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Extension and Selection theorems in

Topological spaces
with a generalized convexity structure(*)

CHARLES D. HORVATH(1)

Annales de la Faculte des Sciences de Toulouse Vol. II, nO 2, 1993

RESUME. - Dans un travail precedent on a introduit une structure de
convexité abstraite sur un espace topologique. Un espace topologique
muni d’une telle structure est appelé un c-espace. Nous montrons ici

que le théorème de prolongement de Dugundji, le théorème de selec-

tion de Michael pour les applications multivoques s.c.i, le théorème

d’approximation de Cellina pour les applications multivoques s.c.s. et

le théorème de point fixe de Kakutani s’adaptent aux c-espaces. Les es-
paces topologiques supercompacts munis d’une prebase normale et binaire
ainsi que les espaces métriques hyperconvexes sont des c-espaces.

ABSTRACT. - In previous papers we introduced a kind of topological
convexity called a c-structure. In this paper we prove within this

framework Dugundji’s extension theorem, Michael’s selection theorem
for lower semicontinuous multivalued mappings, Cellina’s approximate
selection theorem for upper semicontinuous multivalued mappings and
Kakutani’s fixed point theorem. Our proofs follow very closely the original
proofs. In the second part we show that the so called supercompact
topological spaces with a normal binary subbase and the hyperconvex
metric spaces fall within the class we consider.

0. Introduction

In [13], we gave the following definition. A c-structure on a topological
space Y is an assignment for each non empty finite subset A C Y of a
non empty contractible subs pace F(A~ C Y such that F(A) C F(B) if

A C B. We called (Y, F) a c-space. A non empty subset E C Y is an
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F-set if F(A) C E for any non empty finite subset A ç F. (Y, d F)
is a metric l.c-space if open balls are F-sets and if any neighbourhood
{y E Y ~ d (y, E)  r } of any F-set E C Y is also an F-set.

It is clear by looking at the proofs in [13] that it is enough to assume that
the sets F(A) are C°° (any continuous function defined on the boundary
of a finite dimensional sphere with values in F(A) can be extended to a
continuous function on the ball with values in F(A)).

For the relevance of such a structure in the theory of minimax inequalities
and in fixed point theory one can look at [3], [4], [7] and [8].

Dugundji introduced m-spaces. With a minor change of vocabulary we
can define m.c-spaces. A c-space is called and m.c-space if for any metric

space (X, d) and every continuous function f : X --~ Y the following is true:
for each x E X and neighbourhood W of there exists a neighbourhood
U of x and an F-set E ç Y such that f(U) ) ç E ç W, obviously if each
point of Y has a neighbourhood base consisting of F-sets then (Y, F) is

an m.c-space. Furthermore if Y is a metrizable topological space then by
taking X = Y and f : X --> Y the identity function we see that (Y, F) is an
m.c-space if and only if each point of Y has a neighbourhood base consisting
of F-sets [10].

Any metric l.c-space is obviously an m.c-space. In this paper we general-
ize in the context of c-spaces Dugundji’s extension theorem, Michael’s selec-
tion theorem and Cellina’s approximate selection theorem. As in Cellina’s

paper we obtain a version of Kakutani’s fixed point theorem for compact
metric l.c-spaces in which F(E) is closed for any finite subset E.

Finally we show that connected metrizable spaces with a normal binary
subbase and hyperconvex metric spaces carry a natural c-structure for which
they are metric l.c-spaces. Hyperconvex spaces have been studied in relation
to fixed point theory of nonlinear, non expensive mappings. For their basic
properties we refer to the papers of Aronszajn-Panitchpakdi ~1~, where they
were first introduced, and to the papers ofBaillon and Sine [2], [15].

Spaces with a normal binary subbase where first introduced by De Groot
and Aarts [11] in relation to compactification theory. They have been
extensively studied by van Mill and van de Vel, among others. For the

basic results concerning these spaces we refer to their papers [16], [17] and
[18].



1. Main results

Theorem 1 below is instrumental in establishing these results, we there-
fore reproduce its proof [13].

If X is a topological space and R is a covering of X, for each z E X let

THEOREM 1. Let X be a paracompact space, ?Z a locally finite open
covering of X, , (Y, F) a c-space and : ~Z -~ Y a function. Then there

exists a continuous function g : X ~ Y such that for each x EX, ,

Proof. - Let be the nerve of the covering, (.Jll (?Z) I its geometric
realization and x : ~Y -~ !jV(~)! I the continuous function associated with
a partition of unity subordinated to ?Z. We will denote by I
the geometric realization of the k-skeleton of and we identify ?Z

with ~~)(7~) . . The topology of ~~)(7~ I is discrete, we can therefore

identify r~ with a continuous function ( -~ Y . We will show that 1]
extends to a continuous function 1] : - Y such that for any simplex
(Uo, , ... E t

where St Ui ç |N(R)| I denotes the star of ui.
£ C I,J1~(?~) ( is called a subcomplex if it is a simplicial complex whose

simplexes are also simplexes of I.~1~(?Z) (’
Choose a function : ,.~1~{~~ (7Z) I -~ Y such that e for

each U E ?~. Consider the family of pairs (.C, r~,~ ) where ,C is a subcomplex
containing 77~ : : ,C --~ Y is a continuous function whose restriction

to is r~ and

for any simplex (Uo, " ~ Un) of jC. This family is partialy ordered by the
relation (/:; ~) ~ (/:~; ~) if jC C /:~ and ~~ ~ = ~.



Any chain ~ (,Ci; has a maximal element (.C, ~~ where ,C =

UiEI ,Ci and for p 

rr is continuous since on each simplex of Z it coincides with one of the
?~. . Therefore by the Kuratowski-Zorn lemma this family has a maximal
element, let us say (,C, ~ ). We will show that ,C = I . If not let ko
be the first integer such that I is not contained in ,C. Obviously
l~~ > 0. There is a simplex s C ~(~)~ I of dimension ko which is not

contained in .C, its boundary as is the union of the (ko - 1) dimensional
faces of s and is therefore contained in £. Let Uo, ... , be the vertices
of s.

For each j the set ,j ~ is the set of vertices of a face of s, therefore

Since

the function

has a continuous extension

G = ~’ U s is a subcomplex of A~(~)~ now define ~ : ,C -~ Y = 7?
= ?7o.

Since

the pair has the required property, which contradicts the maximality
of (,C, ~~. Now consider the function



we claim that it has the required property. First we 

for any U E R and therefore {U |03BA(x) E Stu} C for any x E X.

By construction of ?} we have

This and the previous inclusion yield

For any x EX, E E 03C3(x;R)} therefore

We can now state the following generalization of Dugundji’s extension
theorem.

THEOREM 2. - Let (X, d) be a metric space, A C X a closed subspace,
(Y, F) an m.c-space and f : A -~ Y a continuous function. Then there

exists a continuous function g : X ~ Y which extends f and such that

g(X) ) C E for any F-set E C Y containing F(A) .

Proo, f . We will follow Dugundji’s proof in [10]. For each ~ E X let B~
be an open ball centered at x with radius strictly smaller that § d(~, A). Let
R be a locally finite open covering of X ~ A which refines ‘ x E X ~ A} .

With each U associate au E A and zu such that

Then the following holds : for each a E A and each neighbourhood W (a) of
a in X there is a neighbourhood V (a) of a such that V (a) C W (a) and for
any U if U n V (a) ~ 0 then U C W (a) and au E A n W (a).

By the previous theorem there is a continuous function h : (X , A) --~ Y
such that

We will check as in Dugundji’s proof that the function g : X -> Y defined
bu glA = f and = h is continuous. Since h is continuous on the

open set (X B A) we only have to check that g is continuous at each a E A.



Let W C Y be a neighbourhood of f(a) = g(a) and C C Y an F-set such
that f (W (a) n A~ C C C W for some neighbourhood W(a) of a.

Let V(a) be a neighbourhood of the point a having the property described
earlier with respect to W(a).

If ac E V(a) n A then

If z e ~(a) ~ A then

If u ~ 03C3(x; R) then

and therefore

and since C is an F-set

which shows that h(V(a) B A) ç W. . With the previous inclusion we get
h ~V (a~ n A~ ~ W . The continuity of h is established.

If E is and F-set containing , f (A) then f(au ) E ~ for each U E ?Z and

therefore h(X B A) C E. 0

Recall that a topological space Y is an absolute extensor for metric

spaces, an AE(Metric), if for any metric space X, any closed subspace A of
X and any continuous function f : A 2014~ Y there is a continuous function

g : X ~ Y such that gEA = f . By a theorem of Stone a metric space is
paracompact.

COROLLARY . - Any m.c-space or any F-set in an m.c-space (Y, F) is
an AE(Metric ).

Recall that a metrizable space Y is an absolute retract, an AR, if for
any metric space Z containing Y as a closed subspace there is a continuous
retraction r : Z -. Y.

A metrizable space Y is an AR if and only if it is an AE(Metric).



COROLLARY . A metrizable m.c-space or any F-set in a metrizable

m.c-space is an absolute retract.

In case where Y is a topological vector space and F(A) is the convex hull
of the finite set A ç Y the next result was obtained by F. E. Browder [5]. .

THEOREM 3.2014 Let X be a paracompact topological space, (Y, F) a

c-space and T : X -~ Y a multivalued mapping such that:

i) for each x E X and each finite non empty subset A C Tx, F(A) C Tx
and 0;

ii) for each y E Y, is open in X .

Then T has a continuous selection.

Proof. - E Y~ is an open covering of X, Let ?Z be a locally
finite open covering finer than y E Y ~ and for each U E ?Z choose

) E Y such that U C T -1 r~(Ll ). Let g : X -; Y be the continuous

function given by theorem 1.

If x ~ u then E Tx therefore {~(u) ) | U E 03C3(x; R)} C Tx and by i):

Notice that if X is compact then we can assume that R is finite and

From this theorem we will obtain first an approximate selection theorem
for lower semicontinuous multivalued mappings and then a generalization
of Michael’s selection theorem. These results appear in [13].

THEOREM 4. Let X be a paracompact topological space (Y, d F) a
metric l.c-space and T : X -~ Y a lower semicontinuous multivalued

mapping whose values are non empty F -sets. Then for any ~ > 0 there
is a continuous function g : X - Y such that for each



Proof.- Let = ~y~ E Y ~ d(y, y’)  E~. Let

y E Rx if and only if d( y, T x)  ~. Since (Y, d F) is an l.c-space Rx is
a non empty F-set = {x E X | Tx n ~ } is open since T is
lower semicontinuous.

By theorem 3, R has a continuous selection. Cl

THEOREM 5. - Let X be a paracompact topological space, (Y, d ; F)
a complete metric l.c-space. Then any lower semicontinuous multivalued

mapping T : X - Y whose values are non empty closed F -sets has a
continuous selection.

.~’roof . For each y E Y let

By theorem 1, there is a continuous function /i : : X --~ Y such that

T x n for each x E X. . T2x = T x n defines a lower

semicontinuous multivalued mapping whose values are non empty F-sets.
If Tnx has been defined we iterate the previous argument and we claim that
there is a continuous function In : X --~ Y such that

for each 2’ ~ ~

and we let

Since

the sequence (fn(x))n~1 is uniformly Cauchy, the limit f(z) defines a

continuous function. From Tz n Vnfn(x) # 0 we have

d( fn(z) , Tz)  1 2n for each z e X ,

and Tz being closed we must have f(z) e Tz, a



COROLLARY . - Let X be a paracompact topological space, (Y, d; F) a
complete metric l.c-space such that F({y}) = {y} for each y E Y and
T : X ~ Y a lower semicontinuous multivalued mapping whose values are
non empty closed F-sets. If A C X is a closed subspace and f : A - Y is

a continuous selection of T|A : A ~ Y then there is a continuous selection

g : X - Y of T such that = f. .

Proof . Let

Tx is a non empty closed F-set and T : X -~ Y is lower semicontinuous.
Any continuous selection g : X ~ Y of T is an extension of /. . 0

Cellina gave a simple proof of Kakutani’s fixed point theorem from
his approximate selection theorem for upper semicontinuous multivalued

mapping [6]. A simple adaptation of his proof shows that his result

holds in the present context. For a metric space (Y, d) and a subset
E C Y let = ~ y E Y ~ d( E, y)  E ~ and for E, E’ C Y let

d*(E, E’) = E’) : y e E~.
Cellina’s approximation theorem can now be generalized.

THEOREM 6. - Let (X, d) be a compact metric space, (Y, d ; F~ a metric
l.c-space and T : X --~ Y a multivalued mapping such that:

i) for each x EX, Tx is a non empty F-set;

ii) for each ~ > 0 and each ae E X there is 6 > 0 such that

Then for any ~ > 0 there is a continuous function f : X - Y such that

d*(graph .f ~ T)  ~ a f(X) C F(E) ,

where E is a finite subset of Y, and f(X) is contained in any F-set

containing T (X ) .

Proof . Let



Cellina showed that infx~X p(x, ~) > 0. Choose ao, al E IR such that
0  ai  ao  for any x E X and let Rx = For
each y E Y, is open in X. . For each x E X there is x’ E X and
5 C ~/2 ~ [ such that T(B(x, 6)) ç ~/2)~ .

By compactness of X we have

for some finite set (yo, ..., yn) C Y and from theorem 1 we can find a
continuous function f : X --~ Y such that

TX’ is an F-set therefore , ~/2~ is also and F-set and

consequently

and if E C Y is any F-set containing T(x) it also contains

and consequently

It is also obvious that

The inequality d ~ ( ~, , f ( ~ ) ) T)  ~ is established as in Cellina’s paper. 0
Given a metric l.c-space (Y, d F), a multivalued mapping T : Y ~ Y is

a Kakutani mapping if hypothesises i) and ii) of theorem 6 are verified and
if T y is closed for each y E Y. If for each y E Y, T y is compact, ii) simply
means that T is upper semicontinuous.

COROLLARY . Let (Y, d ; F) be a compact metric l.c-space such that
for any non empty finite subset A C Y the set F(A) is closed. Then a
Kakutani mapping T : Y - Y has a fixed point.



Proof . For any ~ > 0 there is a finite set A and a continuous function
f : Y -~ Y such that ~f (Y~ C F(A) and the graph of f is within £ of the
graph of T.

By what has been established previously F(A) is an absolute retract.

has a fixed point is within £ of the graph of T which is
closed in Y x Y. Y being compact T must have a fixed point. 0

2. Applications

(I) A family of closed subsets of a topological space (Y, T~ will be called a
subbase if any closed subspace is an intersection of finite unions of members
of the family. A topological space is supercompact if it has a binary subbase
13: any non empty subfamily F C B such that any two members of F meet
has a non empty intersection. A family B is normal if for any pair Bi , B2 E ~3
such that Bi D B2 = 0 another pair Bi , B2 E B can be found such that
Bi n B1 = B2 ~ B2 = 0 and Y = B1 U B2. Supercompact spaces, which are

- obviously compact, have been extensively studied [16], [17] and [18]. A pair
(Y, B) where Y is a compact topological space for which B is a binary normal
subbase will be called, following van Mill, normally supercompact. We can
assume without loss of generality that X E B. A normally supercompact
space (Y, ~3~ has a rich geometric structure. For any subset A C Y let

FB(A) = n~B E x3 ~ A C B~, if A = FB(A) then it is called a 13-convex

set. Notice that, by definition, 13-convex sets are closed. If FB( E) C A
for any finite subset E ç A, A will be called a 13-set. If the topological
space Y is metrizable then a metric on Y, call it d, compatible with the
topology is a 13-metric if for any 13-convex subspace C ç Y and any r > 0,
~y E Y ( d(y, C~  r} is a 13-convex subspace of Y. For the proofs of the
following propositions one can look in [16] and [17]. .

THEOREM 7. - Let (Y, B) be a normally supercompact space 

i) a subspace C C Y is B-convex if and only if

for any pair of points yl, y2 E C;

ii~ for any B-convez subspace C C Y there is a continuous retraction

~C : Y - C‘ ~



iii) if the topology of Y is metrizable then it can be induced by a B-metric
d such that for any y E Y and any B-convex subspace C C Y,

From ii) if follows that any C" normally supercompact space (Y, B) is
a c-space with its natural c-structure FB. We will call a convex subspace
C C Y a B-polytope if C = FB(A) for some finite set A C Y. If the B-

polytopes are C" then FB defines a c-structure. From i) it follows that the
families of B-sets and B-convex sets are identical.

PROPOSITION . If (Y, B) is a metrizable normally supercompact space
with C°° polytopes then for any B-metric it is a complete metric l.c-sPace.

Proof. - Completeness is a consequence of compactness. Let d be any
B-metric on Y, E C Y a B-set and r > 0. Take points yo, " -~ ym in the
set {y E Y ~ d( y, .E~  r } . We have to show that

We can find yo, ... , such that

E is a B-set therefore F~ {~yo, ... , ym~~ C E. Since

and F~ {~yo, ... , ym~~ is B-convex and d is a B-metric,

is B-convex. Therefore

And open balls are B-sets since F~ ~~y~~ = ~y~ for each y E ~. D



From the previous proposition we have the following result.

THEOREM 8. Let X be a paracompact topological space, (Y,13) a

metrizable normally supercompact space whose polytopes are C°° and let

T : X - Y be a lower semicontinuous multivalued mapping whose values
are non empty B-convex sets. Then:

i~ T has a continuous selection;

it) any continuous selection g : F -~ Y of the restriction of T to a closed

subspace F of X can be extended to a continuous selection f : X ~ Y .

COROLLARY . Let (Y, B) be a metrizable normally supercompact space.
Then the following statements are equivalent:

i~ Y is an absolute retract,

it) Y is contractible,

iii) B-polytopes are contractible,

iv~ Y is connected,

v) B-polytopes are connected.

Proof
is obvious.

ii)-->’iii) by it) of theorem 7
’iii)--;i) by the previous theorem and obviously 
Now let us show By a theorem of Verbeek [18], Y is locally

connected if it is connected and by the Hahn-Mazurkiewicz theorem it is a
continuous image of 0 , 1 ~ . Let y : ~ 0 , 1 ~ ] be a continuous function onto
Y. Denote by H ([ 0 , 1 ~) and H(Y) the hyperspaces of 0 , 1 ~ ] and Y with
the Hausdorff metric and let H(Y; B) be the subspace of H(Y) consisting
of B-convex subspaces. It is known that the function p : H(Y; B) x Y

which sends the pair (C, y) to pc(y) is continuous and that the function

FB : H(Y) - H(Y; B) is also continuous. Now the function y : ~ 0 , 1 ~ --~ Y
induces a continuous function

Let a : [0, 1] ] 2014~ ~([0, 1]) be the continuous function a(t) = [0, ~] ] and
consider the function r : 0, 1 ] x Y 2014~ Y defined by



It is a continuous function and furthermore

This shows that Y is contractible. This argument can be found in [18].
iv)--~v~ is obvious.
Now we show v)~ii). Let C be a B-polytope and BC = {.5 n C | B E B},

Be = {B ~ B| C C B}. We check that (C, BC) is a normally supercom-
pact space. B r e is a closed subbase for the induced topology on C: if F ç C
is a closed subspace of C, then F is closed in Y and F = niEl Fi where

BC is binary: if A C BC and B1 n B2 # 0 for any pair B1, B2 E A,
then the family A = {B ~ C ~ A} is also binary, as well as 
therefore since B is binary, and n A.

is normal: if (Bi n C) n (B2 n C) = 0 then Bi n B2 n (n = 0,
if Bi n C ~ Ø and B2 n C # Ø, then B1 n B2 = 0 (the families BC U 
,t3C U ~B2 ~ have the binary intersection property and therefore B2 ~
would have the binary intersection property if jSi n J92 7~ 0 and this would
imply that Bi n B2 n (n Z3~) ~ ~). Zi is normal, we can find B1, B2 E ~3 such
that Y = B1 ~ B’2 and B1 ~ B’1 = B2 ~ B’2 = Ø. Then C = 
and = ~. C is obviously metrizable,
we know that iv) implies ii), C is therefore contractible. D

This last result contains a theorem of van Mill : a continuum with a

normal binary subbase is an absolute retract.

COROLLARY . Let (Y, B) be a connected metrizable normally super-
compact space and T : Y -> Y an upper semicontinuous multivalued map-
ping with non empty closed values such that for any y E Y and any y’ ~ T y
there is B E ,t3 such that T y C Band y’ ~ B. . Then T has a fixed point.

Proof. - Y is an absolute retract and B-polytopes are retracts of Y,
they are therefore closed, and they have therefore the fixed point property.
For each y E Y, Ty is a B-set, T : Y -~ Y is therefore a Kakutani mapping
and must have a fixed point. D



(II) A metric space (Y, d) is hyperconvex if for any collection

such that for any i, j E I, d(y2, + rj, the collection of closed balls

has non empty intersection. A hyperconvex space is always complete. A

hyperconvex space is a non expansive retract of any metric space in which
it is embedded. Since any metric space can be embedded in a Banach space
it follows that any hyperconvex space is contractible. If is

any collection of closed balls in a hyperconvex space then niEI B(yz, ri) is

itself a hyperconvex space. It follows that for a hyperconvex space (Y, d)
the set ~i~I B(y2, ri) is contractible, or empty. For any non empty finite
subset A C Y let

then A ~ F(A) defines a c-structure on (Y, d). R. Sine [15] called F(A) the
ball hull of A.

THEOREM 9. - Any hyperconvex space (Y, d) is a complete metric l.c-
space.

Proof. - For any y E Y, F (~y~) = ~y~ therefore singletons are F-sets.
We have to show that for any F-set E and, any r > 0, ~ y E Y E)  r }
is an F-set. Let yo, ..., Yn E Y such that d(y2, E)  r and yo belongs to
any closed ball containing ..., We have to show that d(yo, E)  r.

Take points ..., in E such that  r for i = 1, ..., n. Since

... , C E it is enough to show that

By definition F ... is an intersection of closed balls,

choose r~ E ~ ] 0 , r [ such that



{1,...,n} C B( ui, ri) for each i E I therefore

... C B(ui, ri + r’~ for each i E I

By a lemma of R. Sine [15], there is a retraction

such that d~y, R(y~~  r’ for any y E niEIB(ui,ri + r’). Then

It might be worth noticing that only the following properties are needed
to show that (Y, d) is a metric I.c-space, assuming that Y is compact:

2022 if ~i~I B(u2, ri) is a non empty intersection of closed balls, then for
any r > 0 there is a continuous retraction

such that d(y, R(y)~  r for any y.

Indeed, since Y is compact, we can choose r large enough such that

and ~i~I B(ui, r i) will be a retract of Y and therefore will be C°°.
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