...,zg ~ R have the property required in part (a) of Proposition 5.1.
Since we know that z = (z1,...,1 zg) e G1 x ... x Gg, the assertions in (5.23)
are satisfied, and it follows from condition (5.20), Lemma 5.2, and part (b)
of Proposition 5.1 that the g points z1,...,zg are uniquely determined on
R, which completes the proof. 0

Proposition 5.1 and 5.3 is used to analyse the remainder function Rn
defined in (4.8). In this analysis the following three multisets play an
important role:

where the functions f and r2, the multisets Z( .) and P ( . ), the mappings
So and 1rj1, j = 1, 2, are defined as in Section 4. The set P Sn contains all
possible poles of Rn and possibly some additional points, the set Z Sn all

zeros of Rn and possible some a,dditional points, and the set C Sn contains
the potential cluster points of the sets Z Sn. In the definitions in (5.26)
special care is taken at the point ~(2) e R. Some basic facts are assembled
in the next lemma.

LEMMA 5.4. -- We have
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and if the assumptions of Corollary 3.2 are satisfied, then we furth er have

Remark. - The constants ko and k1 are independent of n. As before,
the valuation of r2 at ~ is denoted by v( r2, oo), i. e., the order of a zero is
counted positively and that of a pole negatively.

Proof. - Relation (4.8) and representation (4.5) imply that

Inclusion (5.27) is an immediate consequence of the definition of Rn in (4.8)
and a consideration of (5.33) near ~(2). Inclusion (5.28) follows from the
definition of Padé polynomials in (1.1), (1.2), together with (4.8). Inclusion
(5.29) is a consequence of the definition of P Sn in (5.26) and of equation
(5.33) near ~(2).

The first equality in (5.30) is a consequence of the fact that the number
of poles and zeros of Rn on n is identical. In addition the sets P Sn and
Z Sn have to be considered at ~(2). The second equality then follows
immediately.

If the assumptions of Corollary 3.2 are satisfied, then P(f)|RB{~(2)} =
P(f)|B1 U P(f)|B2B{~(2)}, P(r2) = P(r2)|D, and Z(r2) = Z( T2) ID with
D ç C the convergence domain. In order to prove (5.31) we first show that

Indeed, (5.34) follows directly from representation (4.5) of f. Then it is best
to use the first equality in (5.30) and consider the definitions of P Sn and
C Sn on R B {~(2)} and at ~(2) separately. Equation (5.32) is immédiate.
M’e note that we always have k1 ~ 0. 0

The three sets PSn, ZSn, and CSn defined in (5.26) grow with n, but
the dependence on n is not very complicated: except for variations of points
in the set Z Sn the main change is the addition of the element ~(1) or 00(2)
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in each step n ~ n + 1. In order to have the interesting processes isolated
in finite sets, we define

with k0 introduced in (5.29). The first and the last set in (5.35) do not
depend on n. If the assumptions of Corollary 3.2 are satisfied, then it

follows (5.32), (5.30) and (5.31) in Lemma 5.4 that

LEMMA 5.5. - Let the assumptions of Corollary 3.2 be satisfied. For

each n &#x3E; ko it is possible to select g points zln, ... , zgn ~ R from the set
ZSn in such a 1.vay that

Remark. - The notion of convergence of multisets has been defined

before (4.7).

Proof. - Before we start with the proof proper, we mention the special
situation that zeros of Qn lie exactly under poles of the function f. In this
case poles of f are canceled out in (4.8), we then have a strict inclusion in
(4.9), and

This situation is excluded in the first step.

Equation (5.33) is basic for the proof of the lemma. Let N C N be an
infinite subsequence such that the limits (4.12), (4.25), and also the limits
(4.16) and (4.27) in Lemma 4.1 and 4.3 hold true. It follows from the limits

(4.16) and (4.27) together with the inequalities in (4.3) that on the set
D B ({~} U 03C0(PR)) the last term in equation (5.33) is small in comparison
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with the first two terms. The set PR has been defined in (4.12). Thus, we
can apply Rouché’s Theorem to (5.33) in the neighborhood of every point
Of CS|B2B{~(2)}.

From Lemma 4.5 we know that at each point of 03C0(P(f)|B1) the denom-
inator polynomial Qn has a zero of at least the same order. Under the as-
sumption that the set in (5.39) is empty it follows from (5.55) and Rouché’s
Theorem that in a neighborhood of a point z e CS|B2 the set ZS’n has at
least the same number of elements as the multiplicity of z in CSIB2’ That
this also holds at ~(1), follows from (5.26) and (4.8). From the assumption
of Corollary 3.2 it follows that Z(r2)|F = 0 and therefore CS contains only
points from B2 U {~(1)}, and consequently we have shown that near each
point of CS there lie points of ZSn with the necessary multiplicity. From
(5.37) we know that ZS’n contains exactly g points more than ZC. Hence,
for each n ~ N it is possible to remove g points z1n,..., zgn from ZSn, and
for the remaining sets the convergence (5.38) holds true as n ~ oo, n E N.
Since CS is independent of n, limit (5.38) hold for the full sequence N.

If some zeros of Qn cancel out poles of f, then an inspection of the
consequences in equation (5.33) shows that in this situation the set Z(Rn )
may have less points than C,S near some points of P(f)|B2B{~(2)}. However,
the missing points are contained in the set P(f)B2B{~(2)} ~ iBn. 0

In the sequel it is assumed that the assumptions of Corollary 3.2 are

always satisfied. From the definition of the two sets PSn and ZSn in (5.26),
the two sets fi% and ZSn in (5.35), and from the description of the behavior
of Pn at ~(2) in (5.33) we deduce that the divisor of Rn is given by

with the divisor lln defined as
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It follows from (5.36) that Dn E Div0(R). Set

where zen, ..., zgn are the points selected from ZSn in Lemma 5.5 for eacl
n ~ ko, and define further

The second equality in the first line of (5.43) follows from (5.40). As a

consequence of Lemma 5.5 we have

LEMMA 5.6. - Let the assumptions of Corollary 3.2 be satis,fied. Then

we have

The convergence is understood in the topology on Jac(R) induced from Cg.

Proof. - From (5.42) and (5.41) it follows that

The convergence (5.38) in Lemma 5.5 together with (4.7) and the definition
of the mapping J in (5.19) gives (5.44). The limit (5.45) is a consequence
of (5.44) together with the first line of (5.43). El

With Proposition 5.3 and the Lemmas 5.5 and 5.6 we have a rather
good understanding about the asymptotic distribution of the zeros of the
remainder function Rn as n - oo. With some simplifications it can be
said that the distribution is understood if one understands the asymptotic
distribution of the set

in Jac(R).
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With respect to the distribution of the set (5.47) in Jac(R) the analysis
in the present paper is not optimal. This is also the reason why in the
Theorems 3.3 and 3.8 it had to be permitted that the point of development
for the Padé approximants [n/n] is moved away from infinity in certain
cases. For Theorem 3.8 this seems to be an unnecessary requirement. In

the present paper the analysis of the distribution of the sequence of numbers
in the set (5.47) is based solely on Weyl’s Uniform Distribution Theorem,
which is applicable only under certain assumptions.

LEMMA 5.7.- Let Ij = 03B3j(J(D~(1)D-1~(2))) E [0,1), j = 1, ... , 2g,
be the coordinates of the point J(D~(1)D-1~(2)) E Jac(R) as defined in

(5.15), and assume that the elements of the set {1, 03B31,...,03B32g} are linearly
independent over Q. Then the set (5.47) is dense in Jac(R).

Proof. - The lemma is a direct consequence of Weyl’s Uniform Dis-
tribution Theorem (cf. [Ch, chap. VIII]). Let us consider the linear

mapping 03A8 : Jac(R) ~ R2g/ with f := Ze1 + ... + Ze2g, ej the

canonical unit vectors ej = (0,..., 1,..., 0), and the mapping 03A8 de-

fined by 03A8(c) = (03B31(c),...,03B32n(c)) mod(1,...,1) for c E Jac(R) and
the 03B3j(c) the coordinates of c introduced before (5.15). Thus, we have

03A8(J(D~(1)D-1~(2))) ~ (03B31,...,03B32g) mod(1,...,1). Since it has been as-

sumed that the numbers 1, 03B31,..., 12g are rationally independent, we know
from Weyl’s uniform distribution Theorem that the set

is uniformly distributed in m 2g If, and therefore also dense in m 2g If. The
mapping 03A8 is a continuous bijection. Hence, the denseness of the set (5.48)
in R2g/ implies the denseness of the set (5.47) in Jac(R). 0

The assumption of Lemma 5.7 may not be satisfied for the Riemann
surface 7?. that is associated with a given hyperelliptic function f. However,
with the help of the next lemma it is always possible to choose a new point
of development (o near infinity for the Padé approximants [n/n], n E N,
such that the assumption of Lemma 5.7 is satisfied in the new situation.

LEMMA 5.8. - For 03B6 E lei z(j) ~ Bj C R, j = 1, 2, denote th e two

points on R lying over 03B6, i, e., 03C0(z(1)) = 03C0(z(2)) = 03B6, and define the function
c(03B6) with values in Jac(IZ) by
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Let Ij = Ij(() := 03B3j(c(03B6)), j = 1, ..., 2g, denote the coordinates of c«) as
defined before (5.15). Then for almost every ( E C in a neighborhood of o0
(almost every with respect to planar Lebesgue measure) the elements of the
set {1, 03B31(03B6),...,03B32(03B6)} are linearly independent over Q.

Proof. - Let c = (ci, cg) E Cg. From (5.14) and (5.15) it follows

that there exist 2g vectors bj = (bj1,...,bjg) E cg , j = 1, ... , 2g, such that
the coordinates l’j -ij (c) E [0, 1) are given by

Hence, for the coordinates 03B3j(03B6), j = 1,..., 2g, of the function c(03B6) define,
in (5.49) we have

Since the vectors fI,..., f2g in (5.14) form a basis in Cg over R, it

follows from (5.50) that also the vectors b1,...,b2g form a basis in C9
over R, and consequently none of the Abelian differentials 1,.., 2g
and also no non-trivial linear combination of these differentials can vanish

identically. Consequently, the same holds true for the coordinate functions
7l (03B6),..., -12g «), and these functions are harmonic in ( near infinity. Let

n2 denote the planar Lebesgue measure in the set 6 := {03B6 ~ C||03B6| ~ 1/03B5},
03B5 &#x3E; 0. We consider

and generally

It is immediate that Gj C Gj+1 for j = 1, ..., g - 1. The set {03B6 E 0394|
03B31(03B6) = r}, r E Q, consists of level lines of a non-constant harmonic
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function. Hence, its Lebesgue measure is zero, and further m(G1) = 0.

All ( e Gj+1 B G. lie on level lines defined by equations of the form

and consequently also m(Gj+1 B Gj) = 0 for j = 1, ... , g - 1. This proves
that m(Gg) = 0. D

From the definition of the mapping J in (5.19) and from (5.49) we see
that

If for a given hyperelliptic function f the associated Riemann surface
does not have the property that the elements of the set {1, 03B31,...,03B32g} =
11, Il ( 00 ), ... , 03B32g(~)} are linearly independent over Q, then Lemma 5.7
cannot be applied. However, we can use another point of development for
the Padé approximants [n/n]. In Definition 3.1 diagonal Padé approximants
[n/n] developed at a point (o ~ oc have been introduced by considering the
function f := f o 1/)-1 with a Moebius transform

1

mapping (o onto oo. If [n/n] denotes the Padé approximant of f developed
at infinity, then from Definition 3.1, (3.5), we know that

is the Padé approximant of f developed at (o ( f is assumed to be analytic
at (o). Of course, f is again an hyperelliptic function; it has branch points
j := e-1 (a,), j = l, ... , 2m. The Riemann surface R associated with f
is conformally equivalent to R, and it is not difficult to see how all notions
associated with R are caried over to those associated with R, and vice
versa. Thus, the convergence domain D of the sequence {[n/n]} is equal
to 03C8-1(), where D is the convergence domain of the sequence {[n/n]}.
Let 1,..., âg, 1,..., bg be a homology basis on  and 1,..., §3g the
canonical basis of the Abelian differentials of the first kind on . It follows
from the conformal equivalence of R and  that
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Note that 03C8(03B60) = oo, and z(1)0 and z¿2) lie on R over the same basis

point (o.

Identity (5.56) together with Lemma 3.8 implies that we always can
assume that the assumptions of Lemma, 5.7 hold true, if we are willing
to move the point of development for the Padé approximants slightly away
from infinity. Indeed, from Lemma 5.8 we know that if the assumptions of
Lemma 5.7 are not satisfied, then we can choose a point (o near infinity as a
new point of development for the Padé approximants [n/n], n E N, such that
the elements of the set {1, 03B31(03B60),...,03B32g(03B60)} = {1,1(~),...,2g(~)}
are linearly independent over Q. The analysis is then continued with the
sequence {[n/n]} of Padé approximants to f , which are developed at infinity
and for which the assumptions of Lemma 5.7 hold true.

So far we have only considered zeros (and poles) of the remainder function
Rn. However, we are interested in spurious poles of the Padé approximants
[n/n], n e N. The next lemma provides the necessary connections.

LEMMA 5.9. - Let 9 points z1,...,zg E R B {~(2)} be given and assume
that N is an infinite subsequence of Ii for which the Lemmas 5.1 through
5.5 hold true and assume that for each n E fol 9 points z1n,...,zgn have
been selecled from 7l in the same way as in Lemm.a 5.5 and that they satisfy

where the convergence has to hold in the spherical metric if for some zj we
have z. = ~(1).

then there exzsts an 2nju,n2te subsequence oj N, which we contznue to denote

by N, such that each Padé approximant [n/n], n E N, has excacily k
spurious poles 7rln, - ..., 7rkn ~ C satisfying

Remark. - In (5.58) ~ is the covering transformation on R and in (5.59)
7r denotes the canonical projection.



- 177 -

Proof

(a) We start with a preparatory consideration. Assume that N C N is an
infinite subsequence such that for each n E N there exist k2 spurious poles
03C01n,..., 1i’k2n E C of the Pa.dé approximant [n/n] with

(D denotes the convergence domain). Let k3 ~ 0 and k4 ~ 0 be the order of
the poles of the function f at the points 03C0-11(03C01) and 03C0-12(03C01), respectively,
(the case k3 = 0 or k4 = 0 has not been excluded). From Theorem 3.1 (i) we
know that the denominator polynomial Qn, n ~ N, has at least k2 + k3 zeros
in a neighborhood of 7r, and these zeros converge to 03C01 as n - 00, n ~ N.
Starting as in the proof of Lemma 5.5 from equation (5.33), it is possible to
show by Rouché’s Theorem that the set Z,Sn has k2 elements more than the
set CSn in a neighborhood of ?r2l(?r1) E B2 (both sets have been defined
in (5.26)), and therefore these k2 points have to be among those points of
ZS’n that are selected in Lemma 5.5, for otherwise the convergence (5.38)
would not be possible.

(b) We now start from the assumptions made in the lemma. We assume
that k5 limit points of the list z1,...,zg are identical with zl e B2 - Without
loss of generality let these be the points z1 = ... = zk5 e B2. Then (5.27)
implies that

Let ,f have a pole of order k6 ~ 0 at ~(z1) E Bi (k6 = 0 is not excluded).
Then it follows from the definition of the sets ZSn and CSn in (5.26), the
convergence (5.38) in Lemma 5.5, and an application of Rouché’s Theorem
to equation (5.33) as has been done in the proof of Lemma 5.5 that the
denominator polynomial Qn, n ~ N, has k5 + k6 zeros in a neighborhood of

03C0(z1) and these zeros converge to 03C0(z1) as n ~ oc, n E N. From Theorem
3.1 (i) we know- that k6 zeros do not coincide with zeros of the numerator
polynomial Pn, since the corresponding poles of [n/n] converge to the pole
of f at 03C0-11(z1). Let us denote the remaining k5 zeros of Qn near 03C0(z1) by
03B6jn, j = 1,...,k5, n ~ N. We have

In order to show that these zeros 03B6jn generate poles of [n/n], which then
are spurious, it is necessary to prove that these zeros are not zeros of the

numerator polynomial Pn simultaneously.
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Indeed, let us assume on the contrary that there exists an infinite

subsequence 7V C N such that for each n E 7V there exists at least one
zero (jn, j E {1,...k5}, which is simultaneously a zero of Qn and Pn.
It follows from (4.8) (and (1.2)) that in this case a linear factor can be
factored out of Pn and Qn without making (1.2) invalid. This implies that
both points 03C0-11(03B6jn) and 7r2’l((jn) are zeros of Rn and belong to the g
points that have to be selected in Lemma 5.5. From the convergence (5.62)
it then further follows that zi E B2 and ~(z1) E Bl are limit points of
03C0-12(03B6jn) and 03C0-11(03B6jn) as n ~ cn, n E 7V, and hence both points zi and
cp(z1 ) belong to the list z1,..., Zg. But this contradicts assumption (5.58).
Hence, we know that all k5 zeros (jn, j = 1,..., k5, of Qn generate spurious
poles of [n/n] for n in a subsequence N that differs from the original one
by only by finitely many elements.

The analysis so far has shown that there exist at least spurious poles if
k limit points out of the list z1,...,zg lie in B2. From part (a) we deduce
that on the other hand there cannot exist more than k spurious poles. The
limit (5.59) follows from (5.62) with 03B6jn = 03C0jn for j = 1,...,k and n e 7V. 0

Proof of Theorem 3.3. - Wre first assume that the 2g + 1 numbers

1, 03B31,...,03B32g are linearly independent over Q, where 03B3j are the coordinates
of the number J(D~(1)D-1~(2)) E Jac(R) introduced in Lemma 5.7. Further
we know that the assumptions of Corollary 3.2 are satisfies, hence the

lemmas 5.5, 5.6, and 5.9 can be used.

Define z j := 03C0-12(03C0j) C B2, j = 1, ... , g = m - 1, and let G1,...,Gg be
open neighborhoods of these points which G j C B2, j = 1,...,g. Since all
Gj are contained in B2, assumption (5.20) of Proposition 5.3 is satisfied, and
therefore a non-empty open subset Go g Jac(R) exists with the properties
stated in Proposition 5.3.

Because of the assumption of the rational independence of 1, y1, ... , 03B32g
we know from Lemma 5.7 that the set (5.47) is dense in Jac(Z), and we
can deduce from limit (5.45) in Lemma 5.6 that there exists an infinite
subsequence N ~ N such that

with divisors Dn defined as in (5.43).
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Let z1n,..., zgn E R, n EN, be the g points selected in Lemma 5.5 such
that convergence (5.38) holds true. Note that the divisor Dn is defined
in (5.43) analogously to the divisor D in (5.21) of Proposition 5.3. The

03C0j’s in D are now the elements of P Sn and the zg+1,...,zl the elements
of ZSn B {z1n,..., Zgn}; (5.40) and (5.43) together then show the analogy
between the definition of Dn and D. From Proposition 5.1 (a), we know
that there exist g points 1n,...,gn E R such that the two sets P,S’n
and {1n,..., gn} U (ZSn B {z1n,..., zgn}) are pole- and zero-sets of a
meromorphic function on R. Because of (5.63) from Proposition 5.3 it

follows that the selection of the g points 1n,...,gn is unique. Since
we know from (5.40) that the two sets P,Sn and ZSn are pole- and zero-
sets (possibly plus some additional points that appear in PSn and Z Sn
simultaneously) of the meromorphic function Rn, as a first conclusion it

follows that Zjn = jn, j = 1,...,g, n E N, is a possible choice in

Proposition 5.1 (a). Because of the uniqueness it then follows as a second
conclusion that this is the only choice possible. From (5.63) and (5.23) in
Proposition 5.3 we then know that

If we repeat this consideration with shrinking neighborhoods G, of the
points zj, then we can construct an infinite subsequence of N, which we
continue to denote by N, such that the selected sets {z1n,..., zgn}, n E N,
in Lemma 5.5 satisfy

With Lemma 5.9 it then follows that each Padé approximant [n/n], n e N,
has g spurious poles at 03C0jn e CC, j = 1...., g, n e N, and

This proves the Theorem under the assumption that the 2g -f- 1 numbers

1, 03B31,...,03B32g are linearly independent over Q.

We know from Lemma 5.8 that if the linear independence over Q is

not true, then we can choose almost any point (o in a neighborhood of
infinity as a new point of development for the diagonal Padé approximants
[n/n] to f, and the diagonal Padé approximants [n/n] to the function

f := f o 03C8-1 developed at infinity with e the Moebius transform (5.54)
have the property that the points 1, 1,...,2g are rationally independent
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with j the coordinates ij = 1j(OG) = 03B3j(03B60), j = 1,..., 2g, that have been

considered in the paragraph after (5.56). Hence, for the sequence {[n/n]} all
the conclusions proved above hold true. In order to prove Theorem 3.3, one
has to select a new point of development (0 and to continue with the points
3j := 03C8(03C0j), j = 1,...,g, instead of the original points 03C0j. The results then

proved for the Padé approximants [n/n] are pulled back to [n/n] with the
help of identity (5.55). D

Proof of Theorem 3.8. 2013 From a methodological point of view the proof
is very similar to that of Theorem 3.3. We start again by assuming that the
numbers 1, -Yl, - - -, 12g are rationally independent and that the assumptions
of Corollary 3.2 are satisfied. Next we choose g points 03B61,...,03B6g arbitrarily
in the convergence domain D C C, but then we define zj := 03C0-11(03B6j),
j = 1,..., g, i. e., the z, are now contained in B1. Let Gj be a neighborhood
of z- with Gj C Bl, j = 1,...,g. The important difference from the last
proof is that the G, and z. are contained in Bl and not in B2. After this
assumption the analysis is identical with that in the proof of Theorem 3.3,
except that it now follows from Lemma 5.9 after (5.65) that each Padé
approximant [n/n], n E N, has no spurious poles since all Zl, ... , :: 9 E B1.
Since no spurious poles exist, a consideration of the limits in (5.66) is not
necessary.

If the 2g + 1 numbers 1, 03B31,..., j2g are not rationally independent, then
with the same arguments as applied in the proof of Theorem 3.3 it can be
shown that the analysis can be repeated with a new point of development
03B60 ~ C.

We note that for the proof of Theorem 3.8 the limit (5.65) is not really
necessary. It would be enough to know that the zeros zln, ... , zgn lie in

Bl. This weaker condition would allow us to select a denser subsequence
N C N. However, in order to follow this path of proof the technical Lemma
5.9 would have to be formulated and proved in a different way

The section is closed by a discussion whether the assumptions made in
Corollary 3.2 and also the special assumptions made in the Theorems 3.3 and
3.8 with respect to the point of development of the Padé approximants [n/n]
are really necessary. Actually, it seems that in Theorem 3.8 it should be

possible to drop both assumptions completely. Further there is the question
whether all or some results can be extended to a larger class of functions.
A short discussion of these questions is organized in 4 subsections:



- 181 -

(i) There is some evidence that poles of the function f or poles and zeros of
the rational function r2 in the representation (4.5), which lie on F = C/D,
play a different role if they lie on end points of the arcs Jj, j E l, that form
F. These endpoints usually are branch points of the function f. In the

case of only two branch points the phenomenon can be illustrated by the
behavior of the Jacobi polynomials P(03B1,03B2)n with parameters a = nl + 1/2,
(3 = n2 + 1/2, n1, n2 ~ N. Padé approximants having these polynomials as
denominators are free of spurious poles for all values n 1, n2 ~ N.

(ii) If poles of the function f or zeros and poles of the rational function r2 lie
inside of the arcs Jj, j E I, that form the set F, then these points should be
considered as confluent pairs of branch points of f. Geometrically speaking,
the Riemann surface R of the function f is considered as the limit situation
of Riemann surfaces with a larger genus. Combining these considerations
with that of subsection (i), it should be possible to find a sharp upper
bound (3.3) in Theorem 3.1. If it is also possible to understand in this
framework the rules that govern the distribution of spurious poles, then it
should further be possible to prove the Baker-Gammel-Wills conjecture in
the general form of Theorem 3.8 without the assumptions of Corollary 3.2.

(iii) The necessity to move to a point of development 03B60 ~ oo in Theorems
3.3 and 3.8 follows from the weakness of our analysis with respect to the
distribution of the set (5.47) in the Jacobian variety Jac(R). However, it

seems that this part of the analysis can be improved, and as a consequence
Theorem 3.8 may hold true without excluding certain points of develop-
ments.

(iv) It is perhaps rather brave to conjecture that the results of Section 3
can be extended to algebraic functions f, i. e., that a formula for a sharp
bound (3.3) in Theorem 3.1 can be found and proved for all algebraic
functions ; further, that the rules which govern the distribution of spurious
poles are understood; and, lastly, that the Baker-Gammel-Wills conjecture
in the form of Theorem 3.8 holds true for all algebraic functions f. (The
assumption that the function f should be analytic at infinity is of minor
importance.) Of course so far it is not clear whether the results hold true
in such a general form. We note that it has been conjectured by J. Nuttall
that a finite bound (3.3) exists for algebraic functions f, and that in most
situations this bound should be equal to genus of f.
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6. A Result by S. Dumas Revisited

In his thesis [Du] Samuel Dumas investigated the development in contin-
ued fractions of the square root of a polynomial of fourth or third order with
complex roots. He classified different situations, gave explicit formulae for
the partial denominators of the continued fractions in terms of elliptic func-
tions, and studied the convergence behavior of continued fractions. There,
he cast light on a surprisingly strange behavior of the convergents of the
continued fractions in certain situations. It is this last topic with which we
are concerned in the present section. We consider Padé approximants in-
stead of continued fractions and restrict ourself to developments at infinity.
The analysis can be seen as an illustration of the more general results in
Section 3 for the more explicit situation of a special elliptic function.

Let a1,..., a4 E C be 4 different points and define the function f by

The function is analytic at infinity. Let [n/n], n = 1, 2, ..., be the diagonal
Padé approximants to f developed at infinity. By R we denote the concrete
Riemann surface defined by

As betore 7r : ’N, ~ C denotes the canonical projection. Let the two closed
curves a and b form a homology basis on R and define

We have 7 e R, and it can be assumed that Im(r) &#x3E; 0. The set

forms a lattice in (C. With some knowledge of elliptic functions, it is perhaps
not surprising that the mapping
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turns out to be a very helpful tool in the analysis. Because of (6.3) the right-
hand side of (6.5) is well defined. The mapping u is bijective and the two
surfaces Rand Z/I’ are conformly équivalent. We have u(~(1)) = 0 e C/0393.
The image of 00 (2) e R under the mapping of u, i. e.,

plays an important role in the analysis. It turns out that its arithmetic

character is decisive for the convergence behavior of the diagonal Padé
approximants [n/n], n 6 N.

As in (1.2) and (4.8) we have

The functions Rn and f are analytic on R B {~(2)}, and as before the Padé
polynomials Pn, Qn E Pn are considered as functions defined on C. Since
the function Rn has no poles outside of ~(2), from (6.7) and the fact that
a meromorphic function on a compact Riemann surface has an identical
number of poles and zeros, it follows that the location of all poles and zeros
of Rn is known except for one zero.

LEMMA 6.1.2013 For each n G N there exists a point zn E lé such that on e

of the following three cases holds true:

In any case Rn(z) ~ 0 for z ~ R B {~(1),zn}.
In case of an elliptic function Abel’s Theorem tells us that the sum of the

poles and the sum of the zeros in the v-plane are equal up to multiples of
the periods 1 and T. According to (6.7) the function Rn(v) := Rn(u-1(v))
has n + 2 poles at v~ E C/0393, n + 1 zeros at 0 E C/r, and one zero at
u(zn) e C/0393. Thus, the next lemma follows directly from Abel’s Theorem.

LEMMA 6.2. - In U/F we have
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In the analysis we need some tools from the Weierstrass approach to
the theory of elliptic functions, particulary the Weierstrass functions p, (,
and 03C3. As a general reference we use [HuCo] or [Hi], but any other book
on elliptic functions can be used. As usual, p denotes the Weierstrass p-
function, which is a doubly-periodic function, defined in the v-plane C with
periods (1, T), and having a double pole at the origin and a,t all equivalent
points. The function (( v) is meromorphic in the v-plane, and defined by
(’(v) = -(v) up to an additive constant, which can be determined by the
functional equation (( -v) = -03B6(v). The function 03B6 is not periodic, but
it satisfies the functional equation (( v + n1 + n27) 03B6(v) + nl171 + n2q2
for all v E C and nI, n2 E LZ with two constants ~1,~2 ~ C that satisfy
the Legendre relation ~1 + 1727 = 27ri (cf. [HuCo, II, 1, S6]). Finally, the
03C3-function is an entire function defined by

and satisfying the functional equation

tO.1U)
for v e C and n1, n2 ~ Z (cf. [HuCo, II, 1, S9]). The Weierstrass 03C3-function
is very useful for representing doubly periodic meromorphic functions, i. e.,

meromorphic functions defined on C/0393. The function o- has a simple zero at
the origin and at all equivalent points in the v-plane. In the next lemma we
show that with the help of the a-function it is possible to give a constructive
representation of the function (D defined in (4.2). We recall that the function
V has played a dominant role in the proofs of most results in Section 3. If

the function 03A6 is defined in a constructive way, then this also implies a
constructive procedure for determining the convergence domain D and the
convergence factor GD (defined in (2.3)),

LEMMA 6.3

(i) There exists a constant c ~ C such that the function

satisfies the functional equation
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and there exists co ~ C with Icol = 1 such that

(ii) Let Bi, B2 C R be the two domains lying over the convergence
domain D C C. Then we have

Proof

(i) From (6.10) and (6.11) we deduce that

Hence, (6.12) holds if Re(n1(c -f- ~1v~) + n2(c + ~2v~)) = 0, which is

equivalent to the system of equation

for Re(c) and Im(c). Since 7 e R, it follows that c ~ C exists and
is uniquely determined by (6.16). In order to prove (6.13), we have to
verify that G(v) G(v + v~)|v=0 | = 1, since we know from (6.5) that

lu’(~(1))| = |u’(~(2))| and that the definition of -1) has been based on (4.2).
Indeed, from (6.9) and the antisymmetry 03B6(-v) = -03B6(v) it follows that

Hence, from (6.11) we have

(ii) The identities (6.14) are an immediate consequence of (4.3) together
with (6.11) and (6.13). n
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The next lemma shows, how the special zero zn of Rn is connected with
spurious poles of the Padé approximants [n/n].

LEMMA 6.4. - Assume that N C N is an infinite subsequence such that

(i) If z0 E Bo B {~(2)} C R, then there exists an infinie subsequence of
N, which we continue to denote by N, such that for each n E N the
denominator-polynomial Qn has a zero and the Padé approximant
[n/n] a spurious pole ai 7rn E C, and we have

(ii) If zo E Bl g R, then the Padé approximants [n/n], n E N, have no
spurious poles.

Proof. - From limit (6.19) and Lemma 6.1 together with (6.7) w-e

deduce that

locally uniformly for z ~ R B {z0, ~(2)}. Let p : R ~ R be the covering
transformation on R, and let 03C0-1j : D - Bj, j = 1, 2, denote the two
branches of the inverse 7r-1. From (6.7) and (6.1) analogously to (5.33) we
have

Because of the convergence (6.21) and the inequalities in (6.14) it follows

from Rouché’s Theorem that Qn has a zero in D approximately below the
place where Rn has a zero in B2.

(i) If zo E B2 B {~(2)}, then there exists a zero 7in E D of Qn near zn for
n e N sufficiently large, and because of (6.19) 03C0n ~ 7r(zo) E D as n - oo,
n ~ N. If 7r,, were a zero of Pn at the same time, then it would follow

from (6.7) that Rn had zeros at 7rn E B2 and at ~(03C0n) E B1. But this is
impossible because of Lemma 6.1. Thus, [n/n] has a pole at 7rn, and the

convergence (6.20) shows that this pole is spurious.



- 187 -

(ii) If zo e Bl, then zn E Bi for n E N sufficiently large. Hence, it

follows from Lemma 6.1 that Rn has no zeros on B2, and consequently
[n/n], n ~ N, has no spurious pôle. D

DEFINITION 6.1.2013 The two numbers ri,r2 E [0, 1) satisfying

are called the coordinates of the point v~ E Cff. In the same way we define
(r1n,r2n) E [0, 1) X [0, 1) by

as coordinates of u(zn), n EN.

LEMMA 6.5. Let {r} := r - [r] E [0,1) denote the integer-rerrtainder
of r ~ R. Ylje have

With respect to the distribution of the set

we can distinguish three cases:

(i) If (rl, r2) e Q x Q, then the set (6.26) is contained in a finite lattice
in [0, 1) x [0, 1).

(ii) If (r1, r2) ~ Q  Q, but the 3 numbers 1, r1, r2 are linearly dependent
over Q. then the set (6.26) is contained in a finile number of parallel
lines in [0, 1) x [0, 1).

(iii) If the 3 numbers 1, ri, r2 are linearly independent over Q, then the
set (6.26) is dense in [0, 1) x [0, 1).

Proof. - Relation (6.25) is an immediate consequence of (6.24), (6.8) in
Lemma 6.2, and (6.23). From Weyl’s Uniform Distribution Theorem (cf.
[Ch, chap. VIII]) it follows that if a E (0, 1) is irrational, then the set
A1 := {{n03B1}|n = 1, 2,...} is dense and uniformly distributed in [0,1). If

a is rational, then the set A1 forms a finite, 1-dimensional lattice in [0,1).
Part (i) follows from the last assertion.
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The assumption of part (ii) can be subdivided in three cases: (a) ri e Q,
r2 ~ Q, (b) r1 ~ Q r2 E Q, (c) r1, r2 ~ Q and ri /r2 E Q. In the cases

(a) and (b) the assertion of (ii) follows immediately from Weyl’s Uniform
Distribution Theorem. We consider case (c): there exists a e Q with
r2 = 03B1r1, and hence

where (n can assume only finitely many rational values. The assertion of
part (ii) in case (c) follows directly from (6.27).

The assertion of (iii) follows directly from Weyl’s Uniform Distribution
Theorem. 0

Dumas proved the next theorem in the language of continued fractions,
which especially in its third subsection shows how poor a.nd disappointing
the convergence behavior of the diagonal Padé approximants [n/n], n E FI
can be.

THEOREM 6.6 (Dumas). - The set

consists of two arcs 03B31 and 03B32 connecting two branch points each. With the

same classification in subcases as used in Lemm a 6.5 we have:

(i) If (rl, r2) ~ Q x Q, lhen there exist ,finitely many points 03B61, ..., (n1 E
C such that

locally uniformly for 03B6 e U B (S u {03B61...., (n 1}).
(ii) If (rl, r2) « Q?  Q but the numbers 1, ri, r2 are rationally dependent,

then there exist finitely many arcs 03B33, ..., 03B3n2 in 1: such that the limit

(6.29) holds true locally uniformly for ( ~ C B (S U 03B33 ~··· U In2)’

(iii) If the three numbers 1, ri, 7-2 are rationally independent, then there
exist lu7o infinite sets 03A31, 03A32 E C, both dense in C, and the limit

(6.29) holds point-uaise for each 03B6 ~ 03A31 and each ( E 03A32 is a cluster

point of poles of [n/n], n E N.
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Proof. - From (6.14) and (6.11) we deduce that the set R B (Bl U B2) =

N ~ R| |(u(z)) 1 = 1 consists of two closed arcs, the branch points
a1,..., a4 belong to this set, and 03C0(B1) = 03C0(B2). The convergence domain
for the diagonal Padé approximants [n/n], n ~ N, is given by

Let N C N be an infinite subsequence such that the limit (6.19) holds
true. From (6.14) and (6.11) we know that

Hence, (6.21) and (6.22) imply that

locally uniformly for ( E D B {03C0(z0)} if the limit point zo in (6.19) lies in
B2 or locally uniformly for ( E D if Zo fi. Bz. From (6.7) it follows that

From the proof of Lemma 6.3 we know that |(u(z))(u(~(z))) 1 = 1 for
all z e R, and p denoting the covering transformation of R, i. e., 7r o ~ = 7r

and :p =1= idR. We deduce from this together with (6.33), (6.21), and (6.32)
that 

locally uniformly for ( E D B {03C0(z0)} if zo E B2 and locally uniformly for
( E D else. We note that the right-hand side of (6.34) is independent of
the selection of the subsequence N, but the limit point zo in (6.19) depends
on N.

Define Bj := u(Bj ) ç 72/f. j = 1, 2, and the maps j : j ~ D
by t r- 03C0(03BC-1(t)), which are conformal bijections between the Bj and D,
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j = 1, 2, respectively. Let A denote the set (6.26) inbeded into C/0393, and
define

(i) From Lemma 6.5 we know that if (rl, r2) E Q  Q, then the set Â
is finite, and consequently also the set A., i.e., A = {03B61,..., (ni 1. From

Lemma 6.4 we then know that all spurious poles of the Padé approximants
[n/n], n G N, have to cluster at points of A. The conclusion of part (i) then
follows from (6.34).

(ii) If the assumptions of part (ii) are satisfied, then we know from Lemma
6.5 that the set .¿4 is contained in a finite number of parallel lines in C/f. Let
73, ... ,1n2 be the non-empty intersections of these lines with the domain
B2 , and let the images under 7r2 be denoted by 03B32,..., 7n2 . Then the

conclusion in part (ii) follows in exactly the same way as in part (i).

(iii) If the numbers 1, /1 , 72 are rationally independent, then we know from
Lemma 6.5 that the set ~2 is dense in 132, and hence the set A is dense
in C. From Lemma 6.4 it then follows that each z E A is a cluster point of
spurious poles of the Padé approximants [n/n] as n - oc. This proves the
first conclusion in part (iii) with 1:1 := A.

In order to prove the second conclusion in part (iii) "7e need some

preparation. Let K, K1 g D B {~} be two compact sets with 7B Ç Int(K1).
For 03B5 &#x3E; 0 sufficiently small we define

Let lV ç N be an infinite subsequence such that for n E N a zero 7r, of
Qn exists with 7r, E K1. For n e N B N sufficiently large we have An = 0.
Define Qn := Qu/(’ - 03C0n) for n E N. From the limit ( .34) and from (6.36)
we deduce that for all n E N sufficiently large and all ( E An we have

with
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Hence, we have

for n E N sufficiently large, where m is the planar Lebesgue measure. Since
c0(K)  1, for Ãn := ~n’~nAn’ we have

From (6.36) and (6.33) it follows that for each ( E D B An the limit (6.29)
hold true point-wise. From (6.40) we then deduce that in D point-wise
convergence hold true almost everywhere with respect to planar Lebesgue
measure. This proves the second conclusion in part (iii). D

’iVe remark that in part (iii) of Theorem 6.6 less has been stated than
has been proved. The convergence almost everywhere, which has been
proved, also follows from convergence in capacity, which has been proved in
Theorem 2.2 (by much less elementary means).

It is not clear whether there exists an infinite subset 03A32 C C dense in C
such that the sequence [n/n], n E N, diverges at every point ( e 03A32. By
a more detailed investigation of part (i) in Theorem 6.6 than given here,
it could be shown that pointwise convergence holds true in (6.29) for all
( e D = C B S, however, in neighborhoods of the points 03B61,...,03B6n1 the

convergence is not uniform.

From the Lemmas 6.2, 6.4, and 6.5 it can be deduced that in the case
of the function (6.1) an infinite subsequence N G N always exists such that
the diagonal Padé approximants [n/n], n 6 N, converge locally uniformly
to f in the domain D = C B S, i. e., that for these special functions f the
Baker-Gammel-Wills conjecture can be proved in the form of Theorem 6.8
without any restriction or additional assumption. Actually, it can further
be shown that the subsequence N can have a denseness in N of 1/2.
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