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Geometric approaches to braid groups and mapping class groups

JUAN GONZÁLEZ-MENESES

Abstract

These are Lecture Notes of a course given by the author at the School Winter Braids,
held at the Université de Pau et des Pays de L’Adour (France), on February 2015. It is
explained how mapping class groups, and in particular braid groups, act on some inter-
esting geometric spaces like the hyperbolic plane and the complex of curves, and how
this allows to obtain some algebraic properties of the groups. A proof of the hyperbolicity
of the graph of curves, following Hensel-Przytycki-Webb, is given.

1. Introduction

Given n > 1, the braid group on n strands Bn, introduced by Artin [2, 3], is given by the
following group presentation:

Bn =
�

σ1, . . . , σn−1

�

�

�

�

σσj = σjσ | − j| > 1
σσjσ = σjσσj | − j| = 1

�

These groups have very natural generalizations, both from the algebraic and from the topo-
logical points of view.

On the algebraic side, Artin-Tits groups [5, 27] are groups which can be defined by a presen-
tation that looks like the one above: A finite number of generators, and at most one relation
for each pair of generators, in which they alternate forming words of equal length which are
identified. Artin-Tits groups are closely related to Coxeter groups [5, 10]. Namely, imposing
that the square of each generator is trival produces a Coxeter group from any given Artin-Tits
group. When the associated Coxeter group is finite, the Artin-Tits group is said to be of spher-
ical type, and in that case it satisfies very interesting divisibility properties, admitting what
is called a Garside structure [12, 13]. Artin-Tits groups of spherical type are then the main
examples of Garside groups and, among them, the braid group Bn is the most representative
one, as the Coxeter group associated to the braid group Bn is precisely the symmetric group
n.

On the topological side, braids can be seen as mapping classes on a punctured disc. More
precisely, let Dn be a disc with n punctures, that is, with n interior points removed. Denote
Homeo+(Dn, ∂Dn) the set of orientation preserving homeomorphisms of Dn, fixing the bound-
ary pointwise. One can endow this set with a natural compact-open topology, so one has the
notion of what means ‘deforming’ one homeomorphism into another, keeping the boundary
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∂Dn fixed through the deformation. Considering these homeomorphisms up to deformation
just means considering the set π0

�

Homeo+(Dn, ∂Dn)
�

, whose elements are called mapping
classes (fixing the boundary). The deformation of homeomorphisms is compatible with their
composition, and this turns the set of mapping classes into a group. It is well known [4] that
the braid group on n strands is isomorphic to this group:

Bn ' π0
�

Homeo+(Dn, ∂Dn)
�

The goal of these notes is to give some examples on how Geometry can help to understand
a group, focusing on the case of braid groups. In general, one can use geometric properties
to study a group G by finding a suitable geometric space, so that G acts on it in a nice way.
One important example is obtained when the space is the Cayley graph of the group G, with
respect to a given set of generators, and the action is given by left multiplication. This is one
of the main tools of Geometric Group Theory. But in this notes we will deal with other kinds
of examples.

We will explain two main examples of such an action. In Section 2, we will see how the braid
groups, and mapping class groups in general, act on the hyperbolic plane, and how this
produces an action on the space of geodesic laminations from which we can extract many
interesting properties. We will follow the exposition in [9] of the work by Thurston [29], and
we will see how elements of the mapping class groups are classified into periodic, reducible
and pseudo-Anosov. We will require from the reader just some basic notions of covering maps
(see for instance [21]).

In Section 3 we will present a very interesting geometric space introduced by Harvey [19],
called the curve complex, on which braid groups and mapping class groups act by isometries.
We will explain a recent result by several authors, showing that the complexes of curves are
uniformly hyperbolic. We will follow the arguments in [22], accompanied by a good amount
of pictures.

Acknowledgements: I am very grateful to Paolo Bellingeri, Vincent Florens, JB Meilhan and
Emmanuel Wagner for organizing Winter Braids, for inviting me to give a course, for their
extraordinary patience while waiting for this manuscript, and for many valuable comments.
Thanks also to Juan Souto for very interesting conversations at very interesting places. Fi-
nally, I thank the anonymous referee for his/her many wise observations, suggestions and
remarks, which have improved considerably the quality of these notes. The author is par-
tially supported by the Spanish research project MTM2013-44233-P and FEDER.

2. Mapping class groups acting on the hyperbolic plane

Throughout these notes, braids will be seen as mapping classes, as explained in the In-
troduction. That is, a braid in Bn will be an orientation preserving homeomorphism of the
n-times punctured disc Dn, fixing the boundary pointwise, up to deformations which also fix
the boundary pointwise. This means that there is an action of the braid group on the topo-
logical space Dn. But we want Bn to act on a geometric space, so we will put some geometry
on Dn.

Before that, we will start by studying a simpler kind of space. Let S = Sg be a closed orientable
surface of genus g > 0. We will study the mapping class group MCG(S) = π0(Homeo+(S)).
This time, as there is no boundary, we do not need to fix any subset of S. It will be easier
to explain how to put a geometry on S, as we can identify the universal cover of S with the
hyperbolic plane H2.
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The hyperbolic plane H2 is a space that can be identified with the interior of the unit disc in
R2. The geometry of H2 can be described by stating that geodesics in H2 correspond either
to arcs of circles which are orthogonal to the boundary of the unit disc or, in the extreme
case, to diameters of the unit disc (see Figure 2.1).

Figure 2.1: Geodesics in the hyperbolic plane

This assumption on geodesics allows to deduce the relation between the Euclidean metric
in the unit disc, say ds, and the hyperbolic metric dh in H2. Up to a scaling factor, it is
dh = 2 ds

1−r2 , where r is the Euclidean distance to the origin (that is, to the center of the
unit disc). This means that, close to the origin, both metrics are quite similar, but as one
approaches the border of the unit disc, points which are close with respect to the Euclidean
metric become very distant with respect to the hyperbolic metric. This representation of H2

is called Poincaré’s disc.

Although Euclidean and hyperbolic metrics in the unit disc are quite different, angles in H2

are measured exactly in the same way as in R2. One of the most particular properties of a
hyperbolic space is that the sum of the angles of a (geodesic) triangle is smaller than π, while
in the Euclidean plane this sum is always π (see Figure 2.2). Even more surprising is the fact
that the area of a (geodesic) triangle in H2 depends only on its angles!

Figure 2.2: Triangles in a hyperbolic, Euclidean and elliptic space, respec-
tively. The letters α, β and γ represent the angles of a geodesic triangle

Theorem 2.1 (Gauss-Bonnet). The area of a (geodesic) triangle in H2 whose angles are α,
β and γ, is equal to π − (α + β + γ).
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There are other spaces in which the sum of the angles of a geodesic triangle is bigger than
π. For instance, in a 2-dimensional sphere S2 with the metric inherited from R3, geodesics
are long circles (i.e. circles belonging to planes which contain the center of the sphere). In
Figure 2.2 one can see a geodesic triangle in S2 with three right angles. We are not going
to be interested in these elliptic (or positively curved) spaces, but we will concentrate on
hyperbolic (or negatively curved) spaces, namely on H2.

2.1. Hyperbolic structure on a closed surface

A closed orientable surface S of genus g > 0 can be obtained from a regular polygon of 4g
sides, identifying the sides in a suitable way, like in Figure 2.3.

Figure 2.3: How to identify the sides of an octagon to get a closed surface
of genus 2. In general, to get a surface of genus g, the sides of the polygon
could be 1b1

−1
1 b−11 2b2

−1
2 b−12 · · ·gbg

−1
g b−1g reading clockwise.

Each interior angle in this polygon measures 2g−1
4g 2π. If g = 1, S is the torus T2, the polygon

is a square, and one can tile the Euclidean plane with these squares identifying the corre-
sponding sides, as in Figure 2.4. This is how one can endow the torus T2 with an Euclidean
geometry: Geodesics in the torus correspond to geodesics in the Euclidean plane, that is, to
straight segments. This tiling of the plane determines a map π from R2 to T2 (each point in
R2 corresponds to a point in T2, and this map is well defined at the squares’ overlaps, as the
squares’ sides are identified in the right way). The map π is a covering map, and R2 is simply
connected, hence R2 is the universal cover of the torus T2.

Figure 2.4: Tiling R2 with squares representing a torus.

If g > 1, then 2g− 1 does not divide 4g, so the size of each angle of the polygon in Figure 2.3
(or the analogous polygon for bigger genus) is not an integral divisor of 2π. Hence, one
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cannot tile the Euclidean plane using this kind of polygons. But one can tile the hyperbolic
plane H2, as we are going to see.

In order to identify the sides of the tiling pieces in the right way, 4g copies of the tiling piece
should be incident around each vertex. This means that we need to draw a regular 4g-gon in
H2, whose angles equal 2π4g .

In order to achieve this, consider a regular 4g-gon in H2 centered at the origin. It can be
obtained by considering 4g evenly distributed radii of the unit disc, and by taking a point on
each radius, all 4g points being at the same distance from the origin. The geodesics joining
consecutive points form the desired regular 4g-gon (See Figure 2.5). Notice that if the chosen
vertices ar very close to the origin, we have a tiny polygon whose sides are similar to straight
segments, hence its interior angles are close to 2g−1

4g 2π. But if the chosen vertices are very
far from the origin, the obtained polygon will be similar to the one on the right hand side of
Figure 2.5, hence its interior angles would be close to 0. If we move the vertices continuously
from the former situation to the latter, the size of its angles also varies continuously, so there
will be a position in which the angles are exactly 2π

4g , as desired. Let us denote P this regular

polygon in H2, the sum of whose angles is 2π.

Figure 2.5: Regular octagons centered at the origin of H2. Small polygons
have angles close to 3π/4. Huge polygons have angles close to 0. In between
some polygon has angles of size π/4.

Now we can tile the whole hyperbolic plane H2 with copies of P just by translating P (using
translations with respect to the hyperbolic metric). The angles of P have the exact size so
that this tiling can be done. See Figure 2.6 to get an idea of the tiling.

Figure 2.6: Tiling the hyperbolic plane H2 with isometric copies of the regular octagon.
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In the same way as it was done for R2 and the torus T2, one can define a map π from H2 to
the surface S, using the just constructed tiling. This is a covering map and, as H2 is simply
connected, it follows that H2 is the universal cover of S.

The existence of this covering map implies that the fundamental group π1(S) acts freely on
H2 by isometries (deck transformations). Here we have an example of a group acting on a
geometric space, so that we can extract some properties of the group. On one side, the deck
transformation associated to an element of π1(S) is a hyperbolic isometry. This means that
there is a geodesic γ in H2 (called the axis) in which the isometry acts like a translation, and
the image of any other point of H2 is determined by the fact that orthogonal geodesics must
be sent to orthogonal geodesics, and distances in H2 must be preserved. See Figure 2.7.

Figure 2.7: A hyperbolic isometry. The dark geodesic is the axis. Every ge-
odesic perpendicular to the axis is sent to a geodesic perpendicular to the
axis.

Remark 2.2. As suggested by the referee, it could have been more intuitive to use the
model of the genus 2 surface as a decagon with opposite sides identified. But we just wanted
to show that the usual way to model the surface as the octagon in Figure 2.3 can also be
used. Also, the model we use is a natural generalization of the case of the torus.

Using this very particular structure of deck transformations, one can deduce some algebraic
properties of the fundamental group π1(S). First, π1(S) has no torsion, as deck transforma-
tions have infinite order. Second, Z2 is not a subgroup of π1(S), as two deck transformations
do not commute if they have distinct axes, and they generate a cyclic subgroup if they have
the same axis.

The covering map π : H2 → S endows S with a hyperbolic structure, that is, a geometry
coming from the geometry of H2.

2.2. Geodesics in a closed surface

Let S be a closed surface of genus g > 1, and let π be the covering map defined in the
previous section. Given a curve γ in S, it can be lifted to a curve in H2 via the map π. There
are infinitely many ways to lift γ, but all of them are related by deck transformations, and the
lifting of γ depends only on the lifting of a single point. A geodesic in S is defined as a curve
whose lifting by π is a geodesics in H2.

If γ is a closed curve, the lifting of γ in H2 can be extended indefinitely, so if γ is a geodesic
in S then it can be lifted to a complete geodesic in H2. We shall be interested in essential
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curves, that is, closed curves which are not null-homotopic. One of the most interesting facts
about essential curves in S is that they can always be deformed to become a geodesic.

Theorem 2.3. Every essential closed curve in S is freely homotopic to a unique closed
geodesic.

See [9] for a detailed proof. We will just explain how one can obtain the closed geodesic
associated to an essential closed curve c. Namely, as c is essential, it determines a non-
trivial element of π1(S) (up to conjugacy). This element corresponds to a deck transformation,
which has an axis eγ. The projection γ = π(eγ) is the geodesic in S freely homotopic to c. Notice
that, if we take a conjugate element in π1(S), the axis could be different, but in any case it
would be the image of eγ by a deck transformation, so its projection by π would be the same
geodesic γ.

Another way to see the geodesic γ homotopic to c is to consider the ‘walls’ of the polygon
P which are crossed by c. This allows to lift c to H2, and we see that the lifting approaches
(with the Euclidean metric) two points in the boundary of H2. These two points determine a
geodesic (a circle orthogonal to the boundary), whose image by π is precisely γ.

2.3. Laminations and foliations. Nielsen-Thurston classification

Recall that the Mapping Class Group of a closed surface S is MCG(S) = π0(Homeo+(S)). Hence
MCG(S) acts on S by orientation preserving homeomorphisms, up to deformation. But this is
not a group action, as the image of a point of S under an element of MCG(S) is not even well
defined. However, we can concentrate on how this transforms some suitable subsets of the
surface. For instance, consider a simple closed curve c in S. Any homeomorphism of S will
send c to a simple closed curve. If c is essential (i.e. not null-homotopic), then both c and
its image are freely homotopic to unique closed geodesics. Therefore, a mapping class sends
simple closed geodesics to simple closed geodesics.

We can then concentrate on the set of closed geodesics of S, and see how MCG(S) acts
on it. But it will be more convenient to enlarge this set, to include disjoint unions of simple
closed geodesics, and even non-closed simple geodesics (which will appear as limits of iter-
ated images of a simple closed geodesic by a mapping class). If we have such a non-closed
simple geodesic, we will consider also its closure, which is actually an union of simple closed
geodesics [9]. In such a way, we will always consider closed subsets of S:

Definition 2.4. A geodesic lamination (or just a lamination) on S is a closed subset of S
which is a nonempty disjoint union of simple geodesics.

It is known [9] that the decomposition of a lamination into an union of simple geodesics is
unique. So one can say without ambiguity that a geodesic belongs to a given lamination.

The set of laminations on S is denoted Λ(S) and, clearly, MCG(S) acts on Λ(S). The reason
why one includes non-closed geodesics is to obtain a compact set. Actually, in Λ(S) we can
consider the Hausdorff distance: The distance between two laminations is at most ε if each
one is contained in an ε-neighborhood of the other. Then one has:

Theorem 2.5. [9] Λ(S) is compact (with respect to the Hausdorff distance), and MCG(S)
acts on Λ(S) by homeomorphisms.

Here we have a very interesting action of MCG(S) on a geometric space. Elements in MCG(S)
are classified according to the way they act on Λ(S) [29]. This is called the Nielsen-Thurston
classification, and it goes as follows.
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An element in MCG(S) is called periodic if it has finite order. That is, if it is represented by
an automorphism h of S such that hn is homotopic to the identity, for some n > 0.

An element in MCG(S) is called reducible if it preserves a simple closed 1-submanifold of S.
That is, it is represented by a homeomorphism h which sends a simple closed 1-submanifold
c of S to another one which is homotopic to c. This 1-manifold c correspond to an element of
Λ(S) which is an union of simple closed geodesics (corresponding to simple closed curves in
S), and is a fixed point under the action of the mapping class of h.

Finally, if an element [h] in MCG(S) represented by an automorphism h is neither periodic
nor reducible, its action on Λ(S) is very special. By the work of Thurston [29], we know that
[h] preserves two laminations, the stable lamination Ls, and the unstable lamination L.
Moreover, the action of [h] pushes every lamination (except the stable and unstable one)
away from the unstable lamination and closer and closer to the stable one.

These laminations can be very easily understood thanks to the following result. Roughly
speaking, if one takes any essential simple closed curve c in S, and one considers the se-
quence of simple closed curves hn(c) for n ≥ 0, this sequence tends to the stable lamination
Ls. Actually, this is not exactly true as stated, as a finite number of geodesics not belonging
to Ls can also appear in the limit, and they can be permuted at every iteration, but this is
solved by stating the result in the following way:

Theorem 2.6. [9] If [h] ∈ MCG(S) is neither periodic nor reducible, then there exists m > 0
so that, denoting g = hm, for every essential simple closed curve c in S, the sequence [gn](C)
tends to K as n tends to infinity, where K is one of the finitely many laminations containing
Ls.

This means that one can see the stable lamination by applying h many times to any essential
simple closed curve. The unstable lamination L is obtained in a symmetric way, applying h−1

to any essential simple closed curve.

But mapping classes not only act nicely on laminations. There are other objects which can
be constructed from laminations, and provide yet another very interesting geometric action.
First, it can be shown that, given a lamination L on the surface S which is preserved by an au-
tomorphism, its complement S\L is a subsurface of S all of whose connected components are
polygons with a finite number of geodesic sides. If [h] is neither periodic nor reducible, the
complement of the stable and unstable laminations can be collapsed in such a way that the
laminations become singular foliations, where the singular points (called prong singularities)
look like in Figure 2.8.

Figure 2.8: Foliations at singular points. Here we see just k-prong singularities
for k = 1, . . . ,4, but there are similar pictures for bigger k.

These two foliations, Fs and F, obtained from the stable and the unstable laminations,
respectively, can be endowed with transverse measures, μs and μ, giving a sense of distance
between leaves. The amazing fact is that the mapping class [h] act on these transverse
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measured foliations by preserving the foliations as a set, and scaling the measures by a real
factor λ > 1 in the case of the unstable foliation, and by λ−1 is the case of the stable one.
Roughly speaking, under the action of [h], leaves in Fs get closer to each other, and leaves
in F get farther to each other, in both cases by a factor λ > 1.

It is then said that a homeomorphism of S is pseudo-Anosov if it preserves two transverse
measured foliations, scaling the measure of one of them by λ, and the other by λ−1. A map-
ping class is pseudo-Anosov if it can be represesnted by a pseudo-Anosov homeomorphism.
After the previous discussion, we have the famous Nielsen-Thurston classification of mapping
classes.

Theorem 2.7. [29] Every element in MCG(S) is either periodic, or reducible, or pseudo-
Anosov.

We notice that an element can be, at the same time, periodic and reducible, and that is the
only possible intersection between the above kinds of mapping classes. In order to get an
actual trichotomy, the second kind could be replaced by that of reducible and non-periodic
mapping classes.

2.4. Hyperbolic structure on braids

We saw in the previous section how mapping classes of a closed surface act on geodesic
laminations. But, what about braids? Braids are mapping classes of the punctured disc, which
is not a closed surface, but we can use a similar approach.

First of all, in order to be able to apply the same theory of mapping classes, we will collapse
the boundary of the disc to be a new puncture. In terms of mapping classes, this means
that rotating the boundary of the disc by a full twist (which corresponds to a non-trivial braid
called Δ2) is now a trivial mapping class. In other words, this corresponds to replace the group
Bn by Bn/〈Δ2〉. As the subgroup 〈Δ2〉 is precisely the center of Bn, collapsing the boundary of
Dn to a puncture corresponds to quotient Bn by its center.

The space obtained when collapsing the boundary of Dn to a puncture is the (n + 1)-times
punctured sphere S2n+1. Now we can tile the hyperbolic plane with cut-open copies of S2n+1, as
we previously did with cut-open copies of a closed surface. First, consider segments 1, . . . , n
in Dn joining all punctures and the boundary along the diameter of the disc (these segments
are denoted , b, c in Figure 2.9). They can also be seen in S2n+1, and we can cut this lat-
ter surface along these paths. The resulting surface is a polygon P with 2n-sides, with the
vertices removed. In order to obtain S2n+1 one must identify the sides of the polygon P as in
Figure 2.9.

Now we can place the polygon P in the hyperbolic plane H2 as in Figure 2.10: The sides
correspond to geodesics, and the missing vertices correspond to points in the boundary of
the disc representing H2. This is called an ideal polygon. One can tile the whole hyperbolic
plane H2 just by reflecting this polygon along its geodesic sides, and keep reflecting the
newly obtained copies. Labeling the edges in the appropriate way, we see that H2 is the
universal cover of S2n+1, and this endows S2n+1 with a hyperbolic structure.

The main difference with respect to the case of closed surfaces is that, as the punctures of
S2n+1 correspond to points in the boundary of the disc representing H2, points which are close
to some puncture of P with respect to the Euclidean distance are very distant with respect
to the hyperbolic distance. Hence, in a neighborhood of each puncture the metric ‘explodes’,
and the geometry is quite different to what one could expect.
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Figure 2.9: A punctured disc, a punctured sphere obtained collapsing the
boundary to a puncture, and a polygon representing the punctured sphere.

Figure 2.10: How to tile the hyperbolic plane with ideal polygons correspond-
ing to 4-punctured spheres.

As an example, one can show that every puncture has a neighborhood which is disjoint from
all possible simple closed geodesics in S2n−1. In other words, simple closed geodesics are far
apart from the punctures. To see this, it is better to represent H2 as the upper half plane of
R2, where geodesics correspond to vertical lines and to arcs of circles which are orthogonal to
the real line. This representation can be obtained from the one we are using, by transforming
the complex plane using the Möbius transformation z 7→ −z−

z−1 .

We can assume that the point 1 ∈ C is one of the ideal vertices of our tiling, as in Figure 2.10,
corresponding to one of the punctures p of S2n+1. Then the tiling of the upper half plane
representing H2 will look like in Figure 2.11. We can consider neighborhoods of p consisting
of points in R2 whose vertical coordinate is greater than a certain number.

Now suppose that a closed geodesic γ in S2n−1 has a point p which is close to the puncture p.
This means that if we consider a lift ep of p in the half-plane H2, in a region with two vertical
straight line boundaries, ep will have a big vertical coordinate, and γ will be lifted to a big
half-circle, orthogonal to the real line. But we could also lift p to another copy of the polygon
P, which is obtained from the previous one by a horizontal translation, and γ would be lifted
to a big half-circle which is obtained from the previous one by a horizontal translation. Now,
if the vertical coordinate of ep is big enough, those half-circles will intersect, meaning that the
geodesic γ intersects itself, hence it is not simple. Therefore, there is a neighborhood of p
(determined by a given height of in the upper half-plane), which is disjoint from every simple
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Figure 2.11: Tiling the upper half plane with ideal polygons shows that simple
geodesics cannot be close to a puncture: If they were, distinct lifts would
intersect.

closed geodesic of S2n+1, as we wanted to show. This argument was shown to me by Juan
Souto.

We can now define laminations in S2n+1 in the same way as we did for closed surfaces, and
consider the action of the braid group (modulo Δ2) on the set of laminations Λ(S2n+1). Using
this action, we can classify a braid in Bn by sending it to Bn/〈Δ2〉 and seeing how it acts on
Λ(S2n+1). Hence, braids are classified into periodic, reducible and pseudo-Anosov.

Periodic braids correspond to elements which are sent to an element of finite order in Bn/〈Δ2〉.
That is, a periodic braid is a root of Δm, for some m> 0. A braid is reducible if it preserves a
family of essential simple closed curves in Dn. And a braid is pseudo-Anosov if it preserves
two families of transverse measured foliations, scaling the measure of one of them by a
real number λ > 1, and the measure of the other foliation by λ−1. These foliations can be
obtained, as in the case of closed surfaces, by iterating the action of the braid (or its inverse)
on a given curve (homotopic to a geodesic), taking the limit of the obtained sequence of
geodesics in the Hausdorff metric, and collapsing the complement of this limit lamination,
obtaining singular points and leaves as in Figure 2.8.

In Figure 2.12 we can see the image of a curve under iterated application of the pseudo-
Anosov braid σ1σ

−1
2 ∈ B3, and its inverse, respectively. We can see that the resulting folia-

tions have four 1-prong singularities: one for each puncture, and one corresponding to the
boundary of the disc.

This geometric interpretation of braids can be used to prove algebraic facts in the group Bn.
For instance, in [25] (see also [23]) this is used to show that the centralizer of a pseudo-
Anosov element in a mapping class group is virtually cyclic. Translated to braids (see [15]),
this implies that the centralizer of a pseudo-Anosov braid β is isomorphic to Z2, with a basis
consisting of a pseudo-Anosov element (usually β itself), and a periodic element (usually Δ2).

Another algebraic result which can be easily proved using these geometric techniques is the
following:

Theorem 2.8. [16] Pseudo-Anosov elements in Bn have unique roots. That is, if η is a
pseudo-Anosov braid and αn = βn = η for some braids α, β and some n > 0, then α = β.
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Figure 2.12: The limit laminations of the braid σ1σ
−1
2 ∈ B3 look like the curves

in this figure. On the left (resp. right) hand side, the image of a curve under
iterated application of σ1σ

−1
2 (resp. (σ1σ

−1
2 )

−1).

Proof. First, α and β must be pseudo-Anosov as this property is preserved by taking powers.
They also preserve the same foliations as η, and the stretch factor λ must be the same for
both braids, as it is the n-th root of the stretch factor of η.

Then αβα−1β−1 also preserves the same foliations, with stretch factor equal to 1. This implies
that αβα−1β−1 is a periodic element. But in Bn the periodic elements are well known, and
the only one whose sum of exponents is 0 is the trivial element. Hence αβα−1β−1 = 1, so α
and β commute.

Therefore 1 = η η−1 = αnβ−n = (αβ−1)n. As the braid group Bn has no torsion, it follows that
α = β. �

We have then seen how these geometric aspects of elements of the braid group, coming
from the action of Bn on a geometric space, can help to extract algebraic information about
the group itself.

3. The curve complex

When studying actions of a group on a geometric space, it is crucial that the maps deter-
mined by the elements of the group satisfy some geometric properties: For instance, to be
isometries of the geometric space. In that case we say that the group act on the space by
isometries.

The actions of Bn that we saw in previous sections are not by isometries. But one just needs
to look at the appropriate space. We will find a geometric space with an interesting metric,
on which Bn acts by isometries.

Let S be an orientable surface. We saw that if the universal cover of S is H2, the action of
MCG(S) on S sends closed geodesics to closed geodesics. Now instead of looking at the space
of laminations (closed unions of geodesics), we will just look at the set of simple, closed,
essential curves, and we will construct a geometric space out of it. This is the complex of
curves, or the curve complex, defined by Harvey [19].

The curve complex of the surface S is a simplicial complex, denoted C(S), which is a family
of subsets of the set of simple, closed, essential curves in S, up to isotopy. That is, a 0-simplex
corresponds to the isotopy class of a simple, closed, essential curve in S.
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For k > 0, a k simplex is a collection of k + 1 simple, closed, pairwise non-isotopic essential
curves, up to isotopy, which can be realized to be disjoint. For instance, an edge of C(S), or
a 1-simplex, is given by a pair of disjoint essential curves in S, which are not isotopic to each
other. The 1-skeleton of this complex, that is, the set of 0-simplices and 1-simplices, is called
the curve graph of S, denoted C1(S).

In order to give some examples, let Sg,n be the orientable surface of genus g with n boundary
components (or, alternatively, n punctures, which yields the same curve complex).

Example 3.1. If S = S0,n, n ≤ 3, is a sphere with at most 3 boundary components, then
C(S) is empty. Indeed, if S is a closed sphere, every simple curve is homotopic to a point,
hence it is not essential. If S has some boundary component (or some puncture), one can
imagine S as a disc with at most two holes. If a simple closed curve encloses no hole, it is
homotopic to a point. If it encloses just one hole, it is homotopic to the boundary component
(or puncture) corresponding to that hole. If it encloses two holes, it is homotopic to the
boundary component (or puncture) corresponding to the boundary of the disc. In any case,
one can see that there is no essential, simple, closed curve in S. So C(S) is empty.

Example 3.2. If S = S0,4 then C(S) is an infinite collection of isolated 0-simplices. In the
same way as above, one can imagine S0,4 as a disc with 3 holes. An essential curve is a
curve enclosing exactly two punctures. There is an infinite number of such curves. But once
that such a curve is chosen, the complement consists of two copies of S0,3 (two pairs of
pants), hence there is no essential curve disjoint to the chosen one. That is, there is no edge
in C(S).

Example 3.3. If S = S1,0 or S = S1,1 then C(S) is an infinite collection of isolated 0-simplices.
A simple closed curve in the torus S1,0 is isotopic to a geodesic, which can be seen in the
universal cover R2 of the torus as a straight line of rational slope. We can then have an
infinite number of non-isotopic simple closed curves. But if two such curves are not isotopic,
they have distinct slopes, hence they intersect. Therefore there are no edges in C(S). The
case of S1,1 is analogous, as every simple closed curve is isotopic to a geodesic avoiding
the boundary component. With more than one boundary component this argument does not
work anymore, and there exist pairs of disjoint simple, closed, essential curves.

The above examples, S0,n for n ≤ 4 and S1,n for n = 0,1 are called the sporadic surfaces. The
remaining cases share a common property:

Theorem 3.4. [19] If S = Sg,n is not a sporadic surface, then C(S) is connected.

Remark 3.5. In the sporadic cases S0,4, S1,0 and S1,1, in which the usual definition of C(S)
yields an infinite set of points, the definition of the complex of curves is sometimes modified,
placing edges between vertices corresponding to curves of smallest possible intersection
number. This means intersection number 2 for S0,4 and intersection number 1 for S1,0 and
S0,2. With this modified definition, the complex of curves becomes the well-known Farey
graph, which is connected (and hyperbolic) [24, 26].

We can now transform C(S) into a metric space. Actually, in order to show the geometric
results we are interested in, and to simplify the discussion, it suffices to deal with the 1-
skeleton of C(S) (the curve graph), denoted C1(S). It consists of vertices (isotopy classes of
essential simple closed curves), and edges (pairs of isotopy classes of such curves which can
be realized disjointly). Imposing the each edge has length 1, providing it with the standard
Euclidean metric, it follows that C1(S) is a geodesic metric space. This is a natural metric:
The distance between two vertices in C1(S) is precisely the minimal number of edges in a
path from one vertex to the other. As C1(S) is (path) connected, if S is not sporadic, every
two vertices are at finite distance, and can be joined by at least one geodesic. We denote by
d(α, β) the distance between two vertices of C1(S).
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Example 3.6. Let S = S2,0 and consider the curves α, β and γ in Figure 3.1. The isotopy
classes of α and γ cannot be represented by disjoint curves, hence the pair (α,γ) is not an
edge of C(S). But α is disjoint from β, and β is disjoint from γ, hence there is an edge in C(S)
from α to β, and an edge from β to γ. Therefore d(α,γ) = 2.

Figure 3.1: Curves α, β and γ are vertices of the curve complex of S2,0.

Actually, there is an upper bound for the distance, in C1(S), between two given vertices.
Denote i(α, β) the intersection number of α and β, that is, the minimal number of intersection
points between two realizations of α and β. Then one has:

Theorem 3.7. [24] If S is not sporadic and α, β are two essential, simple closed curves in S,
then:

d(α, β) ≤ log2 (i(α, β)) + 2

One can define a natural metric in C(S) in such a way that C1(S) is quasi-isometric to C(S)
(distances between two points in C1(S) are roughly the same when considered in C1(S) than
when considered in C(S)). Many geometric properties are preserved by quasi-isometry: This
is why we will be interested only in C1(S).

Now there is an easy observation: An automorphism of S sends disjoint curves to disjoint
curves. Hence, it preserves the distance between 0-simplices in C1(S). In other words, MCG(S)
acts on C1(S) by isometries.

But it does not suffice to have a metric space on which a group act by isometries. The space
should have some interesting geometry. This is what we explain in the next section.

3.1. The curve complex is hyperbolic

We saw that the hyperbolic plane H2 is a very interesting geometric space. It would be nice to
have geometric spaces sharing some of the good properties of H2. These spaces are called
Gromov-hyperbolic, or δ-hyperbolic. The main property, from which many other properties
can be deduced, is one that we observed in H2: geodesic triangles are thin, in some sense.
This is one of the several equivalent definitions:

Definition 3.8. A geodesic metric space X is Gromov-hyperbolic with constant δ ≥ 0 (or it is
δ-hyperbolic) if for every geodesic triangle, there is a point c ∈ X which is at distance at most
δ from each of its three sides. See Figure 3.2.

In the Euclidean plane R2, triangles are flat, not thin. For any given δ, one can take a triangle
big enough so that no ball of radius δ touches the three sides. But in the hyperbolic plane H2,
geodesic triangles are thin [7].

Another example of Gromov-hyperbolic space is a tree, with the natural distance in which
every edge has length one. Such a tree is actually a 0-hyperbolic space, as in every geodesic
triangle, there is always a point contained in the three sides (see Figure 3.3). As a particular
case, the real line R is 0-hyperbolic.
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Figure 3.2: A geodesic triangle is δ-thin if its sides are touched by a circle of
radius δ. A geodesic metric space is δ-hyperbolic if all geodesic triangles are
δ-thin.

Figure 3.3: Geodesic riangles in a tree are always 0-hyperbolic. In this picture,
the geodesic triangles bc and pqr.

Gromov-hyperbolic spaces are very common in Geometric Group Theory: A group is said to
be hyperbolic if its Cayley graph with respect to some generating set is Gromov-hyperbolic.
This property is actually independent of the generating set, so one can consider any Cay-
ley graph of the group. By the above discussion about trees it follows that free groups are
hyperbolic. Actually, they are the main example of hyperbolic groups.

Hyperbolic groups have many interesting algebraic properties. For instance, they have solv-
able word and conjugacy problems, and moreover they are biautomatic.

One should note that, if a group is hyperbolic, it does not contain subgroups isomorphic to
Z2. This is one of the tools used to prove that some group is not hyperbolic. This shows
that, in general, mapping class groups are not hyperbolic, as there are usually many pairs of
commuting mapping classes not generating a cyclic subgroup.

As we are interested mainly in the braid group Bn, or more generally in a mapping class group
MCG(S), which is not hyperbolic, we will not consider its Cayley graph as a metric space. But
we already know a space, C(S), on which MCG(S) act by isometries. Fortunately this space is
interesting enough, as shown by Masur and Minsky:

Theorem 3.9. [24] The curve complex C(S) is Gromov-hyperbolic.

Hyperbolicity is preserved by quasi-isometry, so showing that C(S) is Gromov-hyperbolic
is equivalent to show that so is C1(S). Later we will sketch a proof of the hyperbolicity of
C1(S). Now let us mention that Masur and Minsky not only showed that the curve complex
is Gromov-hyperbolic, but also that the action of a pseudo-Anosov element on C(S) is hyper-
bolic, having North-South dynamics (similar to the action we studied on the hyperbolic plane),
and that the orbits are quasi-geodesics. This is a very interesting kind of action, which allows
to show several important algebraic consequences, like the following:
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Theorem 3.10. [24] Given an orientable surface S, there exists a constant K such that, if
h1, h2 ∈ MCG(S) are conjugate pseudo-Anosov elements, there is a conjugating element ω
with |ω| ≤ K(|h1| + |h2|).

In other words, the length of a minimal conjugator from one pseudo-Anosov to another, is
bounded linearly by the lengths of the conjugated elements. To show this result, one needs
to use not only the preceding results, but also some more, very deep and difficult theory.

Unfortunately, the above is an existence result, giving no method to compute the constant
K. If the constant K could be explicitly computed, we would have a fast algorithm to decide
whether a braid is periodic, reducible or pseudo-Anosov, as shown by Calvez in [8]. To be
more precise, the time taken by the algorithm would be a quadratic function with respect to
the length of the input braid and its number of strands.

In any case, the fact that the curve complex is hyperbolic is an extraordinary fact. Recently,
several authors independently [1, 6, 11, 22] proved something even more surprising: The
constant δ which bounds the thinness of triangles in C1(S) is independent of the surface S!
That is, thinness of triangles is uniformly bounded, regardless of the genus or the number of
boundary components of S. Moreover, one can take a small number like δ = 17 [22].

All these results can be applied to the braid group, considering the complex of curves on
the punctured disc, as the action of an element of Bn on the simple closed curves on the
punctured disc remains the same if we consider the element in Bn/〈Δ2〉, via the natural
projection.

In the following section, we will sketch the proof in [22] showing that C1(S) is 17-hyperbolic.

3.2. Hyperbolicity of the curve graph

In this final section we will describe the proof by Hensel, Przytycki and Webb [22], showing
that the curve graph C1(S) is 17-hyperbolic. Instead of giving all the details of the proof, we
will just give the arguments that may lead the reader to try to prove that his/her favorite
geometric space is hyperbolic.

In order to do this, another graph closely related to C1(S) is studied in [22]. At first, only
surfaces with boundary are considered, but the curve graph of a closed surface S is a 1-
Lipschitz retract of the curve graph of the punctured surface S\{p} [18, 28], and punctures
are equivalent to boundary components from the point of view of curve complexes, so this is
actually not a restriction. Hence we can consider that S has some boundary component.

The arc graph, A1(S), is a graph whose vertices are simple arcs in S with endpoints lying
in the boundary of S. Two such vertices are joined by an edge if the curves can be realized
disjointly: the same definition as for the curve graph. When one considers the graph whose
vertices are either arcs or closed curves, with the same adjacency condition, one obtains the
arc and curve graph AC1(S).

To avoid cumbersome notation, as we will just study graphs in this section, we will denote
C(S), A(S) and AC(S) the curve graph, the arc graph, and the arc and curve graph, respec-
tively.

In [22] it is shown that A(S) is 7-hyperbolic, and then this is used to deduce that C(S) is 17-
hyperbolic. We are going to focus on the proof that A(S) is 7-hyperbolic, trying to generalize
the strategy as much as possible, so that it can be adapted to other spaces.
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The main strategy, if it is difficult to determine geodesics in a geometric space, is to try to
find a nice family of paths in the space, forming thin triangles, which is closed under taking
subpaths. In this way one can show that these paths are not far from geodesics, and this will
imply thinness of geodesic triangles.

In the graph A(S), these paths will be called unicorn paths, and were introduced by Hatcher
[20]. Given simple arcs  and b in S (two vertices of A(S)), we will define a unicorn path in
A(S) going from  to b, denoted P(, b).

Let us orient the arcs  and b, and denote α ∈ ∂(S) the starting point of , and β ∈ ∂(S) the
starting point of b. If  and b can be realized disjointly, the unicorn path P(, b) is just the
path (, b) (we will denote a path in A(S) by a sequence of vertices).

Now suppose that the arcs  and b cannot be realized disjointly (i.e. they are not adjacent in
A(S)). We will realize them by curves having minimal intersection (we say that the curves are
in minimal position). Let 1, . . . , k be the intersection points, ordered according the chosen
orientation of . The same points can be denoted b1, . . . , bk following the orientation of b,
and the order is not necessarily the same as before. See Figure 3.4.

Figure 3.4: Two arcs in minimal position.

Let us represent the situation regarding the intersection points of  and b using the diagram
in Figure 3.5. The vertical lines correspond to the curves  and b, and we draw segments
connecting points of  and b which intersect. Notice that we orient  upwards and b down-
wards, and that the transversal segments may cross each other, depending on the ordering
of 1, . . . , k with respect to the ordering of b1, . . . , bk.

Figure 3.5: A diagram representing the intersection points of the curves in
Figure 3.4. And the unicorn path P(, b) = (, 1, 2, b).

Definition 3.11. With the above notations, a unicorn arc obtained from  and b is an arc
that starts at α, goes along  until an intersection point  = bj, and then goes along b up to
β, provided the defined arc is simple.

Notice that a unicorn arc is determined by an intersection point (once the orientations of 
and b are chosen). Looking at the diagram in the right hand side of Figure 3.5, it is easy
to see which intersection points determine a unicorn arc: A transversal segment correspond
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to a unicorn arc if and only if it does not cross a segment of higher slope. For instance, in
Figure 3.5, one sees that 1 and 2 determine unicorn arcs, but 3 does not, as the segments
1 and 2 cross 3 and have higher slope (so they correspond to intersection points of the
possible unicorn arc).

It follows from this interpretation that the collection of all unicorn arcs obtained from  and
b correspond to segments that do not cross. One can determine all intersection points 
corresponding to unicorn arcs as follows: First take 1, which is always unicorn. Then, at every
step, take the lowest  whose segment does not intersect the previously chosen segments.
At the end you will take the segment corresponding to b1, and you are done. We can denote
r , r−1, · · · , 1 the obtained unicorn arcs, which correspond to vertices of A(S).

Definition 3.12. In the above situation, the unicorn path from  to b is the sequence of
vertices ( = 0, 1, . . . , r , r+1 = b) of A(S).

It is important to notice that two consecutive vertices of a unicorn path are arcs that can
be realized disjointly in S. Indeed, both curves coincide, except on a subarc of  going from
some  to some j, and in a subarc of b going from some bk to some b, where  = bk and
j = b (see Figure 3.5). These two segments cannot intersect, otherwise there would be a a
segment corresponding to a unicorn arc, between the two chosen ones. Now one can perturb
slightly the coinciding subarcs, so that they become parallel: One must slide each one to the
left or to the right, depending on the incidence of the subarcs of  and b at the intersection
point (see Figure 3.6). In this way, both arcs are realized disjointly, and this means that a
unicorn path P(, b) is actually a path in A(S).

Figure 3.6: Two consecutive unicorn arcs in a unicorn path can always be
realized disjointly: The common subarcs can can be isotoped so that they
become parallel.

Recall the two curves  and b in Figure 3.4. The unicorn path P(, b) is given in Figure 3.7.

To see that unicorn paths are good candidates to show the hyperbolicity of A(S), let us prove
that they form thin triangles.

Lemma 3.13. [22] Let , b, c be three vertices of A(S). Realize them in minimal position,
choose an orientation for each one, and let P(, b), P(b, c) and P(c, ) be the corresponding
unicorn paths. Then, for every  ∈ P(, b), there exists some  ∈ P(b, c) ∪ P(c, ) which is
adjacent to .

Proof. We can draw the situation as in Figure 3.8, where we have just represented segments
corresponding to unicorn arcs. The missing segments (if they exist) would have smaller slope
than the ones joining the same pair of arcs.

Consider a unicorn arc  ∈ P(, b). If  can be realized disjoint from c, then d(c, ) ≤ 1 and
c is at distance at most 1 from P(, b) (the distance from c to P(, b) is by definition the
minimal length among all paths in A(S) going from c to a vertex in P(, b)). Otherwise, let
us move along c starting at its initial point γ, and let c be the first intersection point with 
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Figure 3.7: The unicorn path P(, b) for the curves  and b in Figure 3.4.
Notice that consecutive arcs can be realized disjointly on the surface.

Figure 3.8: A diagram representing a triangle of unicorn paths with vertices
, b and c. A unicorn arc  ∈ P(, b) and a unicorn arc  ∈ P(b, c) ∪ P(, c)
which is adjacent to  as a vertex in A(S).

encountered along the way. Up to interchanging  and b, we can assume that c belongs to
, as in Figure 3.8.

Notice that c corresponds to a unicorn arc  ∈ P(, c), otherwise there would be a segment
connecting  and c and crossing the segment corresponding to c with higher slope, but then
c would not be the first encountered intersection point of c and .

Let us see that d(,) = 1. By construction, the initial part of  (which is the initial part of c,
up to c) does not touch . The remaining part of  coincides with the subarc of  going from
c to α, hence it can be isotoped to be parallel to , and this realizes  and  disjointly. �
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The above result shows that triangles made of unicorn paths (where the vertices’ orienta-
tions coincide) are 2-thin. Indeed, let P(, b) = ( = 0, 1, . . . , r+1 = b). Every vertex is at
distance ≤ 1 to either P(, c) or P(b, c), or both. As  ∈ P(, c) and b ∈ P(b, c), then either
some vertex  is at distance ≤ 1 from the other two sides, or there are two consecutive
vertices , +1 at distances ≤ 1 from P(, c) and P(b, c), respectively. It follows that the
2-ball centered at  touches the three sides.

The situation is even better: Unicorn triangles are 1-thin. This is not necessary to show that
the arc graph is hyperbolic, but it allows to reduce the hyperbolicity constant from 8 to 7, as
we will see in Theorem 3.17. We will give the following result, which implies immediately that
unicorn triangles are 1-thin:

Lemma 3.14. [22] Let , b, c be three vertices of A(S). Realize them in minimal position,
choose an orientation for each one, and let P(, b), P(b, c) and P(c, ) be the corresponding
unicorn paths. Then there are vertices  ∈ P(, b),  ∈ P(b, c) and  ∈ P(c, ) which are at
distance ≤ 1 from each other.

Proof. If  and b are adjacent, one can take  =  =  and  = b. So we can assume that
P(, b) has length bigger than 1. Also, if some vertex z ∈ P(, b) is adjacent to c, then we can
take  = z and  = = c. Hence we also assume that no vertex of P(, b) is adjacent to c, so
each vertex in P(, b) represents a curve which intersects the curve c.

Let P(, b) = ( = 0, 1, . . . , k = b). For each  we will look at its intersection points with c.
Going along c from its starting point γ, the first intersection point with  that one encounters
will belong to either  or b (and it will correspond to a unicorn arc). If  = 0, the first intersec-
tion point belongs to , and if  = k it belongs to b. Hence, there is some j such that the first
intersection point of c with j (say pj) belongs to , and the first intersection point of c with
j+1 (say pj+1) belongs to b. Up to interchanging the roles of  and b, we can assume that
pj+1 comes before pj (i.e. p+1 is closer to δ than p along c). We will see that j is the vertex
 promised in the statement.

Figure 3.9: A triangle whose sides are unicorn paths is 1-thin.

If we move along c starting at γ, the first intersection with j+1 that we encounter is pj+1, but
we can encounter several other intersections points with j+1 ∩ b before arriving to pj. Let
∗ be the one which is closest to β along b. By construction, it corresponds to a unicorn arc
. As ∗ is closer to γ in c than pj, it does not belong to j, so the segment corresponding
to  in the diagram we draw to represent the situation (see Figure 3.9) does not cross the
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segment corresponding to j. Hence the situation is exactly as shown in Figure 3.9, where we
have denoted by ∗ = ∗j the intersection point of  and b corresponding to j, by ∗j+1 the
intersection point of  and b corresponding to j+1, and by ∗ the point pj, corresponding to
a unicorn arc . We will show that  = j,  and  are pairwise adjacent.

See Figure 3.9. We can slightly deform the coincident parts of ,  and  so that they become
parallel. The three obtained curves are disjoint by the following reason: Any intersection point
belonging to  and b would yield a unicorn arc between j and j+1, which is impossible. Any
intersection point belonging to  and c would be an intersection point of j and c closer to
γ in c than ∗, which is also impossible. And any intersection point belonging to b and c
would contradict the choice of ∗, which is as close to β as possible in b. Therefore, the three
curves ,  and  are pairwise disjoint, as we wanted to show. �

Lemma 3.13 allows to show the following very important technical result. If we have a se-
quence of m consecutive unicorn paths in A(S), then a single unicorn path joining the initial
and final vertices is at bounded distance (at most d log2me) from the original sequence of
unicorn paths. Here is the explicit statement:

Corollary 3.15. Let 0, . . . , m be a sequence of (not necessarily adjacent) vertices in A(S),
with m ≤ 2k. For every  ∈ P(0, m) there is some  and some  ∈ P(, +1) with d(,) ≤ k.

Figure 3.10: Every vertex in a unicorn path is at distance at most k from some
vertex in a sequence of m unicorn paths joining the same endpoints, provided
m ≤ 2k.

Proof. See Figure 3.10, where the represented arcs correspond to unicorn paths in A(S). Let 
be some vertex in P(0, m). We can consider the triangle formed by P(0, m), P(0, b m2 c ),
P(b m2 c , m). By Lemma 3.13 there is some vertex ∗ in either P(0, b m2 c ) or P(b m2 c , m)
which is at distance ≤ 1 from . The number of unicorn paths of the form P(, +1) connect-
ing the endpoints of either P(0, b m2 c ) or P(b m2 c , m) is at most 2k−1. Hence, by induction,
∗ is at distance at most k − 1 from some P(, +1). This finishes the proof. �

In [22] it is shown that a subpath of a unicorn path is again a unicorn path, except when the
subpath has length two and its two endpoints are adjacent. This can sound odd: One could
think, looking at our diagrams, that a subpath of a unicorn path is always a unicorn path. But
the key point is to realize that, if  and j belong to the same unicorn path, they are not
necessarily in minimal position. An example is shown in Figure 3.11: The unicorn path P(, b)
is ( = 0, 1, 2, 3 = b), but the curves 0 and 2 can be realized disjointly (by sliding the
endpoint α).

Now one can show, using an argument by Hamenstädt [17], that unicorn paths are not far
from geodesics. Notice that in the proof of the following result we are only using that unicorn
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Figure 3.11: A subpath of a unicorn path may not be a unicorn path.

paths form thin triangles and that subpaths of unicorn paths are close to unicorn paths.
Hence, the arguments can be applied in a much more general situation, in which a family of
paths in a metric space satisfies the above two conditions, to show that such paths are not
far from geodesics. We will discuss this later.

Proposition 3.16. [22] Let , b be vertices of A(S). Then every vertex in P(, b) is at
distance ≤ 6 from any geodesic G from  to b.

Proof. See Figure 3.12. Let  be a vertex of P(, b) which is at maximal distance k from the
geodesic G = G(, b). We need to show that k ≤ 6. Let us consider the ball centered at  with
radius 2k. The maximal subpath of P(, b) contained in this ball and containing  is a unicorn
path P(′, b′) (as we can assume k > 1, otherwise the result would be trivially true).

Now consider the path (0, . . . , m), where G1 = (′ = 0, . . . , p = ′′) is a geodesic realizing
the minimal distance from ′ to G, G3 = (b′′ = q, . . . , m = b′) is a geodesic realizing the
minimal distance from G to b′, and G2 = (′′ = p, . . . , q = b′′) is the subpath of G joining ′′

and b′′ (hence a geodesic from ′′ to b′′).

We claim that d(, ) ≥ k for  = 0, . . . ,m. Indeed, as k is the distance from  to G, d(, ) ≥ k
for all  ∈ G2. Also, by maximality of k, the geodesics G1 and G3 have length at most k. If there
is some  6=  in G1 (that is, if ′ 6= ) then d(, ′) = 2k, hence d(, ) ≥ d(, ′)− d(′, ) ≥
2k − k = k. And the same happens for every  ∈ G3, so the claim holds.

Finally, notice that G2 is a geodesic of length at most 6k, as d(′′, b′′) ≤ d(′′, ′) + d(′, ) +
d(, b′) + d(b′, b′′) ≤ k + 2k + 2k + k. Together with the fact that the geodesics G1 and G3
have length at most k, this implies that the path (0, . . . , m) has length at most 8k. That is,
m ≤ 8k.
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Figure 3.12: Unicorn paths are not far from geodesics.

We then have a unicorn path P(′, b′), and another path (0, . . . , m) going from ′ to b′

which has length at most 8k. As  is adjacent to +1 for each , we can consider (0, . . . , m)
as the concatenation of m unicorn paths P(, +1). Then, by Corollary 3.15, the vertex
 ∈ P(′, b′) is at distance at most d log2me from some . That is, d(, ) ≤ d log2 8ke. As we
have shown that k ≤ d(, ), we finally obtain k ≤ d log2 8ke, which implies k ≤ 6. �

And finally, we can prove what we had promised:

Theorem 3.17. [22] The arc complex A(S) is 7-hyperbolic.

Proof. Consider a geodesic triangle in A(S) with vertices , b and c. Put the three arcs in
minimal position, orient them in some way, and consider the corresponding unicorn paths
P(, b), P(b, c) and P(, c). See Figure 3.13. By Lemma 3.14, the unicorn triangle is 1-thin,
so there is a ball of radius 1 touching the three unicorn paths. By Proposition 3.16, each
intersection point of the ball with one unicorn side, is at distance ≤ 6 from the corresponding
geodesic side. Therefore, there is a ball of radius 7 touching the three geodesic sides, as we
wanted to show. �

We recall that, using Lemma 3.13 instead of Lemma 3.14, we would have obtained that
A(S) is 8-hyperbolic instead of 7-hyperbolic, but we would have shown uniform hyperbolicity
anyway.

Finally, we will just give a rough idea of how to pass from the 7-hyperbolicity of the arc graph
A(S) to the 17-hyperbolicity of the curve graph C(S) (see [22] for details). Given a geodesic
triangle T in C(S), the idea is to look at T in AC(S). One can retract AC(S) to C(S), sending
each arc to a boundary component of a regular neighborhood of its union with ∂(S) (if the two
endpoints of the arc lie on the same component of ∂(S), one of the two obtained curves can
be used, otherwise the arc would be non-essential or S would be sporadic; if the endpoints
lie in distinct components of ∂(S), the obtained curve is essential, otherwise S would be
sporadic). This retract is 2-Lipschitz. Hence, the sides of T are 2-quasigeodesics in AC(S).
Now, one can take three arcs (vertices of A(S)) which are adjacent to the vertices of T, and
consider the triangle made by unicorn paths, joining those three arcs. One can show that the
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Figure 3.13: A triangle whose sides are unicorn paths is 1-thin.

distance from any vertex in such unicorn path to the corresponding side of T is at most 8 (by
an argument similar to the one in Proposition 3.16). This implies that there is a ball of radius
9 which touches the three sides of T in AC(S), and by the above retraction it follows that C(S)
is 17-hyperbolic. Hence we have:

Theorem 3.18. [22] The curve graph C(S) is 17-hyperbolic.

The main goal of this section was to give some tools that could allow the reader to prove that
some metric space is hyperbolic. We point out that the hyperbolicity of the curve graph was
obtained just by finding some family of paths between each pair of vertices (in this case the
unicorn paths) satisfying the following conditions:

1. Paths in the family form thin triangles (Lemma 3.13).

2. The family is closed under the operation of taking subpaths.

Actually, unicorn paths are not closed by subpaths, but almost: subpaths of length greater
than 2 are unicorn. But we also used in our proofs that subpaths of length 1 are unicorn.
Hence, some weaker conditions one could impose to a family of paths, in order to be able to
apply the above arguments, are the following:

1. Paths in the family form thin triangles.

2. The family is closed under the operation of taking subpaths of length 1.

3. The family is closed under the operation of taking subpaths of length greater than k,
for some k > 0.

These properties can be used to show that the paths in the family are not far from geodesics
(Proposition 3.16), and then to show the hyperbolicity of the space (Theorem 3.17).
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