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Course no I

Notes on Topological Quantum Field Theories

FRANCESCO COSTANTINO

Abstract

These notes are the outcome of a mini-course on TQFTs held at the edition of Win-
ter Braids in Pau in February 2015. We define the notion of TQFT and provide the first
basic examples obtained via the universal construction and via Frobenius algebras. After
recalling some basic notions on the mapping class groups of surfaces, we concentrate
on the Reshetikhin-Turaev construction via the skein theoretical approach: we first define
the skein module of a 3-manifold and the RT invariants; then we apply the universal con-
struction to get the RT SU(2)-TQFTs. We conclude with an overview of the main results
on these TQFTs and on some recent developments. An appendix summarizes the basic
notions and facts in category theory used here.

1. Introduction

These notes are the outcome of a mini course held at the edition of Winter Braids in Pau in
February 2015. The goal of the course was to give an introduction to the notion of TQFT and
a taste of how the famous SU(2)-Reshetikhin-Turaev TQFTs can be constructed using skein
theory, as explained by Blanchet, Habegger, Masbaum and Vogel [7]; then to provide a rapid
overview of the main results on these TQFTs and on some new developments.

As it often happens in mathematics, TQFTs were discovered gradually before their formal
definition was provided; they made a first appearance in A. Schwarz’s paper [45] and their
first example was introduced by E. Witten in his fundamental paper [49] who also conjectured
the existence of a family of TQFTs relating Chern-Simons theory and the Jones polynomials
of knots in [48]. Witten’s approach was based on path integrals in infinite dimensions and it
has not yet been formalized; still his papers stimulated the development of the domain now
known as quantum topology. In [43] Reshetikhin and Turaev constructed a family of invari-
ants of three manifolds having exactly the same properties as those discussed in Witten’s
papers: even if their approach is totally different (and based on the representation theory of
quantum groups) it is now commonly accepted that these invariants are the mathematical
formulation of Witten’s. In this paper we will refer to these invariants as Reshetikhin-Turaev
invariants (or RT-invariants for short), because Witten’s approach based on Chern-Simons
theory will not be discussed here. In [5] Atiyah formalized the notion of Topological Quantum
Field Theory and later Blanchet, Habegger, Masbaum and Vogel [7] constructed a family of
TQFTs based on Reshetikhin-Turaev invariants which complete Witten’s programme; in [46]
Turaev generalized the construction of TQFTs using modular categories. The study of TQFTs
is now a wide field also due to the more recent ideas of extended TQFTs, categorification
(which I will not discuss in these introductory notes) and non semi-simple TQFTs (to which I
will dedicate a subsection in the final part of this paper).
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1.1. Structure of these notes

In the first section, after defining TQFTs via a categorical language (of which I synthesize in
the Appendix the necessary notions) I recall the so called “universal construction" [7] and
some of its properties. The second section is the devoted to provide the very first examples
(in dimension 1 + 1) and to answer some natural questions. The third section details some
basic facts on mapping class groups whose representations issued from TQFTs are of special
interest. In particular I detail the construction of a central extension of these groups which
is key to the proper construction of the Reshetikhin-Turaev TQFTs in dimension 2 + 1. The
fourth section details the notion of skein module of a manifold and introduces the reader to
the art of computing in skein modules (the “skein theory"). At the end of the section I define
the Reshetikhin-Turaev invariants and compute them for the manifolds of the form  × S1. In
the last section we start by detailing why a suitable modification of the category of surfaces
is needed in order to get finite dimensionality of the vector spaces associated to surfaces.
Then we apply the universal construction to the Reshetikhin-Turaev invariants in order to get
TQFTs. We provide a sketchy proof of the fact that the so-obtained structures are indeed
TQFTs.

The last subsection is devoted to discuss some of the properties of the so obtained quan-
tum representations of the mapping class group, without providing proofs. We also cite some
properties of the recent “non semi-simple TQFTs" [8] and compare it with those of the stan-
dard Reshetikhin-Turaev TQFTs studied here.

1.2. Acknowledgements.

I wish to thank the organizers of Winter Braids for proposing to give a course on TQFTs and
to write these notes and the referee for his/her careful reading and helpful comments.

2. The category Cobn

In this section we define the starting point of the notion of TQFT, namely the category of
cobordisms which will be “represented" by a TQFT functor later on. We single out some
key properties (e.g. monoidality, existence of duals, the fact that the object associated to
a sphere is a Frobenius algebra) of the category which will be automatically reflected by a
TQFT.

All manifolds will be smooth compact and oriented and all the maps will be smooth unless
explicitly stated the contrary.

Definition 2.1. Two diffeomorphisms between manifolds ƒ , g : M→ N are :

• homotopic : if there exists a map h : M× [0,1] → N such that h|M×{0} = ƒ and h|M×{1} =
g.

• pseudo-isotopic: if there exists an embedding h : M × [0,1] → N × [0,1] such that
h|M×{0} = ƒ × {0}, h|M×{1} = g × {1}.

• isotopic: if there exists an embedding h : M × [0,1] → N × [0,1] such that h|M×{0} =
ƒ × {0}, h|M×{1} = g × {1} and for each t, ht := h|M×{t} ⊂ N × {t}.

Remark 2.2. Clearly isotopy =⇒ pseudo-isotopy =⇒ homotopy. The reverse implications
are false in general in dimensions ≥ 3 (see for instance [30] for an example in dimension 3
of maps which are pseudo-isotopic but non isotopic). On contrast, in dimension 2 they are all
true : this is the content of Baer’s theorem (see [16], Theorem 2.1).

Definition 2.3. The category Cobn is the category whose objects are the n− 1-dimensional
manifolds (which typically we will denote with the letters ) and whose morphisms are 5-
tuples Mor(− ,+) = {(W,∂+W, ƒ+ , ∂−W, ƒ−)}/ ∼ where
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1. W is a n-manifold,

2. ∂W = ∂−W t ∂+W (oriented with the outward vector first convention),

3. ƒ− : − → ∂W− (resp. ƒ+ : + → ∂W+) are diffeomorphisms which reverse (resp. pre-
serve) the orientation,

and we say that two 5-tuples (W,∂+W, ƒ+ , ∂−W, ƒ−) and (W′, ∂+W′, ƒ+ , ∂−W′, ƒ−) are equivalent
(∼) if there exists an orientation preserving diffeomorphism ψ :W→W′ such that:

ψ(∂+W) = ∂+W′, ƒ ′+ = ψ ◦ ƒ+ , ψ(∂−W) = ∂−W′, ƒ ′− = ψ ◦ ƒ− .

The composition of cobordisms :

W1 = (W1, ∂+W1, ƒ+ , ∂−W1, ƒ−) ∈ Mor(− ,) nd

W2 = (W2, ∂+W2, g+ , ∂−W2, g−) ∈ Mor(,+) is defined s

W2 ◦W1 = (W2 tg−◦ƒ−1+ W1, ∂+W2, g+ , ∂−W1, ƒ−) ∈ Mor(− ,+), where

W2 tg−◦ƒ−1+ W1 := (W1 tW2)/{ ∼ y ⇐⇒  ∈ ∂−W2, y ∈ ∂+W1 nd  = g− ◦ ƒ−1+ (y)}.

Remark 2.4. As we defined morphisms as diffeomorphisms classes of cobordisms, a little
thinking is worth concerning the definition of the composition of two morphisms we gave
(which used explicit representatives). Remark indeed that if W1 is equivalent to W ′

1 via a
diffeomorphism ψ : W1 → W ′

1 then W2 ◦W1 is equivalent to W2 ◦W ′
1 via the diffeomorphism

defined as d t ψ : W2 tW1 → W2 tW ′
1 and which passes to the quotients as if  ∈ ∂−W2,

y ∈ ∂+W1 and  = g− ◦ ƒ−1+ (y) then it also holds  = g− ◦ (ƒ ′+)
−1(ψ(y)).

Furthermore we should also point out that to be fully rigorous, since we are glueing smooth
manifolds, we should take the care of picking collars of the boundary components and glue
them using the collars so to endow the resulting manifold with a smooth atlas. We leave
this technical detail to the reader, and we limit ourselves to remarking that the fact that the
result is well defined is a consequence of the uniqueness up to isotopy of the collar of the
boundary.

Observe that the identity morphism d is ( × [−1,1], × {−1}, d, × {1}, d). More
in general if ƒ ∈ Dƒ ƒ+() then we define the cobordism Cƒ := ( × [−1,1], × {−1}, ƒ , ×
{1}, d): the following holds :

Lemma 2.5. 1. The semigroup Mor(∅,∅) is the abelian semigroup freely generated by
oriented diffeomorphism classes of connected n + 1-manifolds. Its only invertible ele-
ment is the class of the empty manifold.

2. For each  the map Dƒ ƒ+() 3 ƒ → Cƒ ∈ Mor(,) is a homomorphism whose kernel is
{ƒ | ƒ is pseudo-isotopic to the identity}.

Proof. 1).The fact that Mor(∅,∅) is a semigroup is true in general, furthermore, by defini-
tion of the composition of two cobordisms, if those cobordisms have empty boundary, their
composition is the diffeomorphism class of their disjoint union. The identity cobordism is
∅× [−1,1] = ∅ and it is invertible.

2). We need to prove that Cƒ ◦ Cg = Cƒ◦g. By definition the cobordism Cg can be also
represented as ( × [−1,1], × {−1}, ƒ ◦ g, × {1}, ƒ ) (indeed the diffeomorphism ƒ can
be extended to the whole Cg via ƒ × d). Now it becomes evident that the composition of
the two cobordisms the composition Cƒ ◦ Cg is the cobordism ( × [−1,3], × {3}, d, ×
{−1}, ƒ ◦ g) = Cƒ◦g. The cobordism Cƒ is equivalent to the cobordism Cd = d iff there exists
a diffeomorphism ϕ :  × [−1,1] →  × [−1,1] such that

ϕ(,1) = (,1) nd ϕ(ƒ (),−1) = (,−1) ∀ ∈ .

Up to a re-parametrization of the [−1,1] factor this is precisely saying that ƒ is pseudo-
isotopic to d (see Definition 2.1). 2.5
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The category Cobn has naturally much more structure than what was given above. Ob-
serve first that a monoidal structure in Cobn is given by the disjoint union : 1⊗2 := 1t2,
and the unit object 1 is the empty manifold ∅. Furthermore, the natural diffeomorphisms
1 t 2 → 2 t 1 induce a symmetry on the monoidal structure: Cobn is then a symmetric
monoidal category (see Definition A.9).

Observe furthermore Cobn is a pivotal category: each object  has a left and right dual
object  which is the same manifold with the opposite orientation and there are morphisms
η : 1→  ⊗  (defined as η := ( × [−1,1], × {±1}, d t d,∅,∅)) and ε :  ⊗ → 1 (defined
as ε := ( × [−1,1],∅,∅, × {±1}, d t d)) which satisfy the triangle identities (see the
Appendix A.3 for the general definitions on pivotal categories).

From now on we will consider Cobn as a symmetric pivotal category.

Definition 2.6 (Frobenius algebra in C ). A Frobenius algebra A in a monoidal category C is
a 5-tuple (A, μ,1,Δ, ε) where :

1. μ : A ⊗ A→ A is associative (i.e. μ ◦ (μ ⊗ d) = μ ◦ (d ⊗ μ))

2. 1 ∈ Mor(1, A) is such that μ ◦ (1 ⊗ d) = d = μ ◦ (d ⊗ 1);

3. Δ : A→ A ⊗ A is co-associative (i.e. Δ ⊗ d ◦ Δ = d ⊗ Δ ◦ Δ);

4. ε : A→ 1 is a co-unit i.e. it is such that ε ⊗ d ◦ Δ = d = d ⊗ ε ◦ Δ.

5. The Frobenius Law holds : Δ ◦ μ = (d ⊗ μ) ◦ (Δ ⊗ d) = (μ ⊗ d) ◦ (d ⊗ Δ).

Furthermore, if C is symmetric with symmetry s we say that A is commutative if it holds
μ ◦ s = μ, cocommutative if s ◦ Δ = Δ. A Frobenius algebra is a Frobenius algebra in the
category Vec of C-vector spaces.

Remark 2.7. If C is a pivotal symmetric category and (A, μ,1,Δ, ε) is a Frobenius algebra in
C then:

1. also (A∗,Δ∗, ε∗, μ∗,1∗) is a Frobenius algebra in C . If A is commutative then A∗ is
cocommutative and if A is cocommutative A∗ is commutative.

2. if Z : C → Vect is a braided monoidal functor (see Definition A.11) and A is com-
mutative, then Z(A) is a commutative Frobenius algebra in Vect, that is a Frobenius
algebra.

Let Sn be the n-dimensional sphere seen as the round unit sphere in Rn+1 and oriented
as the outside of the round unit radius ball Bn of center the origin. Let 1 ∈ Mor(∅,Sn) be the
cobordism represented by Bn and let μ be the n + 1 cobordism from Sn ⊗ Sn → Sn formed
by the “pant" i.e. the complement of two disjoint copies of the round ball of radius 1 whose
centers are in coordinates (±2,0, · · · ,0) ∈ Rn+1 inside the round ball of radius 4 and center
the origin (the boundary components of μ are to identified with Sn by means of the obvious
compositions of translations and positive homogeneous dilatations). Similarly let Δ, ε be the
n + 1-cobordisms obtained by reversing the orientations of μ and 1 respectively.

Lemma 2.8. (Sn, μ,1,Δ, ε) is a commutative Frobenius algebra in Cobn. As a consequence
also its dual (Sn,Δ∗, ε∗, μ∗,1∗) is a commutative Frobenius algebra in Cobn.

Proof. The proof is left to the reader. 2.8

Remark that in a pivotal category the dual of an object is unique up to isomorphism and
a Frobenius algebra object is self dual (the pairing being ε ◦ μ : A ⊗ A → 1). In particular this
implies that there is an isomorphism between Sn and Sn : it can be checked that it is given
by the cobordism (S× [0,1], d|S×{0}, d|S×{1}) where d : S→ S is the map d(1, . . . , n+1) =
(1, . . . , n,−n+1).
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3. Quantization functors, TQFTs and the universal construction

In this section we “represent” the category Cobn defined precedently. We define the notion
of TQFT and spell out some of the consequences of the intrinsic properties of Cobn. We also
recall the universal construction and reprove a result of Turaev which states that two non
degenerate TQFTs having the same invariants are isomorphic.

Definition 3.1 (Various notions of n-dimensional TQFTs). Let Vec be the symmetric monoidal
category of vector spaces over C (not necessarily of finite dimension).

• A quantization functor is a functor Z : Cobn → Vec such that Z(∅) = C.

• A finite quantization functor is a quantization functor Z : Cobn → Vec such that Z() is
finite dimensional for all .

• A TQFT (sometimes also called (n − 1) + 1-TQFT) is a symmetric monoidal functor
Z : Cobn → Vec.

(We warn the reader that the first two notions are used but usually do not have a specific
name in the literature). A quantization functor is non-degenerate (or cobordism generated)
if for each  it holds

Z() = SpnC{Z(Mor(∅,)}.

Lemma 3.2. A TQFT Z is also a finite quantization functor. Furthermore dim(Z()) = Z( ×
S1).

Proof. The hypothesis of Z(∅) = C is included of that of symmetric monoidal functor. The
finite dimensionality comes from the triangle identities satisfied for each object  :

Z() // Z() ⊗ 1
d⊗η// Z() ⊗ Z() ⊗ Z()ε⊗d // Z() = dZ()

Indeed if η(1) =
∑d
=1 e ⊗ ƒ then the span of dZ() must be contained in the span of ƒ,  =

1, . . . d. The last equality comes from the fact that the composition of the evaluation and
co-evaluation in Vec is the trace of the identity. 3.2

Remark 3.3. One may replace the monoidal category Vec with the category of finitely
generated projective modules over a commutative ring A. The notion of finite dimensionality
is then to be replaced with finite generation and Z(∅) = A.

The following is a direct consequence of Lemma 2.5:

Lemma 3.4. Let Z be a quantization functor:

1. Z : Mor(∅,∅)→ C is a diffeomorphism invariant of n+ 1-manifolds which is multiplica-
tive under disjoint union.

2. For each  and each ƒ ∈ Dƒ ƒ+() let Mƒ : ( × [−1,1], × {−1}, ƒ , × {1}, d) ∈
Mor(,). Then Z(Mƒ ) ∈ End(Z()) is a representation of Dƒ ƒ+() whose kernel in-
cludes the diffeomorphisms pseudo-isotopic to the identity.

Proposition 3.5 (Universal construction, [7] Proposition 1.1). Let Z : Mor(∅,∅) → C be
a diffeomorphism invariant of n + 1-manifolds which is multiplicative under disjoint union.
There exists a unique non-degenerate quantization functor, which we will denote also by Z,
whose restriction to Mor(∅,∅) is Z. Furthermore Z is a lax monoidal functor.
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Proof. Define V() := Spn{Mor(∅,)} and V′() := Spn{Mor(,∅)}. Define a pairing
〈·, ·〉 : V′() ⊗ V()→ C by extending linearly the bracket defined on the bases as 〈M2,M1〉 =
Z(M2◦M1). Let then Z() := V()/Ann(V′()) where Ann(V′()) := { ∈ V()|〈,〉 = 0 ∀ ∈
V′()} and similarly let Z′() := V′()/Ann(V()) where Ann(V()) := { ∈ V′()|〈,〉 =
0 ∀ ∈ V()}. It is straightforward to check that this defines a functor into Vec which by
construction is non-degenerate. By construction, for each  (possibly non connected) there
is a non degenerate pairing 〈·, ·〉 : V′() ⊗ V()→ C.

The last statement is proved as follows : let 1,2 be two (n − 1)-manifolds, then there
is a natural map 1,2 : Z(1) ⊗ Z(2) → Z(1 t 2) defined by extending linearly the map
sending a pair M1,M2 of manifolds bounded by 1 and 2 respectively to M1 t M2. This
map is well defined as if [M1] = 0 ∈ Z(1) then [M1 tM2] will also be null in Z(1 t 2) as
every closed manifold obtained by capping M1 tM2 can also be seen as a closed manifold
obtained by capping M1 alone. Similarly there is a map d′1,2 : V

′(1)⊗V′(2)→ V′(1t2).
Furthermore d1,2 and d′1,2 are injective: indeed the restriction of the pairing 〈·, ·〉1t2 to
their images is by construction equal to 〈·, ·〉1 〈·, ·〉2 and thus non-degenerate. An element
in the kernel of d1,2 is then in the kernel of 〈·, ·〉1 〈·, ·〉2 and hence is zero. 3.5

The following is straightforward:

Proposition 3.6. Let Z be a non-degenerate n-TQFT and suppose that for each M∈Mor(∅,∅)
it holds Z(M) = Z(M). Then for each  there is a C-antilinear isomorphism  : Z() → Z′()
defined by extending C anti-linearly the map · : Mor(∅,)→ Mor(,∅) defined by [M] → [M].
This equips Z() with a Mod()-invariant hermitian form 〈·, ·〉.

Definition 3.7 (Operations with TQFTs). If Z1, Z2 are TQFTs then :

• Z1 ⊗ Z2 is the TQFT associating to each  the vector space Z1() ⊗ Z2() and to each
cobordism the tensor product of the associated maps.

• A morphism ƒ : Z1 → Z2 is a natural transformation between Z1 and Z2.

• Z1 and Z2 are isomorphic if there are morphisms ƒ : Z1 → Z2 and g : Z2 → Z1 such that
g ◦ ƒ = dZ1 and ƒ ◦ g = dZ2 .

Theorem 3.8 (Turaev, [46] Theorem 3.7). If Z1, Z2 are n-TQFTs which coincide on Mor(∅,∅)
and such that Z1 is non-degenerate, then Z1 and Z2 are isomorphic.

Proof. Observe first that dim(Z1()) = Z1( × S1) = dim(Z2()), ∀. Since Z are TQFTs
there are natural pairings 〈, 〉 : Z() ⊗ Z() → C induced by the duality in Cobn. Now let
β() = Z()/Ann(Z()). Since Z1 is non-degenerate then β1() = Z1(). Furthermore there
is a well defined and injective functorial map  : β1() → β2() defined on manifolds M
bounded by  by (M) = [Z2(M)]. The map is well defined as if Z1(M′) = Z1(M) then for all
N ∈ V ′() it holds :

0 = 〈Z1(N), Z1(M) − Z1(M′)〉1 = Z2(N ◦M) − Z2(N ◦M′) = 〈Z2(N), Z2(M) − Z2(M′)〉2

so Z2(M) − Z2(M′) ∈ Ann(Z2()). The same argument shows that the map is injective. But
since β1() = Z1() and dim(Z1()) = dim(Z2()) the map is an isomorphism. 3.8

4. Some examples

The preceding section left open some very natural questions on TQFTs: we now spell these
out and provide examples to support the answer.

Question 4.1. Do there exist different TQFTs having the same associated invariants of
closed manifolds? If one applies the universal construction to the invariant of closed mani-
folds associated to a TQFT, does he get a TQFT? Will it be identical to the starting one?
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In this section we will answer the above questions (respectively by “yes", “not in general",
“not in general") by looking at examples of TQFTs in dimension 2. Let’s observe first that if
n = 2 then each object of Cobn is a tensor product of copies of S1 and so to know a TQFT it is
sufficient to know Z(S1) which by Remark 2.7 is a commutative Frobenius algebra. This was
observed and studied by various authors, see for instance [15],[1] or [28]:

Theorem 4.2. A 1 + 1-TQFT is uniquely determined by the Frobenius algebra structure of
Z(S1). Reciprocally, given a commutative Frobenius algebra A there exists a unique TQFT Z
such that Z(S1) = A.

One implication of the theorem is easy: Z(S1) must be a Frobenius algebra because of the
topological properties of the surfaces obtained by glueing pants and discs. The harder part of
the theorem is to check that the assignment of a commutative Frobenius algebra to a circle
does indeed provide a TQFT : this boils down to check that in the category Cob2 there are no
new relations among the pants associated to the product and coproduct.

Exercise 4.3. Let A be a commutative Frobenius algebra. Prove that then the bilinear form
〈, y〉 := ε(y) is non-degenerate and satisfies 〈y, z〉 = 〈, yz〉, ∀, y, z ∈ A. Reciprocally
prove that if A is a commutative, unital algebra equipped with a non-degenerate form having
these properties then A is a Frobenius algebra.

Solution 4.4. The identity 〈y, z〉 = 〈, yz〉, ∀, y, z ∈ A is a direct consequence of the as-
sociativity of the product in A. The non-degeneracy of ε(y) is a direct consequence of the
general fact that a “Frobenius algebra in a monoidal category is dual to itself”. More explicitly,
if y is an element of the annihilator of 〈·, ·〉 then it holds:

y = d(y) = (d ⊗ ε ◦ μ) ◦ (Δ(1) ⊗ d)y = 0.

Reciprocally, given a bilinear non degenerate form 〈·, ·〉 such that 〈y, z〉 = 〈, yz〉, ∀, y, z ∈ A,
then we can define ε : A → C as ε() = 〈1, 〉, ∀ ∈ A; observe that A is a finite dimensional
algebra (as it admits a non degenerate bilinear pairing with itself). Let ,  ∈  be a (finite)
basis of A and let M,j := ε(j), , j ∈ ; clearly det(M) 6= 0 and we may define Δ(1) ∈ A ⊗ A
as Δ(1) :=

∑

,j(M
−1),j ⊗ j. By construction it holds: (d ⊗ ε ◦ μ)(Δ(1) ⊗ d)() = , ∀ ∈ A.

Indeed we have, letting  =
∑

k∈ kk (for some coordinates k ∈ C):

(d ⊗ ε ◦ μ)(Δ(1) ⊗ ) = (d ⊗ ε ◦ μ)
∑

,j,k∈
kM−1,j  ⊗ j ⊗ k =

∑

,j,k∈
kM−1,j Mj,k = .

And similarly it holds (ε◦μ⊗ d)(d⊗Δ(1))() = , ∀ ∈ A. Then one may define ΔL : A→ A⊗A
by ΔL() = (d⊗ μ) ◦ (Δ(1)⊗ ) =

∑

,k∈M
−1
,k  ⊗ (k ·). Let also: ΔR() = (μ⊗ d) ◦ (⊗ Δ(1)) =

∑

,k∈M
−1
,k ( · ) ⊗ k. We claim that ΔL = ΔR and so we may just drop the index L or R in the

notation. Indeed by the non-degeneracy of 〈, 〉 it is sufficient to check the following :

(ε ◦ μ ⊗ ε ◦ μ) ◦ (d ⊗ ΔL ⊗ d) = (ε ◦ μ ⊗ ε ◦ μ) ◦ (d ⊗ ΔR ⊗ d).

Now, using (d ⊗ ε ◦ μ)(Δ(1) ⊗ d)() = , the left hand side equals ε(μ(μ ⊗ d)). Similarly
the right hand side becomes ε(μ(d ⊗ μ)) but these are equal by the hypothesis 〈y, z〉 =
〈, yz〉, ∀, y, z ∈ A. The fact that (ε ⊗ d) ◦ Δ = d = (d ⊗ ε) ◦ Δ is now straightforward as for
instance using Δ = ΔL and the fact that ε = ε ◦ μ ◦ (1 ⊗ d) we have:

(ε ⊗ d) ◦ ΔL() = (ε ◦ μ ⊗ d) ◦ (d ⊗ d ⊗ μ) ◦ (1 ⊗ Δ(1) ⊗ ) =

(ε ◦ μ ⊗ μ) ◦ (1 ⊗ Δ(1) ⊗ ) = μ ◦ (ε ◦ μ ⊗ d ⊗ d) ◦ (1 ⊗ Δ(1) ⊗ ) = μ(1 · ) = 

where again we used the identity (ε ◦ μ ⊗ d)(d ⊗ Δ(1))() = , ∀ ∈ A. (We advise the
reader to draw a picture translating the above identities.) We leave to the reader to prove
the coassociativity of Δ. Finally, for what concerns Δ◦μ = (d⊗ μ)◦ (Δ⊗ d) = (μ⊗ d)◦ (d⊗Δ),
let us prove the first equality using the expression Δ = ΔL :

ΔL ◦ μ = (d ⊗ μ) ◦ (Δ(1) ⊗ μ) = (d ⊗ μ) ◦ (d ⊗ d ⊗ μ) ◦ (Δ(1) ⊗ d ⊗ d) =

= (d ⊗ μ) ◦ (d ⊗ μ ⊗ d) ◦ (Δ(1) ⊗ d ⊗ d) = (d ⊗ μ) ◦ (Δ ⊗ d)
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where in the second equality we used the associativity of μ and in the third the definition of
ΔL.

We will use extensively the following exercise :

Exercise 4.5. Let A be a commutative Frobenius algebra and fix a basis  of A as a C-vector
space; let ∗ ∈ A be the element defined so that ε(∗ j) = δ,j and finally let θ =

∑

 
∗
 . If Z

is a 1 + 1-TQFT such that Z(S1) = A then the value of Z on a closed surface of genus g ≥ 0 is
ε(θg). In particular its value on S1 × S1 is dimC(A).

Example 4.6. Let A be the de Rham cohomology of your favorite compact complex manifold
M. It is a commutative Frobenius algebra by endowing it with the pairing given by ε(ω1 ·ω2) :=
∫

[M] ω1 ∧ ω2, where [M] is the fundamental class of M. In particular for CP1 one gets the

algebra C[X]/X2 which is at the base of the construction of Khovanov homology. Notice that
Δ(1) = 1⊗ + ⊗ 1 and Δ() = ⊗  and that these values can be computed starting from the
ε form (evaluation on the fundamental cycle of CP1). The associated TQFT evaluates each
sphere to 0 each torus to 2 and each other connected surface to 0. Let g ∈ Mor(∅,S1) be the
complement of a disc in a genus g oriented surface. If we apply the universal construction
we immediately see that Z(S1) = SpnC{0,1} and letting g,h := g t h and Yk = k \D2

then it is not difficult to realize that the vectors ,j, Yk , , j, k ∈ {0,1} generate Z(S1 t S1) but
they are not independent as the coupling matrix (i.e. expressing ε ◦m) written in the basis
0,0,1,0,0,1,1,1, Y0, Y1 is :



















0 0 0 4 0 2
0 0 4 0 2 0
0 4 0 0 2 0
4 0 0 0 0 0
0 2 2 0 2 0
2 0 0 0 0 0



















whose rank is 4. Actually as the rank of the first 4× 4 minor is 4 the vectors ,j form a basis
of Z(S1tS1). More in general it is not difficult to check that Z(S1t· · ·tS1) is Z(S1)⊗ · · ·⊗Z(S1)
and thus Z is a TQFT. Indeed, denoting g the cobordism from S1 to ∅ represented by a genus
g surface with one boundary component, then one can verify that dZ(S1) =

1
2

�

Z(0) ◦Z(1)+
Z(1) ◦ Z(0)

�

. Topologically this identity tells us that the image of the cobordism given by
an annulus is the same as a linear combination of that of the cobordisms formed by a disc
and a once punctured torus. This allows to split the image via Z of any cobordism  from ∅
to a S1 t · · · t S1 into a linear combination of morphisms associated via Z to a disjoint union
of surfaces with only one boundary component and so to show that Z() ∈ Z(S1 t · · · t S1)
belongs also to Z(S1)⊗ · · ·⊗Z(S1). Indeed, for each surface , one can use the above identity
to express the morphism Z() as a liner combination of morphisms associated to the surfaces
obtained by compressing  along an essential curve; iterating this, and choosing essential
curves which separate the different boundary components of the initial surface, one can
then reduce to disjoint union of surfaces with only one boundary component. (For instance,
if  : ∅→ S1 t S1 is an annulus with two boundary components then, compressing along the
core of the annulus we get Z() = 1

2

�

Z(0) ⊗ Z(1) + Z(1) ⊗ Z(0)
�

.
In this case if we apply the universal construction to invariants of the TQFT associated to

the Frobenius algebra H∗(CP1) we recover the initial TQFT. But this is not always the case as
the following examples show.

Exercise 4.7. If A = H∗(CPn) what is the value of Z(Xg) where Xg is the connected surface
of genus g?

Solution 4.8. In the Frobenius algebra C[]/n+1 we have ε() = 0 unless  = n, so that
θ =

∑n
=0m(

 ⊗ n−) = (n + 1)n. Hence Z(Xg) = 0 unless g = 1 in which case we have
Z(S1 × S1) = n + 1.
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Example 4.9. Let A′ = H∗(CP1 × CP1;C) i.e. A = C[, y]/{2, y2}. Then θA′ = 4y and
θgA′ = 0 ∀g > 1 so that ZA′ (S2) = 0, ZA′ (S1 × S1) = 4 and ZA′ (g) = 0 ∀g > 1. These values
coincide with those of the case A = H∗(CP3). This shows that two TQFTs may have the same
invariants without being isomorphic (indeed A and A′ are not isomorphic : check it!).

Example 4.10. Let g be the complement of a disc in a genus g oriented surface and
g,h := g t h, Yk := k \ D2. If we apply the universal construction to the functor Z of the
preceding example then we have Z(S1) = SpnC{0,1}, and it is not difficult to check that
Z(S1tS1) is generated by the images through Z of 0,0,1,0,0,1,1,1, Y0, Y1 and writing the
pairing matrix in the basis 0,0,1,0,0,1,1,1, Y0, Y1 we get :



















0 0 0 16 0 4
0 0 16 0 4 0
0 16 0 0 4 0
16 0 0 0 0 0
0 4 4 0 4 0
4 0 0 0 0 0



















whose rank is 5. Then dimC(Z(S1 t S1)) = 5 and so Z is not a TQFT but just a finite quan-
tization functor. (Prove finiteness as an exercice !) Remark furthermore that the so-obtained
functor is different from both functors ZA and ZA′ associated to the Frobenius algebras A and
A′ in the preceding example : indeed those functors were by definition TQFTs (i.e. monoidal)
while Z is not; moreover dimC(Z(S1)) = 2,dimC(ZA(S1)) = 4 = dimC(ZA′ (S1)).

Example 4.11. Let Z be the multiplicative invariant of n-manifold to be defined on con-
nected ones as Z(M) = exp(χ(M)) (the Euler characteristic). Then the universal construc-
tion gives for every  ∈ Cobn that Z() = C if  is cobordant to ∅ and Z() = 0 else, and
Z(W) = exp(χ(W) − χ(∂W+)) ∈ C = Hom(C,C) for each cobordism W.

Example 4.12. Let n = 2 and for each connected manifold M let Z(M) = kb1(M) for some
k ∈ R\{±1,0} (the exponential of the first Betti number). Applying the universal construction
one sees that, with the notation of the preceding example, g = k2g0 in Z(S1) and that thus
Z(S1) is one dimensional. Similarly in Z(S1 t S1) it holds Yh = k2hY0 and Y0 6= 0 t 0 so that
Z(S1 t S1) = SpnC{Y0,0 t 0} and so Z is just a finite quantization functor but not a TQFT.

Let us then conclude by remarking that the following corollary of Theorem 3.8:

Corollary 4.13. If Z is a degenerate TQFT the result of the universal construction on Z is a
quantization functor but not a TQFT.

Proof. By definition of universal construction, if the universal construction applied to Z gives
a TQFT, let us call it U : Cobn → Vec, then it is a non-degenerate TQFT. But by Theorem 3.8
if it coincides with Z on closed cobordisms then also Z must be non-degenerate and this is
excluded by hypothesis. 4.13

5. Generalities on mapping class groups

In this section we recall the definition of mapping class group of a surface, of Dehn twist,
we recall the statement of the Baer’s theorem and of the Nielsen-Thurston classification of
mapping classes. We conclude by recalling the notion of central extension of a group and
defining a central extension of the mapping class group of a closed surface which will be
needed later on.
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5.1. Basic definitions.

Let bg,p be the complement of b open disjoint discs and p points {q1, . . . , qp} in a closed
oriented surface g of genus g. Let

Homeo+(bg,p, ∂
b
g,p) =

�

ƒ : bg,p → bg,p|ƒ orentton preserng homeomorphsm

sch tht ƒ |∂bg,p = d nd ƒ
�

{q1, . . . , qp}
�

= {q1, . . . , qp}
	

endowed with the compact open topology.

Definition 5.1 (Mapping class group). The mapping class group of bg,p is

Mod(bg,p) := π0
�

Homeo+(bg,p, ∂
b
g,p)

�

.

Its elements are called mapping classes. If b = 0 we may also consider Mod±(bg,p) =

π0
�

Homeo±(bg,p, ∂
b
g,p)

�

, where Homeo± is the set of diffeomorphism preserving {q1, . . . ,
. . . , qp} but possibly reversing the orientation.

Remark 5.2. By definition a mapping class must be the identity on ∂bg,p but may permute
the punctures q.

Exercise 5.3. Prove that Mod(10,0) = Mod(
0
0,1) = Mod(

0
0,0) = {d}.

Example 5.4 (Dehn twist in the annulus). Let us parametrize the oriented annulus 20,0 as
([−1,1] × [0,2π]) / ∼ where (, θ) = (y, θ′) ⇐⇒  = y nd θ − θ′ ∈ 2πZ. The right handed
Dehn-twist is the class in Mod(20,0) of the diffeomorphism T(, θ) = (, θ − π( + 1)).

Exercise 5.5. Prove that Mod(20,0) = Z and that a generator is the right handed Dehn-twist.

Lemma 5.6. Let cg′,p+e be an oriented surface containing p + e marked points {p1, . . . pp,

q1, . . . qe} and let  : bg,p → cg′,p+e be an embedding sending the marked points of bg,p
to the points {p1, . . . pp} and such that {q1 . . . , qe} ∩ (bg,p) = ∅. Then there is an induced

morphism ∗ : Mod(bg,p)→ Mod(cg′,p+e).

Proof. Each diffeomorphism and isotopy relative to ∂bg,p ∪ {p1, . . . , pp} can be extended via

the identity on cg′,p+e \ (
b
g,p). 5.6

Remark 5.7. Remark that we make no requirement on the image through  of the boundary
components of bg,p.

Definition 5.8 (Dehn twist). Let c ⊂ bg,p be a simple closed curve in the complement of the

marked points of bg,p. and let  : A→ ng,p be an embedding of an oriented annulus such that

({0}×S1) = c. The right handed Dehn-twist along c is ∗(T) where T was defined in Example
5.4.

Remark 5.9. By unicity up to isotopy of the regular neighborhood of c the definition does
not depend on the choice of .

Recall that H1(bg,p;Z) is equipped with a Z-valued antisymmetric bilinear form (·, ·) given
by the algebraic intersection number of closed oriented curves.

Exercise 5.10. Prove that (·, ·) is degenerate iff p + b > 1.

By an abuse of notation we shall denote by Sp(H1(bg,p;Z)) the groups of automorphisms

of the abelian group H1(bg,p;Z) preserving the bilinear form (·, ·). Clearly, the natural action

of Mod(bg,p) on H1(bg,p;Z) induces a morphism h∗ : Mod(bg,p)→ Sp(H1(bg,p;Z)).

Exercise 5.11. Show that h∗ is not surjective if b > 0.
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When b > 0 plenty of exceptional cases occur and should be taken care of. So from here
on we will often suppose that b = 0, unless the proofs and statements do not require special
adaptation to the case b > 0. Hence we will write simply g,p for 0g,p.

Proposition 5.12. For 1,0 and 1,1 h∗ is an isomorphism.

Proof. We give a very sketchy proof. Let us parametrize  as [0,1] × [0,1]/ ∼ where (, y) ∼
(′, y′) ⇐⇒  − ′ ∈ Z nd y − y′ ∈ Z, and if p = 1 set p1 = (

1
2 ,

1
2 ). Observe that Sp(H1) =

SL2(Z) which is known to be generated by the following two matrices :
�

1 1
0 1

�

,
�

0 1
−1 0

�

.

Furthermore these matrices can be easily realized by two diffeorphisms of  : namely respec-
tively ƒ (, y) = ( + y, y) and g(, y) = (−y, ) (in the case p = 0, while for p = 1 one should
be a little more careful when writing ƒ in order to avoid moving p1). Thus we are left to prove
injectivity. Observe that in 00,p each primitive homology class is represented by exactly one

connected, oriented simple closed curve in 00,p. This implies that if ϕ ∈ Mod() is such that
∗(ϕ) = d then up to isotopy we can suppose that ϕ(,0) = (,0) and also ϕ(0, y) = (0, y).
But then ϕ is isotopic to the identity because it is induced by a mapping class in the disc (if
p = 0) or in the punctured disc (if p = 1). 5.12

More in general the following holds (for a proof see Theorem 6.4 in [18]) :

Theorem 5.13. ∀g, p the homomorphism h∗ : Mod(g,p)→ Sp(H1(g,p;Z)) is surjective.

Definition 5.14 (Torelli group). The Torelli group is Tor(bg,p) := ker(h∗).

5.2. Nielsen Thurston classification of diffeomorphisms.

Recall that Mod(T 2) = SL(2;Z), and let M 6= d ∈ SL(2;Z). Clearly det(M) = 1 and the following
three cases are possible :

• | tr(M)| ≤ 2 : in this case M represents an elliptic isometry of the hyperbolic plane H2.
Furthermore the order of M can be only 2,3,4 or 6 (exercise!). So M is periodic.

• | tr(M)| = 2 : in this case M represents a parabolic isometry of H2 and there is a rational
eigenvector of M with eigenvalue ±1 : representing it by coprime integers, we get a
simple closed curve in T 2 preserved by M. Thus M is said to be reducible.

• | tr(M)| > 2 : in this case M represents a hyperbolic isometry of H2. In this case there
are two distinct eigenvectors one with eigenvalue λ s.t. |λ| > 1 (“dilatating") and one
with eigenvalue λ−1 (“contracting"). This gives two transverse foliations in T 2 which
are kept invariant by M. In this case we say that M is Anosov.

The above classification actually has been generalized by Thurston to all punctured surfaces.
In order to do so let us fix the following :

Definition 5.15 (Singular foliation of g,p). 1. A singular foliation of g,p is a smooth
foliation of the complement of finitely many “singular points" {1, . . . , k} ⊂ g,p such
that for each point  or pj there exists a local smooth chart of g,p around the point
in which the foliation is the pre-image of the horizontal foliation of R2 = C (i.e. the
foliation by the lines y = h) by the map z →

p
zr for r ≥ 3 (or, around the punctures

also r = 1 is allowed) : see Figure 5.1. (Here define
p
z by cutting along the negative

real axis : the preimage of the horizontal foliations is easily seen to be a smooth out
of the origin.)

I–11



Francesco Costantino

Figure 5.1: The local structure of a singular foliation around a puncture (on
the left hand side) and around a singular point (in the right hand side, corre-
sponding to the case r = 3 in Definition 5.15).

2. Given a singular foliation F on g,p, a transverse arc is a smooth path c : [0,1] → g,p
which is everywhere transverse to F (and in particular avoids the singular points); an
isotopy of transverse arcs is an isotopy among transverse arcs such that the endpoints
of the arcs are moved along the leafs of F they are initially contained in. Let A be the
set of transverse isotopy classes of arcs.

3. Given a singular foliation F on g,p, a transverse measure is a map μ : A → R+ which
is additive by concatenation of smooth transverse arcs and which is locally absolutely
continuous with respect to the measure |dy|. (More explicitly if α : [0,1] →  is a
smooth arc transverse to a singular foliation F and whose support is contained in a
local chart with values in R2 with coordinates (, y) in which the leaves of F are of the
form y = constnt then μ(α) = |

∫ 1
0 (y(α(t)))

′ dt| = |y(α(1))− y(α(0))|. More in general,
if the image of α is not contained in a local chart as above, one first cuts α into small
pieces having this property and then sums their contributions up to compute μ(α).

4. A homeomorphism ƒ̃ acts on a measured singular foliation (F, μ) by

ƒ̃ (F, μ) := (ƒ̃ (F), ƒ∗(μ))

where ƒ∗(μ)(c) = μ(ƒ−1(c)). )

Definition 5.16. A class ƒ ∈ Mod(g,p) is periodic if ∃k > 0 such that ƒ k = d ∈ Mod(g,p). It
is reducible if there exists a family c1, . . . ck of pairwise disjoint oriented simple closed curves
(each not bounding discs or once punctured discs) such that ƒ (c) = c (up to isotopy). We say
that ƒ is pseudo-anosov if there exist a representative ƒ̃ of the class ƒ and two transversally
measured singular foliations (F± , μ±) such that ƒ̃ (F±) = F± and a constant λ > 1 such that
ƒ̃ (F±) = F± and ƒ̃∗(μ±) = λ±1μ± .

There are plenty of good references for the following fundamental result among which we
mention [26] Theorem 0.1, [18] Theorem 13.1, or [17]:

Theorem 5.17 (Nielsen-Thurston classification of self-diffeomorphisms of surfaces). Let ƒ ∈
Mod(g,p) then there exists a finite family of disjoint simple closed curves c1, . . . cn such that
for each component S of g,p \ (c1 ∪ · · · ∪ cn), letting k be the least positive integer such that
ƒ k (S) = S then (ƒ |S )k is either a periodic or a pseudo-Anosov self-diffeomorphism of S.

5.3. Generalities on group cohomology and central extensions

In this subsection we rapidly recall some basic facts about group cohomology and central
extensions we will use in the next subsection. The expert reader may just skip it. For full
details on group cohomology and its relation to group extensions, the interested reader may
consult [10].
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Suppose that we have a morphism ρ from a group G into a quotient of a group S by its
center Z. We would like to lift it to a morphism ρ′ : G → S. To do so we could fix a system
of generators of G and choose arbitrarily lifts ρ′(g) of ρ(g). For this to provide a morphism
the relations of G should be satisfied; this is in general not possible. In particular let’s fix
the whole G as the set of generators and as set of relations consider those of the form
R = {(g1g2)g

−1
2 g−11 , g1, g2 ∈ G}. In order to find a lift ρ′ we must be able to find ρ′(g) so

that ρ′(g1g2)ρ′(g2)−1ρ′(g1)−1 = 1 ∈ Z. So observe that if we pick an arbitrary lift then the
maps C(g1, g2) := ρ′(g1g2)ρ′(g2)−1ρ′(g1)−1 give a map C : R → Z. Furthermore observe
that for each three-tuple (g1, g2, g3) ∈ G3 it will automatically hold that the product of the
values of C on the boundary of the tetrahedron whose faces are formed by the triangles
associated to the relations c(g2, g3), c(g1g2, g3)−1, c(g1, g2g3), c(g1, g2) is 1 ∈ Z. More ex-
plicitly, the reader may prove as an exercice that the following 2-cocycle condition holds :
c(g2, g3)c(g1g2, g3)−1c(g1, g2g3)c(g1, g2)−1 = 1. This says that the map C is a “two cycle"
for G with coefficients in Z (seen as a trivial G module):

Definition 5.18 (Group cohomology). Let G be a group, Z be an abelian group which is a
G module and for each n ≥ 1 let Cn(G;Z) = {c : Gn → Z}. Let δn : Cn → Cn+1 be defined as
follows :

δ(c)(g1, . . . , gn+1) = g1 · c(g2, . . . gn+1) +
n
∑

=1

(−1)c(g1, . . . , g−1, gg+1, g+2, . . . , gn+1)+

+(−1)n+1c(g1, . . . , gn)

where we use additive notation. It turns out that δn+1 ◦ δn = 0 ∀n, so one defines Zn(G;Z) =
ker(δn), Bn(G;Z) = m(δn−1) and Hn(G;Z) = Zn(G;Z)/Bn(G;Z).

Observe furthermore that if we replace ρ′(g) with zρ′(g) and ρ′(g1g2) by z12ρ′(g1g2)
then C(g1, g2) gets multiplied by z12z

−1
2 z−11 and this is precisely a one coboundary in the

above cohomology (where we are using multiplicative notation). So the question we would
like to ask is whether up to changing simultaneously the map C in all its components by
a one-coboundary as above we can reduce it to the map c(g, gj) = 1, ∀g, gj ∈ G, which
cohomologically translates to whether the 2-cohomology class represented by [C] is trivial
or not.

This shows that the obstruction to lift ρ to a representation into S is a cohomology class
[C] ∈ H2(G;Z).

Stated differently, given a 2-cocycle with values in Z we can define a central extension G̃
of G by setting (g1,1) · (g2,1) := (g1g2, c(g1, g2)). The associativity of the product is assured
by the above 2-cocycle condition :

�

(g1,1)(g2,1)
�

(g3,1) = (g1g2g3, c(g1, g2)c(g1g2, g3)) =(5.1)

(g1g2g3, c(g2, g3)c(g1, g2g3)) = (g1,1)
�

(g2,1)(g3,1)
�

.(5.2)

The projection on the first factor π : G̃ → G has kernel given by the elements of the form
(1, z), z ∈ Z and is thus central. We finally have the following exact sequence 1 → Z →
G̃ → G → 1 and it turns out that two sequences are isomorphic iff they are associated to
cohomologous cocycles. In particular the sequence splits iff we can lift ρ.

5.4. The Maslov index and the Meyer cocycle

In our case we shall associate a cocycle to G = Mod(g) with coefficients in Z known as the
Meyer cocycle (see [46] Chapter 3 or [22] for more details). We remark (but we will not use
this in what follows) that Harer proved that H2(Mod(g);Z) = Z for all g ≥ 3. To define the
cocycle let us first define what the Maslov index is :

Definition 5.19. The Maslov index of three lagrangian subspaces L,  = 1,2,3 of H1(g;Q)
is the integer μ(L1,L2,L3) defined as the signature of the bilinear symmetric form � on
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(L1 + L2) ∩ L3 defined by (1 + 2) � (b1 + b2) = 2 · b1. (Here , b ∈ L for  = 1,2, and
1 + 2, b1 + b2 ∈ L3, and · denotes the symplectic intersection form.)

Exercise 5.20. Prove that the above defined form is well defined and symmetric. (Hint: use
the fact that L are lagrangian.)

The following is a key property of the Maslov index :

Lemma 5.21 ([46], Lemma 3.6). The Maslov index changes sign under an odd permutation
of the three lagrangians. Furthermore if L,  = 1, . . .4 are lagrangian subspaces of H1(g;Q)
and ƒ ∈ Mod(g) is any mapping class then it holds :

μ(L1,L2,L3) − μ(L1,L2,L4) + μ(L1,L3,L4) − μ(L2,L3,L4) = 0(5.3)

μ(L1,L2,L3) = μ(ƒ∗(L1), ƒ∗(L2), ƒ∗(L3)).(5.4)

Definition 5.22. • An extended surface is a pair (g,L) where L ⊂ H1(g;Q) is a la-
grangian subspace with respect to the intersection form in homology.

• An extended mapping class is a pair (ƒ , n) ∈ Mod(g) × Z.

Fix an extended surface  := (g,L1) and let àMod(g) be the set {(ƒ , n)|ƒ ∈ Mod(g) × Z}
with the following operation :

(5.5) (g,m) · (ƒ , n) = (g · ƒ , n +m − μ(ƒ∗(L),L, g−1∗ (L))

where by ƒ∗, g∗ we mean the morphisms induced on homology by ƒ and g.

Lemma 5.23. The above defined operation endows àMod(g) of a group structure which is a
Z-central extension of Mod(g).

Proof. By the preceding general discussion it is sufficient to prove that c(g, ƒ ) := −μ(ƒ∗(L),L,
g−1∗ (L)) is a Z-valued 2-cocycle. This (in additive notation) is the 2-cocycle condition on three
classes ƒ , g, h ∈ Mod(g) :

−μ(ƒ∗(L),L, g−1∗ (L)) + μ((ƒ · g)∗(L),L, h
−1
∗ (L))+(5.6)

−μ(ƒ∗(L),L, (g · h)−1∗ (L)) + μ(g∗(L),L, h
−1
∗ (L)) =(5.7)

−μ(g∗ƒ∗(L), g∗(L),L) + μ(h∗g∗ƒ∗(L), h∗(L),L)+(5.8)

−μ(h∗g∗ƒ∗(L), h∗g∗(L),L) + μ(h∗g∗(L), h∗(L),L) =(5.9)

−μ(h∗g∗ƒ∗(L), h∗g∗(L), h∗(L)) + μ(h∗g∗ƒ∗(L), h∗(L),L)+(5.10)

−μ(h∗g∗ƒ∗(L), h∗g∗(L),L) + μ(h∗g∗(L), h∗(L),L) = 0(5.11)

where we used equivariance of the Maslov index and in the last equality we applied Lemma
5.21.

5.23

6. The skein module and Reshetikhin-Turaev invariants

In this section we defined the Kauffman skein module S(M) of a 3-manifold M and its “rational
versions" SQ(M) and SA0 (M) needed to properly use the Jones-Wenzl idempotents. We then
define the reduced skein module SredA0

(M) and prove a result allowing to “do skein calculus"

directly in SredA0
(M). We then define the Reshetikhin-Turaev invariants of a three-manifold and

prove that they are indeed invariants. We conclude by proving the Verlinde formula.
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=  A  + A
–1

=  –A –A
2 –2

Figure 6.1: The Kauffman bracket relations.

6.1. The Kauffman module

Recall that a framing for a link L in a 3-manifold M is a non-zero vector field defined along
L which is always transverse to L, seen up to isotopy. A link is framed if it is endowed with
the choice of a framing. The Kauffman skein module of an oriented 3-manifold M (introduced
independently by Przytycki [38] and Turaev [47], see also [31]) is the Z[A±1]-module S(M)
generated by all isotopy classes of framed links in M, modulo the Kauffman bracket relations
shown in Fig. 6.1. An element of S(M) is called a skein.

Proposition 6.1 ([38], Theorems 2.3 and 3.1, or [6] Proposition 1.1).

1. Let M = g × [−1,1] then S(M) is free Z[A±1]-module generated by the multicurves
in g × {0} (i.e. possibly empty disjoint unions of simple closed curves none of which
bounds a disc in g).

2. One can define a non-commutative, associative product on S(g × [−1,1]) via  ·b :=
[∪b] where in ∪b one first pushes  by isotopy near g×{1} and b near g×{−1}.

3. If  : M ,→ N is an embedding then there is an induced map ∗ : S(M) → S(N). Further-
more if N \ (M) is a union of 3-balls then ∗ is an isomorphism.

Proof. 1). The idea of the proof is to use the fact that each framed link L can be represented
by a diagram with crossings (as above) in g and that any two such diagrams are related
by a finite sequence of “Reidemeister moves". Then to check that if one applies first all the
desingularizations to a diagram of L and then replaces all the trivial components by factors
−A2− A−2 then the result does not depend on the initial diagram of L. This provides a normal
form for every equivalence class in S(g × [−1,1]). 2). The associativity of the product can
be easily verified by observing that

g × [−1,1] ' g × [0,3] ' (g × [0,1]) tg×{1} (g × [1,2]) tg×{2} (g × [2,3]).

3). The first statement is obvious. For what concerns the second statement : surjectivity is
due to the fact that every framed link in N is isotopic to one into (M); injectivity comes from
the fact that any isotopy between two links in (M) can be supposed to avoid the balls of
N \ (M). 6.1

Remark 6.2. When A = −1 the algebra structure one gets on S(g×[−1,1]) is commutative:
it turns out that this algebra is isomorphic to the algebra of regular functions on the space of
representations of π1(g) into SU(2) up to conjugation (see [11], [12]).

Corollary 6.3 (Kauffman [27]). The spaces S(S3) and S(D2 × [0,1]) are spanned by the
class of the empty link.
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Figure 6.2: The Kauffman bracket skein module S(M) of the cylinder with 2n
marked points: here n = 4 (left). The space S(M) is an algebra generated by
the elements 1, e1, . . . , en−1: here we draw e2 (right).

Proof. Embed S2 × [−1,1] into S3, then observe that two framed links in S2 × [−1,1] are
isotopic iff they also are isotopic in S3. Then S(S2 × [−1,1]) = S(S3) and we can apply the
preceding proposition and conclude by observing that the only multicurve in S2 is the empty
one. The proof for S(D2 × [0,1]) is similar. 6.3

Corollary 6.4 ([38] Theorem 3.13). Let A = S1 × [−1,1] × [−1,1]. Then S(A) is the free
commutative Z[A±1] algebra generated by the framed knot z = S1 × {0} × {0} framed by a
vector field tangent to S1 × [−1,1] × {0}: so S(A) = Z[A±1, z].

In other words every skein in S(S3) is equivalent to k ·∅ for a well-defined complex number
k, which is the evaluation of the skein. In order to compute the scalar k associated to each
skein s in S(S3) or S(D2) a full set of computational rules has been set up, now known as
“skein theory" or “recoupling theory". The following section is devoted to recalling the basic
objects of this theory.

6.2. The Jones-Wenzl projectors, SQ and SA0

We define the quantum integers

[n] =
A2n − A−2n

A2 − A−2
= A−2n+2 + A−2n+6 + . . . + A2n−6 + A2n−2

and note that [n] is a Laurent polynomial in A whose zeroes are contained in the set S of
roots of unity different from ±1,±. Therefore these polynomials have non-zero evaluations
at all the complex numbers which are non-zero and do not belong to S. In what follows, given
a 3-manifold M we will need to be able to divide by some set of quantum integers [n] the
elements of S(M); this can be done in two possible ways :

1. we may set SQ(M) := Q(A)⊗Z[A±1] S(M); then SQ(M) is a Q(A)-vector space and we can
divide by any Laurent polynomial in A;

2. or we may fix a value A0 of A which is not a zero of any [n] in our set and then consider
the C-vector space SA0 (M) := C ⊗Z[A±1] S(M) (where C is seen as Z[A±1]-module via
the evaluation at A0).

Remark 6.5. When considering SQ(M) we may also see it as a Z[A±1]-module which contains
S(M) as the submodule of the elements of the form 1⊗s, s ∈ S(M). We will call these elements
the integral elements of SQ(M).

The reason why we will need to divide by [n] is given by the definition of the Jones-Wenzl
projectors which we now recall.

There is a natural boundary version of the skein module. Let M be an oriented manifold
with boundary and ∂M contain some disjoint oriented segments as in Fig. 6.2-(left). The skein
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Figure 6.3: The (n + 1)th Jones-Wenzl projector is defined recursively with this formula.

module S(M) is then defined as above by taking framed links and rectangles intersecting ∂M
in those segments.

For instance, we may take M to be a cylinder [0,1] × [0,1] × [−1,1] with 2n segments as
in Fig. 6.2-(left) (so that the endpoints of the strands have coordinates of the form (∗,0,±1)).
Cylinders can be stacked over each other, and hence S(M) and SQ(M) have natural algebra
structures (called the Temperly-Lieb algebra and often denoted Tn) whose multiplicative iden-
tity element is the skein 1 shown in Fig. 6.2-(centre). We define the elements e1, . . . , en−1 as
suggested in Fig. 6.2-(right): it is easy to prove that S(M) (resp. SQ(M)) is generated as a
Z[A±1]-algebra (resp. Q(A)-algebra) by the elements 1, e1, . . . , en−1.

The n-th Jones-Wenzl projector ƒn ∈ SQ([0,1] × [0,1] × [−1,1],2n) defined inductively as
in Fig. 6.3. It satisfies the following remarkable properties [32, Lemma 2]:

(6.1) ƒn ◦ ƒn = ƒn, ƒn ◦ e = e ◦ ƒn = 0 ∀.

So ƒn is a projector which “kills” the skeins with short returns like the e’s. Let n be the ideal
generated by e1, . . . , en−1: it follows from the recursive definition that

ƒn = 1 + n for some n ∈ n.

Let nowˆ: SQ([0,1]×[0,1]×[−1,1],2n)→ SQ([0,1]×[0,1]×S1) be the map which associates
to each skein in SQ([0,1] × [0,1] × [−1,1],2n) its trivial closure (i.e. the skein in the annulus
obtained by identifying (, y,1) ∼ (, y,−1), ∀, y ∈ [0,1]).

Exercise 6.6. Let Tn := ƒ̂n; using Corollary 6.4 observe that there is a Q(A)-algebra structure
on SQ([0,1] × [0,1] × S1) . Prove that it holds Tn · T1 = Tn+1 + Tn−1, ∀n ≥ 1. Conclude that
Tn ∈ S([0,1] × [0,1] × S1) i.e. it is an integral skein (see Remark 6.5).

Definition 6.7 (Colored Jones polynomials). The nth colored Jones polynomial of a framed
link L ⊂ S3 is the element of S(S3) = Z[A±1] represented by cabling the link L with the
element Tn ∈ S([0,1] × [0,1] × S1) defined in Exercise 6.6.

Exercise 6.8. Prove that if L is a framed link in S3 then for each n the nth colored Jones
polynomial of L is indeed a Laurent polynomial.

For the following exercice, recall that if k ⊂ S3 is an oriented knot, then there exists a
oriented surface whose boundary is k, called the Seifert surface. The intersection of a Seifert
surface with the boundary of a regular neighborhood of k (which is a torus T2) is a simple
closed curve λ, parallel to k and providing the so called “Seifert framing" for k. It turns out
that the homology class [λ] ∈ H1(T2;Z) does not depend on the choice of the initial Seifert
surface.

Exercise 6.9. Prove by recurrence that if  is the unknot in S3 framed by its Seifert framing

then Jn() = (−1)n[n + 1] where [k] := A2k−A−2k
A2−A−2 .

I–17



Francesco Costantino

6.3. Ribbon graphs

The Jones-Wenzl projectors can be used to define skeins associated not only to links but also
to graphs in a simple combinatorial way. A ribbon graph Y ⊂ M is a 3-valent graph with a
two-dimensional oriented thickening considered up to isotopy (it is the natural generalization
of a framed link). Given A0 ∈ C∗ let r(A0) := mn{r > 0|[r]A0 = 0} and let M be a compact
oriented three manifold.

Definition 6.10 (Coloring, A0-definable and A0-admissible coloring).

• A coloring on a ribbon graph Y ∈ M is the assignment of an integer (color) to each edge
of Y so that the three numbers , b, c coloring the edges adjacent to any vertex satisfy
the following conditions:  + b + c ∈ 2N, and  + b − c ≥ 0, b + c −  ≥ 0, c +  − b ≥ 0.

• Given A0 ∈ C∗ we say that the coloring is A0-definable if the color of each edge is
≤ r(A0) − 1.

• Given A0 ∈ C∗ we say that the coloring is A0-admissible if the color of each edge is
< r(A0) − 1 and  + b + c ≤ 2r(A0) − 4 (where , b, c are as above).

Remark 6.11. The terminology “A0-definable" and “A0-admissible" coloring appear in this
text for the first time : let’s explain their meaning and origin. As already stated, if A0 is
not a parameter but a complex number, then in order to divide by [n]! one needs to make
sure that this coefficient is non-zero. This can happen only if A0 is a root of unity and in
this case iff n ≥ r(A0). So the definition of the Jones-Wenzl idempotents containing at least
one color greater than or equal to r(A0) + 1 makes no sense in this case. The set of “A0-
definable" colorings is exactly the set of colorings in which only correctly defined Jones-
Wenzl idempotents are used (i.e. colors ≤ r(A0)). Still, in the litterature a strictly smaller
set of colorings is commonly used as a set of “colorings" when A is a root of unity: this is
the set of what we call “A0-admissible" ones. This is related to Lemma 6.25 : some of the
“A0-definable" colorings encode elements of the skein modules which are null in the reduced
skein modules. We thus distinguish these two sets by our terminology.

The inequalities imposed on the colors around vertices allow to associate uniquely to a
coloring c on Y a skein Yc in SQ(M) and in SA0 (M) (if the coloring is A0-definable) as suggested
in Fig. 6.4. Indeed observe that the value at A0 of the quantum integer [n] is non-zero for
all n < r(A0) but [r]A0 = 0, and hence the evaluations at A0 of the Jones-Wenzl projectors
ƒ1, . . . , ƒr−1 are defined whereas that of ƒr is not, see Fig. 6.3. Therefore the values at A0
of the ribbon graphs are defined only when all colorings are smaller or equal than r − 1
(i.e. the coloring is A0-definable); otherwise, working in SQ(M) all the colored ribbon graphs
are defined. A framed link can be viewed as a colored ribbon graph without vertices whose
components are colored with 1.

Remark 6.12. An A0-admissible coloring is also A0-definable but the converse is false. Fur-
thermore in order to be able to associate an element of SA0 (M) to a colored ribbon graph we
only need to know that the coloring is A0-definable: for the moment we are not yet using the
definition of A0-admissible coloring.

Three basic planar ribbon graphs in S3 are shown in Fig. 6.5. Since SQ(S3) = Q(A), every
such ribbon graph provides a complex number which can be expressed as a rational function
in the variable A; these functions are typically expressed in terms of the quantum integers
[n].

We take from [31] and [37] (Theorem 1 and 2) the evaluations of the graphs , , and
. We recall the usual factorial notation

[n]! = [1] · · · [n]
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Figure 6.4: A coloring c on a ribbon graph Y determines a skein Yc ∈ SQ(M):
replace every edge with a projector, and connect them at every vertex via
non intersecting strands contained in the depicted bands. For instance there
are exactly  + j − k bands connecting the projectors  and k.

Figure 6.5: Three important planar ribbon graphs in S3.

with the convention [0]! = 1. Similarly one defines multinomial coefficients replacing stan-
dard factorials with quantum factorials:

�

n
n1, . . . nk

�

=
[n]!

[n1]! · · · [nk]!
.

When using multinomial coefficients we always suppose that n = n1+ . . .+nk. The evaluations
of , and are:

 = (−1)
[ + 1],(6.2)

,b,c = (−1)
+b+c
2

�

+b+c
2 + 1

�

!
�

+b−c
2

�

!
�

b+c−
2

�

!
�

c+−b
2

�

!

[]![b]![c]!
,(6.3)

a b
c
e
d

f

=

∏3
=1

∏4
j=1[� − 4j]

[]![b]![c]![d]![e]![ƒ ]!
×

min�
∑

z=mx4j

(−1)z
�

z + 1
z − 41, z − 42, z − 43, z − 44,�1 − z,�2 − z,�3 − z,1

�

.

(6.4)

In the latter equality, triangles and squares are defined as follows:

41 =
 + b + c

2
, 42 =

 + e + ƒ

2
, 43 =

d + b + ƒ

2
, 44 =

d + e + c

2
,

�1 =
 + b + d + e

2
, �2 =

 + c + d + ƒ

2
, �3 =

b + c + e + ƒ

2
.

The formula (6.4) for the planar tetrahedron was first proved by Masbaum and Vogel [37].
We note that the evaluations are rational functions with poles in S ∪ {0,∞}. It is actually
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easy to check from the definitions that the evaluation of any ribbon graph in S3 is a rational
function with poles contained in S ∪ {0,∞}. The following remark will be used often in what
follows :

Remark 6.13. Let A0 ∈ C∗ and , b, c ≤ r(A0) − 1 such that  + b + c ∈ 2N,  + b ≥ c, b + c ≥
, c+  ≥ b. If + b+ c < 2r(A0)− 2 then ,b,c is a rational function which has no pole at A0
and its value at A0 is non-zero. Otherwise it has a simple zero at A0.

6.4. Computing in skein modules

A colored ribbon graph gives an element of SQ(M) by cabling its edges by the Jones-Wenzl pro-
jectors as explained in the preceding section and connecting the strands around the vertices
in the unique planar way without self-retours. The following two theorems allow to compute
easily the value of the so obtained skein for any colored ribbon graph in SQ(S3) and to simplify
skeins in SQ(M) for any compact oriented three manifold.

Theorem 6.14 ([31] Chapter 7 Theorem 2 and Remark 10). Let M be a compact oriented
three manifold and s ∈ SQ(M). If s contains a portion as that in the left part of Figure 6.6
then s is also equal to the linear combination of skeins in SQ(M) which differ from s only in
the ball, as depicted ball in the right part of the same figure. This equivalence is also known
as Whitehead move and the coefficient of the ƒ th-summand in the figure is the quantum
6j-symbol, denoted:

�

 b c
d e ƒ

�

.

In particular, when c = 0 then  = b and d = e and applying the Whitehead move (after
rotating the picture by 90◦ degrees) one recovers the fusion rule depicted in Figure 6.7.

Remark 6.15. In the Whitehead move (and hence in the fusion move) the sum ranges over
all the finitely many values providing a coloring of the right-most graph (see Definition 6.10).

Theorem 6.16 ([37] Theorem 3). Let M be a compact oriented three manifold. The following
local equalities hold in SQ(M) for any admissible coloring:

=

c c

a

b

a

b

(-A)
(-c(c+2)+a(a+2)+b(b+2))/2

In particular if c = 0 then  = b and one has the following :

=
c c

(-A)
c(c+2)

Exercise 6.17. Draw your favorite framed knot in S3 and compute its nth colored Jones
polynomial by using the above two theorems and Formula (6.4).
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Figure 6.6: The Whitehead move: the summation is over all the admissible
colors (and is hence finite).

Figure 6.7: The fusion rule: it is a special case of the Whitehead move.

Exercise 6.18. Prove that if a colored ribbon graph Yc ⊂ S3 contains an edge colored by 
such that the complement of the arc is the disjoint union of two colored graphs Y′c′ and Y′′c′′ ,
then the following holds in S′

Q
(S3) :

a
= δ,0Y′c′ t Y

′′
c′′ .

Furthermore prove the same statement for A0 ∈ C∗ if all the colors are less than r(A0) and
considering Yc, Y′c′ , Y

′′
c′′ as skeins in SA0 (S3).

Solution 6.19. Apply iteratively Kauffman’s rule to the diagram of Y′c′ until it is reduced to a
linear combination of planar graphs. If  > 0 then each such graph must contain an arc whose
endpoints are on the same side of the th Jones-Wenzl projector coloring the disconnecting
edge, thus by Equation (6.1) it is 0. If  = 0 then Yc = Y′c′ t Y

′′
c” and the claim is evident.

For what concerns the last statement, remark that when working in SA0 (S3), the restriction
on the colors being less than r(A0)− 1 is needed in order for the colored ribbon graph to pro-
vide a well defined element of SA0 (S3) (the Jones Wenzl idempotents have zero denominators
for colors bigger than r(A0) − 1), but the argument is the same as above.
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Exercise 6.20. Prove that if a ribbon graph Y ⊂ S3 is the connected sum of two ribbon
graphs the following holds in SQ(S3) :

a

b

= δ,b
1

(−1)[ + 1]
Y′′c′′Y′c′

a

b

.

Furthermore prove the same statement for A0 ∈ C∗ if all the colors are less than r(A0) − 1
and considering Yc as a skein in SA0 (S3).

Solution 6.21. Operate a fusion along the two parallel edges and apply Exercice 6.18 to
conclude. To prove the statement in SA0 (S3), observe first that the restriction on the colors
being less than r(A0)− 1 is just in order for the colored ribbon graph to provide a well defined
element of SA0 (S3). Now remark that multiplying by (−1)[ + 1] the equality one gets an
identity in S(S3). Then passing it to SA0 (S3) one gets the thesis because [ + 1] 6= 0 at A0 as
 < r(A0) − 1.

Exercise 6.22. Let Yc ⊂ S3 be a colored ribbon graph containing three edges colored respec-
tively by , b, c such that the complement of their midpoints in a diagram of Yc has exactly
two connected components; let Y′c′ , Y

′′
c′′ be the colored ribbon graphs obtained by cutting Y

along these midpoints and glueing back two trivalent vertices (see the figure here below).
Let also dm(, b, c) be 1 if + b+ c ∈ 2N and + b ≥ c, + c ≥ b, b+ c ≥  and 0 else. Prove
that the following holds in SQ(S3) :

a

b

= dm(, b, c) ,b,c

a
b
c

a
b
c

= dm(, b, c) ,b,cY
′
c′ t Y

′′
c′′ .

Prove furthermore that, given A0 ∈ C∗, if all the colors are less than r(A0)− 1 and + b+ c <
2r − 2 then the same equality holds in SA0 (S3).

Solution 6.23. Apply one fusion to the  and b-colored edges and then apply the the result
of Exercise 6.4. To prove the statement in SA0 (S3) observe first that the restriction on the
colors being less than r(A0) − 1 is in order for the colored ribbon graph to provide a well
defined element of SA0 (S3). Then up to multiplying by the denominator of the fraction in
the equation in SQ(S3) one can reduce to an equation in S(S3) and in order to conclude it is
sufficient to check that the coefficients in the equation have non-zero evaluation at A0. This
is the case as a direct inspection to the formula providing , shows that under the condition
+ b+ c < 2r − 2 the evaluation of the rational function is nonzero and has no pole at A0.

6.5. The reduced skein module

We now consider the C-vector space SA0 (M) obtained by evaluating at a root of unity A0
distinct from ±1 and ±; recall that r = r(A0) ¾ 2 is the smallest integer such that A4r0 = 1 or,

equivalently, such that [r]A0 = 0. More explicitly A0 = exp(
πs
2r ) with (s,2r) = 1.

Definition 6.24. The reduced skein SredA0
(M) of a 3-manifold M is the quotient of SA0 (M) by

the relations that kill every skein containing a portion as in Fig. 6.8, i.e. by the subvector
space generated by colored graphs in M which are A0-definable but not A0-admissible.

The crucial point here is that by killing the skeins in Fig. 6.8 we do not affect the skein
module of S3: indeed every skein in S3 containing one of the portions in Fig. 6.8 is already
zero hence SredA0

(S3) = SA0 (S3) = C:

Lemma 6.25. If s ∈ SA0 (S3) is a skein containing one of the portions in Fig. 6.8 then s = 0.
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Figure 6.8: The reduced skein vector space SredA (M) is constructed by quo-
tienting SA0 (S) by the span of the elements containing one of these two
skeins. Concerning the right triple (, j, k), note that it is defined only when
, j, k ¶ r − 1, and that we quotient only by the three-uples (, j, k) with
 + j + k ¾ 2r − 2.

Proof. We give a sketchy proof and refer the reader to [34, Lemma 14.7] for details : the
skein can be represented as a skein in SA0 (D2), thus the statement is a local one. First of all
using the Kauffman relations express s as a linear combination of skeins in SA0 (D2) which are
planar outside the portion. Then if the portion is as in the left part of the figure then using
Equation (6.1) one sees that all the skeins in this combination which contain arcs whose
endpoints are in the same sides of the portion are zero (“no self-retour"). Thus s is a multiple
of an unknot colored by r(A0) − 1 whose evaluation is (−1)r(A0)−1[r(A0)] = 0. Similarly if the
portion is as in the right part of the figure, then s is a combination of planar skeins and each
time there is a self retour these graphs are zero (because of equation (6.1)). So s is actually
a multiple of the theta graph colored by , b, c whose evaluation is zero by Formula (6.3) (see
Remark 6.13). 6.25

It is important that however the statement of the lemma is not true for a general 3-
manifold.

Theorem 6.26 (Reduced skein rules). The statements of Theorems 6.14 and 6.16 remain
valid in SredA0

(M) provided one takes s ∈ SredA0
(M), lets the colorings of s′ vary over the r(A0)-

admissible colorings (recall Definition 6.10) and evaluates the coefficients in the formulas at
A = A0.

Proof. It is clear that the only change in the statement of Theorem 6.16 is to replace A →
A0 (there is nothing to prove as by hypothesis the coloring of s and hence of s′ is r(A0)-
admissible). The proof of the “reduced version” of Theorem 6.14 is more complicated; to
simplify the notation let from now on r = r(A0). Observe that if in Figure 6.6 one of , b, d, e is
0 the statement is true: there is only one term in the sum of the r.h.s. and it suffices to check
that its coefficient is 1; we leave this to the reader.

Now suppose that one of , b, d, e is 1, say  = 1. In this case c = b± 1 and ƒ = e± 1; there
are then four coefficients to compute:

�

1 b c
d e ƒ

�

=

f\c c=b-1 c=b+1

f=e-1 − [
1+e+d−b

2 ]
[e+1]

[ e+b+d+32 ][ e+b−d+12 ]
[e+1][b+1]

f=e+1 1
[ b+d−e+12 ]
[b+1]

One can check that these coefficients have no poles at A0 as e+1, b+1 < r (by hypothesis on
s). So all the terms of the Whitehead moves are evaluable at A0 and, after possibly deleting
the terms with ƒ = r − 1 (which are zero in SredA0

(M) by definition), one gets the claim.
Let’s now perform an induction on mn(, b, d, e); observe that if s contains an -colored

edge (so necessarily  < r − 1), then we can insert in the middle of it a bigon colored by
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b

d e

c =

1


 − 1b

d e

c =
∑

δ∈{±1}

1


 − 1

b

d e

c

c + δ �

1  − 1 
b c c + δ

�

=(6.5)

=
∑

δ,ε∈{±1}

1


 − 1

b

d e
e + ε

c + δ �

1  − 1 
b c c + δ

��

1 c + δ c
d e e + ε

�

=(6.6)

=
∑

ƒ

∑

δ,ε∈{±1}

1



 − 1

b

d e

e + ε

ƒ
�

1  − 1 
b c c + δ

��

1 c + δ c
d e e + ε

��

 − 1 b c + δ
d e + ε ƒ

�

=(6.7)

=
∑

ƒ

∑

δ,ε∈{±1}

b

d e

ƒ
�

1  − 1 
b c c + δ

��

1 c + δ c
d e e + ε

��

 − 1 b c + δ
d e + ε ƒ

�

×(6.8)

×
ƒ  − 1

e
1

e + ε

·











e

ƒ









−1

.(6.9)

Figure 6.9: The sequence of moves in SredA0
(M) or in SQ(M) used in the proof

of Theorem 6.26. Remark that both in SredA0
(M) and in SQ(M), ƒ ranges over a

finite set of values, but in the SredA0
(M) the set of values of ƒ can be smaller

than in the SQ(M) case.

 − 1 and 1 without changing the class of s in SredA0
(M); the same holds in SQ(M). Now we

apply twice the Whitehead moves to slide the 1-colored edge we just created first over the
-colored edge and then over the c-colored one. The sequence of moves we are applying is
depicted in the upper part of Figure 6.9. In the lower part we apply the induction hypothesis
to proceed. Finally in the last step of the computation we used the statement of Exercise 6.4.
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The argument now goes as follows : the above computation can be performed both in
SQ(M) or in SA0 (M); in SQ(M) for each fixed value of ƒ there will be 4-terms in the sum (ac-
cording to the values of δ, ε) ending with the coloring of s′ containing the color ƒ . In SA0 (M),
by induction, one drops all of these terms in which at least one of the graphs appearing in
the sequence of moves is nor r-admissibly colored (we will call this sequence a “dropped
sequence"). Collecting the terms associated to dropped and non dropped sequences we can
write:

�

 b c
d e ƒ

�

=
�

 b c
d e ƒ

�dropped

+
�

 b c
d e ƒ

�non dropped

∈ Q(A).

By induction one has immediately that s can be re-expressed as a linear combination of
admissible colorings on s′ (i.e. those for which ƒ ≤ r−2, ƒ ++d ≤ 2r−4 and ƒ +b+e ≤ 2r−4)
and we are left to check the following equality between the evaluations at A0 :

�

 b c
d e ƒ

�

A0

=
�

 b c
d e ƒ

�non dropped

A0

∈ C.

A direct inspection on Formula 6.4) shows the following:

1. If a colored tetrahedron (or theta graph or unknot) is A0-definable, the rational function

A ∈ Q(A) (resp. A or A ∈ Q(A)) has no pole at A0 and is zero if furthermore the
coloring is not A0-admissible.

2. If a colored theta graph is A0-admissible then the rational function A ∈ Q(A) has no
zero at A0. If it is A0-definable but not A0-admissible then it has a zero of order 1 at
A0 (see Remark 6.13).

3. As a consequence, using the expression of
�

 b c
d e ƒ

�

provided in Theorem 6.14, if

the colorings in the l.h.s. and r.h.s. of Figure 6.6 are both r-admissible the function
�

 b c
d e ƒ

�

has no pole at A0.

Then if ƒ ≤ r − 2, ƒ +  + d ≤ 2r − 4 and ƒ + b + e ≤ 2r − 4 both
�

 b c
d e ƒ

�

nd
�

 b c
d e ƒ

�non dropped

are evaluable at A0 and so also their difference,
�

 b c
d e ƒ

�dropped

is; in particular it has no

pole at A0. We are left to check that it has a zero there. The reasons why a term has been
dropped can be:

1. c + 1 = r − 1, so δ = 1 (dropped after the first Whitehead move);

2. c + 1 < r − 1 but e + 1 = r − 1, so ε = 1 (dropped after the second Whitehead move);

3. c + 1 < r − 1, e + 1 < r − 1 but d + c + e + 2 > 2r − 4, so δ = ε = 1 (dropped after the
second Whitehead move).

A direct computation using Formula (6.4) shows that the following holds:
�

1  − 1 
b c c + δ

��

1 c + δ c
d e e + ε

�

=

δ\ε ε = −1 ε = 1

δ = 1 − [
+b−c
2 ][ e+d−c2 ]
[][e+1]

[ +b−c2 ]
[]

δ = −1 [ +b+c+22 ][ −b+c2 ]
[c+1][]

[ d+e+c+22 ][ c+e−d2 ]
[e+1][c]

[ +b+c+22 ][ −b+c2 ]
[c+1][]

[ c+d−e2 ]
[e+1]
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so that this part of the coefficients have no pole at A0 as c, e ≤ r − 2 by the hypotheses
s ∈ SredA0

(M). So we need to prove that in each of the above cases, the remaining coefficient,
which is the product:

�

 − 1 b c + δ
d e + ε ƒ

�

·

(the tetrahedron and the theta graph being colored as in Figure 6.9) has a zero at A0.

Case 1. In this case
�

 − 1 b c + δ
d e + ε ƒ

�

= (see Figure 6.6 for the correct attribu-

tion of the colors to the symbols in the r.h.s.) contains a null numerator and its denominator
is the product of two non-zero theta graphs colored respectively by ƒ , b,  − 1 and ƒ , d, e + ε.
The term · −1 has no pole as both and are admissibly colored so they have no pole
at A0 and furthermore the is non zero (see points 1) and 2) in the above list of remarks).

Case 2. If c < r − 2 and e = r − 2 so ε = 1 the coefficient
�

 − 1 b c + δ
d e + ε ƒ

�

=

(where the graphs on the right are suitably colored) is the ratio of two functions which are
null at A0: indeed both the numerator and the denominator are null by Lemma 6.25 as they
contain an r − 1-colored edge; furthermore the denominator contains only a simple zero in
the evaluation of a theta-graph colored by e + ε = r − 1, ƒ ,  − 1. So the overall ratio can be
evaluated at A0 but maybe is non-zero. The coefficient −1 is null because of the term
which is zero as it contains a r − 1-colored edge and the term is non zero by the point 2)
in the above list of remarks.

Case 3. In this last case the coefficient
�

 − 1 b c + δ
d e + ε ƒ

�

=

(where the graphs on the right are suitably colored) is the ratio of two functions of which the
numerator is null at A0 by Lemma 6.25 but the denominator is non-zero as it is the product of
two theta graphs colored respectively by ƒ , − 1, b and ƒ , e+ ε, d which are both r-admissible
colorings (by recursion). Finally the last coefficient −1 can be evaluated at A0 as the
coloring of is r-admissible. 6.26

Theorem 6.26 is the key to perform all the skein calculus even at the level of the reduced
skein module SredA0

(M). We will apply it from now on without citing it systematically.

Proposition 6.27 ([33] Theorem at page 347). Let Hg be a handlebody of genus g and
 ⊂ Hg be a framed trivalent ribbon graph over which Hg collapses. Then the set {c} where
c ranges over all the A0-admissible colorings on  forms a basis for SredA0

(Hg).

Proof. Cut Hg along embedded discs dual to  in order to get a ball. By Theorem 6.26 every
skein in Hg intersecting Hg can be reduced via a sequence of fusions to a ribbon graph
intersecting the discs along a k-colored edge with k < r − 1. Once the skein intersects each
disc in a single point along an arc colored by a color in {0,1, . . . r − 2}, we are left to reduce
the remaining skein to a linear combination of colorings of . But then this is a computation in
B3 where it can be seen that every ribbon graph with three endpoints in ∂B3 colored by , b, c
is a multiple of the framed graph represented by a Y-shaped graph colored by , b, c. 6.27

Definition 6.28 (Kirby color). The rth- Kirby color is defined as follows :

Ω :=
r−2
∑

j=0

(−1)j[ j + 1]Tj ∈ SredA0
(A × [−1,1]).

where Tj is the j-colored core of the annulus (recall Exercise 6.6). If  : L ,→ S3 is a framed link
let JΩ(L) := ∗(Ω) ∈ SA0 (S3) = C (where we “color" each component by Ω).
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Ω Ω

Figure 6.10: The sliding move (or banded sum): the black strand is colored
by a color .

a>0

Ω 0

Figure 6.11: The encirclement lemma.

The following proposition is the key property of the Kirby color:

Proposition 6.29. Let M3 be a compact oriented three manifold and s be a skein containing
a Ω-colored component L and another component T colored by an admissible color  (see
Figure 6.10). Let also s′ be the skein obtained from s by replacing T with the band connected
sum of T and L colored by . Then s = s′ in SredA0

(M).

Proof. It is sufficient to prove the statement for  = 1 as the Jones-Wenzl idempotents are
linear combinations of colorings by parallel strands. To prove the equality apply a first fusion
using Theorem 6.26 (as in Figure 6.8) to connect T and L then undo the fusion “from the other
side of L": the fusion replaces T ∪ L by a trivalent graph which naturally contains a subgraph
formed by two segments (with disjoint interiors) s, s′ such that L = s∪ s′. The presence of the
coefficients in Ω =

∑r−2
j=0 (−1)

j[ j + 1]Tj coloring L allows to realize that the result of the fusion
is symmetric: making the fusion of the left part of Figure 6.10 on s has the same outcome
as making the fusion of the right part of the figure on s′. Let us detail how. To specify that
the color of s is c and that of s′ is c′ we write TscT

s′
c′ : so for instance the color of L before

the fusions is Ω =
∑r−2
j=0 (−1)

j[ j + 1]Tsj T
s′
j . After the fusion on s the colors of s and s′ are the

following :

r−3
∑

j=0

(−1)j[ j + 1]
(−1)j+1[ j + 2]

θ(j, j + 1,1)
Tsj+1T

s′
j +

r−2
∑

j=1

(−1)j[ j + 1]
(−1)j−1[ j]

θ(j, j − 1,1)
Tj−1Ts

′

j .

“Looking from the other side of L" boils down to consider s′ as the result of a fusion. So set
in the first sum j′ = j + 1 and in the second j′ = j − 1, then we get :

r−2
∑

j′=1

(−1)j
′−1[ j′]

(−1)j′ [ j′ + 1]

θ(j′ − 1, j′,1)
Tsj′T

s′
j′−1 +

r−3
∑

j=0

(−1)j
′+1[ j′ + 2]

(−1)j′ [ j′ + 1]

θ(j′ + 1, j′,1)
Tsj′Tj′+1

which is exactly the result of a fusion made on s′. Then we can undo the fusion. 6.29

Lemma 6.30 (Encirclement lemma, [31], Chapter 12 Lemma 22). If s ∈ S(M) is a skein
containing a Ω-colored 0-framed unknot then [s] = 0 ∈ SredA0

(M) if the disc bounded by the
unknot intersects s in exactly one point colored by a non-zero color (see Figure 6.11).
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Ω ΩA
6+4

Ω

3 3 3

Figure 6.12: An instance of the proof of the encirclement lemma: this is the
case when the color of the encircled strand is 3.

Proof. Suppose  > 0 and recall that “coloring by a color " means cabling a component
of the skein by a linear combination of parallel strands, with coefficients given by those
appearing in the construction of the th-Jones Wenzl idempotent. Applying Proposition 6.29
to one of these strands as shown in Figure 6.12 so that it loops around all the other strands
and applying Kauffman relations to all the crossings in the figure, we see that if there are
 strands in total then the so obtained skein is a linear combination of skeins all of which
contain at least one strand whose both endpoints are connected to the box representing the
Jones-Wenzl idempotent and of a single copy of the skein represented by all vertical strands,
whose coefficient is A6+2(−1). By Equation (6.1) the former skeins are zero, thus we get that
the equation depicted in Figure 6.12 and since  < r − 1 then A2(−1)+6 6= 1. This implies the
thesis. 6.30

6.6. The Reshetikhin-Turaev invariants

From now on we will fix r ≥ 3 and let A = A0 = exp(
sπ
2r ) with (s, r) = 11. If k is a framed knot

colored by n and kƒ is the same knot with a framing twisted ƒ times then by Theorem 6.16 it
holds Jn(kƒ ) = (−1)ƒnAƒn(n+2)Jn(k).

Exercise 6.31. Let 0 be the unknot and let D2 = JΩ(0) then it holds : D2 = r
2sin( πsr )

2 .

Solution 6.32. JΩ(0) =
∑r−2
j=0 [ j + 1]

2 = 1
(A2−A−2)2

∑r−2
j=0 A

4j+4 + A−4j−4 − 2 =

= 1
(A2−A−2)2 (A

4 A4r−4−1
A4−1 + A−4 A

−4r+4−1
A−4−1 − 2(r − 1)) = −2r

(2 sin( πkr ))
2
= r

2sin( πkr )
2
.

Proposition 6.33. Let ± be the unknot with framing ±1 colored by Ω and let JΩ(±)
the value of the skein it represents in S(S3). Then it holds JΩ(+) = JΩ(−) and JΩ(±) =
(1+s)p

2

�4r

s

�

A−r
2−2r−3D (where

�4r

s

�

∈ {±1} is 1 iff 4r is a quadratic residue modulo s and D

is the positive real number defined as in Exercice 6.31). In particular JΩ(±) = ρD where ρ is
a root of unity whose order divides 4r.

Proof. The first statement is a direct consequence of the fact that the skein evaluation of the
mirror image of a knot k is obtained by replacing A → A−1, i.e. [k]A = [k]A−1 ∈ S(S3), and A

1For the experts: this choice corresponds to working in the SU(2)-theory with p = 2r as opposed to setting
A = exp( sπp ) with p odd for the SO(3) theory
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here is a root of unity. We now prove directly the last claim:

JΩ(+) =
r−2
∑

j=0

(−1)jAj
2+2j[ j + 1]2 =

r−1
∑

j=1

(−1)r−1−jA(r−1−j)
2+2(r−1−j)[r − j]2 =(6.10)

=
1

2

r−1
∑

j=−(r−1)
(−1)r−1−jA(r−1−j)

2+2(r−1−j)[r − j]2 =
1

2

2r−1
∑

j=0

(−1)jAj
2+2j[ j + 1]2 =(6.11)

=
1

4

4r−1
∑

j=0

(−1)jAj
2+2j[ j + 1]2 =(6.12)

=
1

4(A2 − A−2)2

4r−1
∑

j=0

�

(−1)jAj
2+6j+4 − (−1)jAj

2+2j2 + (−1)jAj
2−2j−4

�

(6.13)

=
1

4(A2 − A−2)2

4r−1
∑

j=0

�

Aj
2+(6+2r)j+4 − 2Aj

2+(2r+2)j + Aj
2+(2r−2)j−4

�

(6.14)

=
A4−(r+3)

2
+ A−4−(r−1)

2 − 2A−(r+1)2

4(A2 − A−2)2

4r−1
∑

k=0

Ak
2
=
2A−r

2−5−2r − 2A−r2−2r−1

4(A2 − A−2)2

4r−1
∑

k=0

Ak
2
=(6.15)

=
−A−r2−2r−3

2(A2 − A−2)

4r−1
∑

k=0

Ak
2
=
−A−r2−2r−3

2(A2 − A−2)

�4r

s

�

(1 + s)
p

4r =(6.16)

=
−A−r2−2r−3

2 sin( πsr )

�4r

s

�

(1 + s)
p
r = −

�4r

s

� (1 + s)
p
2

A−r
2−2r−3D.(6.17)

Where we used the following facts : in the first equality we reparametrized the summation, in
the second we observed that the (r−1− j)th and the (r−1+ j)th term are equal and that [r] = 0;
the third is a reparametrization; in the fourth equality we observed that the jth-term and the
(j+2r)th are equal; in the sixth and in the following ones we used the fact that A2r = −1 many

times and finally we used the Gauss sum formula
∑4r−1
k=0 Ak

2
=
�4r

s

�

(1+ )
p
4r which holds as

soon as A = exp( πs2r ) with (s, r) coprime (see for instance [9], Theorem 1.5.4). 6.33

6.7. Some basic facts about surgery presentations and Kirby calculus

Let k ⊂ S3 be a knot and remark that the tubular neighborhood N(k) of k is well defined
up to isotopy and diffeomorphic do D2 × S1 (a solid torus). Yet such diffeomorphism is not
unique (not even up to isotopy) unless one fixes a framing on k. One canonical way of fixing
a framing on k is to use its Seifert framing, obtained as follows : 1) orient arbitrarily k and
choose a Seifert surface for it i.e. an oriented surface S ⊂ S3 such that ∂S = k (it is a nice
exercice to check that it exists); 2) the longitude of k is the unoriented curve λ = S ∩ ∂N(k)
(up to isotopy we can suppose λ to be a simple closed curve). Since ∂N(k) is a torus and λ
is a simple closed curve it can be checked that it is well defined up to isotopy in ∂N(k) and
thus it provides a well defined framing on k; furthermore if S′ is another Seifert surface for
k then the associated curve λ′ is isotopic to λ : indeed it holds [λ] = [λ′] ∈ H1(∂N(k);Z) (as
they both generate the kernel of the inclusion ∗ : H1(∂N(k);Z) → H1(S3 \ N(k);Z)) and two
homologous simple closed curves in a torus are isotopic.

Using the Seifert framing on k we can then fix an isotopy class of diffeomorphisms ϕ : D2×
S1 → N(k) by stipulating that ϕ({0}× S1) = k and ϕ({1}× S1) = λ. More in general if we pick
any other framing on k it will be obtained from the Seifert framing by “twisting" it an integer
number ƒ of times, i.e. by pre-composing ϕ with the self-diffeomorphism tƒ : D2×S1 → D2×S1

defined as tƒ (, θ) = (eƒθ, θ), ∀ ∈ D2,∀θ ∈ S1 (where we parametrize D2 as the unit disc
in C and S1 = [−π, π]/−π ∼ π). It can be checked that each framing on k is isotopic to one
obtained this way, so we can canonically speak of the “framing ƒ ∈ Z” on k. More in general,
if L ⊂ S3 is a framed link, one can identify its tubular neighborhood N(L) with D2 × S1 × π0(L)
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and for each component of L we have an integer telling us how many times the framing of
the component is twisted with respect to its Seifert framing.

Definition 6.34 (Surgery along a link). The 3-manifold obtained by surgery along a framed
knot k, denoted also S3k is

S3k :=
�

S3 \
◦
N(k)

�

tϕ N(k)

where ϕ : ∂N(k)→ ∂N(k) is the diffeomorphism defined by ϕ(θ,α) = (α,−θ),∀(θ,α) ∈ ∂D2×S1

(where we parametrize ∂D2 and S1 via [−π, π]/−π ∼ π) . More in general if L is a framed link,
S3L is obtained from S3 by simultaneously surgering over all the components of L.

Example 6.35. Let ƒ be the unknot in S3 equipped with the framing obtained by twisting
the Seifert framing by ƒ full twists. Then we have :

1. S3
0
= S2 × S1.

2. S3
1
= S3.

3. S3
2
= RP3 = L(2,1) = SO(3).

4. S3p = L(p,1), ∀p ∈ N, one of the so-called Lens spaces.

By the extension of isotopies, if L1 and L2 are two links in S3 which are isotopic, then S3L1
and S3L2

are diffeomorphic. Furthermore it is easy to check that if L1 and L2 are two framed

links in S3 which contained in two disjoint balls then S3L1tL2
= S3L1

#S3L2
, so that, by the above

example S3
L1t±1

= S3L1
. It is less evident to see that if L and L′ are two framed links in S3

which differ as in Figure 6.10 then S3L = S3L′ (forget about the colors of the components for
the purpose of this paragraph). We will not prove this statement, but the reader should think
that the manifold S3L is the boundary of the 4-manifold obtained from B3 by glueing some
2-handles D2 × D2 along N(L) ⊂ S3 = ∂B4. Then the claimed diffeomorphism corresponds
the fact that the manifolds obtained by surgery on L and L′ are the boundary of a same
4-manifold of which one is considering two handle decompositions which differ by a handle
slide.

As proved by Rokhlin [39] (see the extremely concise proof of this fact due to Colin Rourke
[42]), each closed oriented 3-manifold is the boundary of a 4-manifold as above, thus it
admits a surgery presentation. The above discussion also shows that such a presentation
is far from being unique, but it presents the list of basic “moves" which allow to relate any
two surgery presentations of a same manifold. The content of Kirby’s theorem on surgery
presentations of 3-manifolds is precisely to state that these moves are sufficient to relate
any two presentations (there are plenty of good references for understanding this theorem,
one instance is [25] Theorem 5.3.6 and the following comments):

Theorem 6.36. Let M be a closed, oriented 3-manifold. Then M can be presented as surgery
over a framed link L ⊂ S3 and if L, L′ are two links such that M = S3L = S3L′ then they can be
connected to each other via a finite sequence of the following modifications :

1. “blow up/down"-moves: consisting in replacing L↔ L t ±1 where ±1 is an unknot
with framing ±1 and contained in a ball disjoint from L;

2. “handle slides": depicted in Figure 6.10 (forget about the coloring of the components
for the purpose of this statement);

3. isotopies.
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6.8. Reshetikhin-Turaev invariants via surgery

We are now ready to state the main theorem defining Reshetikhin-Turaev invariants, for which
we will use the normalization defined in [7] Section 2.

Theorem 6.37 (Reshetikhin-Turaev). Let (M,T) be a closed oriented 3-manifold containing
a framed colored link T colored by a coloring c with values in {0,1, . . . r − 2}. Let L ⊂ S3 be
a m-components framed link presenting by surgery M (so that T ⊂ S3 \ L and M = S3L ) and let
(b+ , b−) ∈ N× N be the signature of the linking matrix of L. The following is an invariant up to
diffeomorphism of (M,T) :

RTr(M,T) := D−b0(M)−b1(M)
JΩ∪c(L ∪ T)

(JΩ(+))b+ (JΩ(−))b−
= D−b0(M)−mρ− sign(L)JΩ∪c(L ∪ T)

where ρ is the unit complex number defined in Proposition 6.33 and D the positive real
number defined in Exercice 6.31.

Remark 6.38. • If M is not connected then L is a set of links in S3 and JΩ(L) is the
product of the evaluations of each such links. Stated differently one can restrict to
b0(M) = 1 (i.e. M connected) and extend the above definition to non-connected mani-
folds multiplicatively.

• The formulation of the invariants we provided above is the same as that of the in-
variant denoted by 〈M〉2r in [7] section 2 (where we take the zero p1-structure). To
make the correspondence between the notations, compare the value of JΩ(+) given
in Proposition 6.33 with that of formula (∗) in [7] : our D is η−1 and our ρ is k3 in
[7]. This normalization differs from Reshetikhin-Turaev’s Theorem 3.3.3 in [43] : in our
definition RTr(S3) 6= 1.

Proof. We give a sketchy proof, we refer to [6] (Theorem B) and [7] Section 2 (for what
concerns the renormalization we chose) for details. By Kirby’s theorem two framed links in S3

presenting (M,T) by surgery can be connected by a finite sequence of handle slides, “blow
up/down" (corresponding to adding/removing a + or −) and isotopies. Invariance under
blow up/down is straightforward while under handle slide it is precisely the statement of
Proposition 6.29. Invariance under isotopy is automatic by the definition of the skein module
of S3. The last equality in the statement is a direct consequence of Proposition 6.33. 6.38

Remark 6.39. In the proof we actually used a stronger form of the theorem allowing the
presence of a non empty link T in M; this was already present in Reshetikhin-Turaev’s Theo-
rem 3.3 [43]. The necessary topological result allowing Kirby calculus in this case has been
proved by Justin Roberts [41].

Example 6.40. Observe that T may be empty and in that case it is easy to check that
RTr(M) = RTr(M).

1. RTr(S3) = D−1

2. RTr(S2 × S1) = 1.

3. If (M,T) = (M1, T1)#(M2, T2) where the sum is taken along a ball disjoint from T,
by taking presentations of (M, T) and putting them in disjoint balls in S3 we get a
presentation of (M,T) and a proof of the equality

RTr(M,T) =
RTr(M1, T1)RTr(M2, T2)

D
= RTr(S3)RTr(M1, T1)RTr(M2, T2).

Lemma 6.41. The following local identity holds in SredA0
(M) :
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i

Ω

i

i

i

D J(u)
-12

i

Proof. It is a consequence of the fusion rule in the reduced skein module (Theorem 6.26) and
of Lemma 6.30. 6.41

Proposition 6.42 (Verlinde formula). It holds

(6.18) RTr(g × S1) =
rg−1

2g−1

r−1
∑

j=1

1

sin( jπr )
2g−2

.

Proof. A surgery presentation of g × S1 is given by the following diagram (see for instance
[25] Section 6.1 and in particular Figure 6.4) :

where g copies of the “handles" are intended. Then applying to each handle twice Lemma
6.41 as follows we get :

Ω

Ω


= D2J()−1

Ω




= D4J()−2



So that repeating this procedure for all the handles, summing over all the colors  of the
central knot, and taking into account that Ω =

∑

 J()T then we get :

RTr(g × S1) = D(−1−2g−1)D4g
r−2
∑

=0

J()−2g+2 = D(2g−2)
r−2
∑

=0

J()−2g+2 =(6.19)

=
rg−1

2g−1 sin( πr )
2g−2

r−2
∑

j=0

sin( πr )
2g−2

sin( (j+1)sπr )2g−2
=
rg−1

2g−1

r−1
∑

j=1

1

sin( jπr )
2g−2

(6.20)

where in the last equality we used the hypothesis (s, r) = 1 to reorder the terms. 6.42

Remark 6.43. Although it is absolutely not evident from Formula (6.18), RTr(g × S1) are
always natural numbers! Here are some examples :

RT5(2 × S1) = 20, RT5(3 × S1) = 120, RT6(3 × S1) = 35, RT6(3 × S1) = 329...
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The interested reader may consult Don Zagier’s paper [50] on the Verlinde formula to find
many striking identities about it.

7. Extending RTr to a TQFT.

In this section we apply the universal construction to the Reshetikhin-Turaev invariants to get
a TQFT. After a first failed attempt we will modify our category Cobn by decorating suitably
the surfaces and provide a proof that one has a TQFT for this new category.

7.1. A negative result

According to the integrality of Formula (6.18) one may hope that the invariants RTr are
actually the phenomenon of the existence of an underlying TQFT. But if one applies the
universal construction to Cob3 he gets the following negative result :

Theorem 7.1 (Gilmer-Wang,[24]). If r ≥ 3 the result of the universal construction applied
to the invariants RTr is not a TQFT as the vector space associated to a torus is not finite
dimensional.

Proof. Fix a copy of T2 embedded in the standard way in S3. We will exhibit manifolds Z,  ∈ N

bounded by T 2 from the inside (i.e. elements of V2r(T2)) and Wj, j ∈ N bounded by T2 from
the outside (i.e. elements of V′r(T

2)) indexed by the natural numbers and show that the N×N

matrix whose (, j)th entry is RTr(Wj◦Z) has infinite rank thus proving the thesis. Let Z be the
manifold obtained by surgery along the 4r-framed core of the “inside solid torus" bounded
by T2. And let Wj be the manifold obtained by surgery along the link formed by 4rj parallel
(and unlinked) copies of the core of the “outside solid torus" each of which is framed by +1.
A surgery presentation of Wj ◦Z is then given by a link with 4rj+ 1-components. Applying 4rj
times an inverse Kirby move of the first type we may reduce to a presentation with only one
unknot with framing 4r( − j). Thus, using Proposition 6.33, Exercise 6.31 and the fact that
A4r = 1 we get if  > j:

RTr(Wj ◦ Z) =
D−1−δ,j

JΩ(+)

r−2
∑

k=0

(−1)kA−k(k+2)4r(−j)
sin( πkr )

2

sin( πr )
2
=
D1−δ,j

JΩ(+)

and if  < j a similar computation gives RTr(Wj ◦ Z) = D
JΩ(− )

. Finally if  = j then we get 1.

Since |JΩ(−)| = |JΩ(+)| = D and JΩ(−) = JΩ(+), letting ρ = |JΩ()|
JΩ(− )

(ρ turns out to be a root of
unity depending on r and different from 1) we see that the overall matrix M,j := RTr(Wj ◦ Z)
is then:

(7.1) M =













1 ρ ρ ρ · · ·
ρ−1 1 ρ ρ · · ·
ρ−1 ρ−1 1 ρ · · ·
ρ−1 ρ−1 ρ−1 1
· · · · · · · · · · · ·













.

Then Gilmer and Wang show that letting M be the  × -submatrix of M formed by the first
 columns and rows, then for no  ≥ 1 it can be true that det(M) = det(M+1) = 0. They
do this by proving that det(M+1) = det(M)(1 − ρ−1) + (1 − ρ)−1(ρ−1 − 1) and the term
(1 − ρ)−1(ρ−1 − 1) is non zero as ρ 6= 1. 7.1

7.2. The solution of the problem

In the proof of Theorem 7.1 we operated multiple inverse Kirby 1-moves and, by the con-
struction of the invariants, this did not affect the value of RTr . This is actually what causes
that the resulting coupling matrix is that of equation (7.1). Suppose that now we take into
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account these moves and we “pay" each such move by a factor ρ. Stated more explicitly
suppose that instead of RTr(Wj ◦ Z) we consider ρ−sgn(Lnk) · RTr(Wj ◦ Z) where sgn(Lnk))
is the signature of the linking matrix of the link presenting Wj ◦ Z BEFORE the inverse Kirby
moves are applied. Then the resulting matrix will look like :

(7.2) M′ =













1 ρ · ρ−1−4r ρ · ρ−1−4r·2 ρ · ρ−1−4r·3 · · ·
ρ−1 · ρ1−4rj 1 ρ · ρ−1−4r ρ · ρ−1−4rj·2 · · ·
ρ−1 · ρ1−4rj·2 ρ−1 · ρ1−4rj 1 ρ · ρ−1−4rj · · ·
ρ−1 · ρ1−4rj·3 ρ−1 · ρ1−4rj·2 ρ−1 · ρ1−4rj 1

· · · · · · · · · · · ·













which, since ρ is a root of unity has finite rank.
Clearly, given a surgery presentation of a manifold M via a framed link L ⊂ S3, the quantity

ρ−sgn(Lnk) ·RTr(M) is not an invariant of M. (just apply a Kirby 1-move). So, following Turaev,
we use the following :

Definition 7.2 (Extended manifolds and their invariants). An extended manifold is a pair
(M,m) with M a compact (possibly with boundary) oriented 3-manifold and m ∈ Z. The RTr
invariant of a closed extended manifold is defined to be RTr(M) · ρ−m.

The trick is now to stipulate that a surgery presentation via a framed link L of a manifold
M actually yields an extended manifold (M,m = sgn(L)). At this stage this seems to be
purely formal. But now the question is : what is the natural category of cobordisms we should
consider if we wanted to use “extended manifolds" instead of “manifolds"?

Definition 7.3. The category ßCob is the category whose objects are oriented compact sur-
faces  equipped with a lagrangian subspace L ⊂ H1(;R) and whose cobordisms are cobor-
disms of Cobn equipped with an integer. The composition of two cobordisms

(M,, ƒ+ , ∂−M, ƒ− ,m) : − → 0

and
(N, ∂+N,g+ , ∂−N,g− , n) : 0 → +

is defined as the cobordism

(7.3) (N tg−◦ƒ−1+ M, ∂+N,g+ , ∂−M, ƒ− ,m + n − μ(L1,L2,L3))

where in the symplectic vector space H1(0;R) one considers the Maslov index μ(L1,L2,L3)
with :

1. L1 = {(ƒ+)−1∗ ()|∃ ∈ L(∂−M) s.t.  = − in H1(M)};

2. L2 = L(0);

3. L3 = {(g−)−1∗ (y)|∃b ∈ L(∂+N) s.t. b = −y ∈ H1(N)}.

(The fact that L1 and L3 are lagrangians is easy to check and left as an exercise; for full
details on the topic we refer to [46] Chapter 4, Section 3).

Remark 7.4. In [46] a more complicated formula is provided involving lagrangians in vector
spaces of dimension twice that of H1(0) (see the definition of the glueing of cobordisms at
the beginning of section 9.1, Chapter IV). This is due to the fact that in [46] one is allowed
to glue along surfaces equipped with different lagrangians (i.e. such that ƒ−1∗ (L(∂+M)) 6=
g−1∗ (L(∂−N)) in the above notation. In our case we suppose equality (by definition of our

category ßCob) and this simplifies the formula of the Maslov index : see Chapter IV formula
3.7 in [46] and the computation of m′ in the proof of Theorem 9.2.1.

Remark 7.5. If ∂−M = ∅ then L1 is the kernel of the embedding of H1(∂+M) in H1(M).
Similarly if ∂+N = ∅.
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Lemma 7.6. Let (g,L) be an extended surface. The extended modular group àMod(g,L)
embeds in ßCob via the map (ƒ , n)→ C(ƒ̃ ) := (g × [−1,1],g × {1}, d,g × {−1}, ƒ , n).

Proof. This is an enhanced version of Lemma 2.5; we need to check that the composi-
tion of elements of àMod is mapped to that of the corresponding cobordisms. So this boils
down to check that the term −μ(ƒ∗(L),L, g−1∗ (L)) (used in formula (5.5)) is the above de-
fined correction factor to the composition of two cobordisms (see Equation (7.3)). This is
indeed the case as by definition of Cƒ we have ƒ+ = d, ƒ− = ƒ and L(∂−(Cƒ )) = ƒ∗(L) so
L1 = (d)−1∗ (ƒ∗(L)) = ƒ∗(L), while for Cg we have g− = g, g+ = d and L(∂+(Cg)) = L so

L3 = (g−)−1∗ (L) = g
−1
∗ (L). 7.6

It is actually easier to apply the universal construction to our case if we further extend the
category of cobordisms by allowing the datum of “skeins" i.e. linear combinations of isotopy
classes of framed links inside the cobordisms:

Definition 7.7. For any r ≥ 3, the category ßCobr is the category whose objects are those of
ßCob and whose morphisms are pairs (M,T) where M is a cobordism of ßCob and T ∈ SredA (M).

Before stating the main theorem on the construction of TQFTs let us recall Wall’s signature
theorem for 4-manifolds. Let W be a compact oriented smooth 4-manifold with boundary and
let σ(W) be the signature of its intersection form H2(W;R) × H2(W;R) → R. Suppose that W
contains a properly embedded 3-manifold W0 (i.e. ∂M0 ⊂ ∂W) which splits W into W1tW2 and
let ∂W \ ∂M0 = M1 tM2. Orient M1,M2 so that ∂W1 = M1 ∪M0 and ∂W2 = M0 ∪M2, so that the
orientations of M0,M1,M2 induce the same orientation on the surface  = ∂M0 = ∂M1 = ∂M2.
Let M ⊂ H1(;R) be the lagrangian subspaces given by the kernel of the inclusion of H1(;R)
into H1(M;R). Then the following holds :

Theorem 7.8 (Wall’s theorem). σ(W) = σ(W1) + σ(W2) + μ(M1,M0,M2)

We are now ready to state the main theorem on the construction of SU(2) Reshetikhin-
Turaev TQFTs and give a sketch of its proof (we refer to [7] for all the details).

Theorem 7.9 ([7] Theorem 1.4). The universal construction applied to the extended
Reshetikhin-Turaev invariants of 3-manifolds and to the category ßCobr yields a TQFT Zr :
ßCobr → Vect. Furthermore for each g the vector space V2r(g) := Zr(g) is equipped with a
Mod(g)-invariant Hermitian form 〈, 〉, which, if A = exp( π2r ) is positive definite.

Remark 7.10. The notation V2r(g) is coherent with the original notation coming from [7].

Proof. Let g be a surface. Observe that each M ∈ V (g) gives rise to M ∈ V ′(g) and since
RTr(W) = RTr(W) for each closed 3-manifold W, we get that the modules V2r(g) and V′2r(g)

are isomorphic by the isomorphism obtained by extending C-antilinearly the map M → M.
Thus the natural pairing between them descends to a hermitian, non-degenerate, bilinear
form on V2r(g) by Proposition 3.6.

To prove finite dimensionality of V2r(g) we observe that any M ∈ V (g) can be trans-
formed into a connected sum of handlebodies H by a finite sequence surgeries along framed
links in M. Each such surgery is translated by the replacement of the surgery link by an Ω-
colored framed link in H. Indeed we claim that if Hk is the result of a surgery of H along a
framed knot k then in V2r(g) it holds [Hk] = λ[H, kΩ] for some constant λ ∈ C depending on
the framed knot k and on L(g) (where by [H, kΩ] we denote the vector represented by H
containing a copy of k colored by Ω).

Let m,  be the homology classes in H1(∂N(k)) of the meridian and the longitude of k and
let N(k) (resp. N′(k)) be the solid torus representing a cobordism from ∅ to ∂N(K) whose
meridian is glued to m (resp. ). Furthermore in N (but not in N′) let’s cable the core of N with
the color Ω. To see N and N′ as cobordims we equip ∂N = ∂N′ with an arbitrary lagrangian L
and N and N′ with weights 0.
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To prove our claim it is sufficient to prove that in V (S1 × S1) it holds [N′] = λ[N]. So let
R,  = 1,2 ∈ V ′(S1 × S1) be any two manifolds, and let also S = R ◦N and S′ = R ◦N′. Finally
let L′ = L t k ∈ S3 be framed links presenting S′ (so that L presents S and k is the Ω-colored
skein in N ⊂ N). Considering L′ as a surgery presentation of S′ we see k as part of the surgery
link while for S we consider it as a skein in S: in the latter case it implies that k is not taken
into account in the computation of the signature of the presentation. So, by Definition 7.2 we
have:

RTr(S′ ) = D
−1ρ− sign(L

′
 )+sign(L)−(S

′
 )+(S)RTr(S).

Then to prove our claim it is sufficient to prove the following:

− sign(L′1) + sign(L1) − (S
′
1) + (S1) = − sign(L

′
2) + sign(L2) − (S

′
2) + (S2).

Observe that L′ gives a 4-dimensional oriented smooth manifold W whose signature is
sign(L′ ) and such that ∂W = S′ . Furthermore the regular neighborhood N(k) of k in the
surgery presentation provides a 3-manifold M0 (a solid torus) properly embedded in W and
splitting W into two submanifolds : W

1 and W
2 of which ∂W

1 = S (and so σ(W
1) = sign(L))

and W
2 is a 2-handle, hence a 4-ball (and so σ(W

2) = 0). Let now M be the lagrangian
induced by R on S1 × S1 = ∂N(k). By Wall’s theorem and by Lemma 5.21 it holds

sign(L′ ) − sign(L) = μ(M,m(k), (k)) = μ(M,m,L) + μ(m, ,L) − μ(M, ,L).

Now observe that by antisymmetry of the Maslov index and by the definition of the com-
position of the cobordisms in ßCob we have that μ(M,m,L) = −μ(M,L,m) = (S) and
μ(M, ,L) =(S′ ). This proves the claim as − sign(L′ ) + sign(L) + (N) − (N

′
 ) = μ(m, ,L)

does not depend on R.
Until now we showed that we can reduce by surgeries along links to vectors in V (g)

represented by skeins in a connected sum of handlebodies Hg. We now want to show that
actually we can further split each connected sum to a disjoint union of handlebodies. To do
so it is sufficient to show that in V(S2 t S

2
) the following equality holds :

[B3 t B
3
] = RTr(S3)[S2 × [−1,1]]

and this is easily proved by testing against cobordisms M ∈ V ′(S2tS
2
) and using the equality

: RTr(M#N) = RTr(S3)RTr(M)RTr(N) (we invite the reader to fill the details, considering also
the case when M is connected). This equality also implies that each manifold bounded by a
disjoint union of surfaces 1 t 2 is equivalent in V(1 t 2) to a disjoint union of manifolds,
one bounded by 1 and the other bounded by 2 so obtaining that V(1)⊗V(2) = V(1t2).

The above two arguments show that V(g) can be entirely represented by skeins in a
disjoint union of handlebodies H, one per component of . For simplicity let’s assume that 
is connected from now on (the proof is almost identical else). By Proposition 6.27 the reduced
skein module of the handlebody H is generated by r-admissible colorings co of any fixed
trivalent spine Y of H; let’s denote the vectors represented in V () by these colored spines
by [H,Yco]. We are only left at proving that these vectors are actually linearly independent
in V2r(g). This is easily done by observing that [H,Yco] is a vector of V ′() and that the
pairing between these vectors is diagonal and non degenerate, namely :

〈[H,Yco′ ], [H,Yco]〉 = δco,co′ · ƒ (co, co′)

where ƒ is a function of the two colorings which can be easily expressed in terms of products
of evaluations which are easily seen to be non-zero when the colorings are r-admissible.
The proof of this claim is straightforward by observing that H ◦ H = #gS2 × S1 and so it ad-
mits a surgery presentation in S3 by surgery over g unlinked 0-framed unknots. Furthermore
each such unknot encircles exactly two edges of the graph Yco tYco′ and applying the encir-
clement Lemma 6.30 g times one concludes. 7.10

Remark 7.11. Theorem 7.9 provides in particular quantum representations of the central
extensions of the mapping class groups considered in Section 5.4. Thus one can see these
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representations as projective representations of the mapping class groups themselves. Fur-
thermore, since the contribution of the Meyer cocycle is only given by multiplication by ρ−μ

which is a root of unity, one can obtain genuine representations of the mapping class groups
by considering the action on End(V2r(g)).

8. Some properties of the RT-TQFTs.

In this section we rapidly recall some of the known facts concerning the SU(2)-quantum
representations obtained from Theorem 7.9 and for some of these results we provide a sketch
of proof. In the last subsection we also provide some comments on the new non semi-simple
TQFTs.

8.1. Infiniteness

Let γ ⊂ g be a simple closed curve and Tγ the Dehn-twist along γ. Fix a handlebody Hg
bounded by g such that γ bounds a disc D in Hg and pick a trivalent spine Y of HG inter-
secting D in exactly one point along an edge e; recall that {[Hg, Y, c] |c : E(Y)→ {0,1, . . . r −
2} r − dmissible colorings} form a basis of V2r(g). The following holds :

Lemma 8.1. Tc([Hg, Y, c]) = (−A)c(e)(c(e)+2)[Hg, Y, c].

Proof. By construction Tc extends to Hg and its action on Y is just to add a full twist to the
framing of the edge e. Thus the relation is just the framing change relation in the skein
module. 8.1

Corollary 8.2. The order of the action on V2r(g) of each Dehn twist is at most 4r. In
particular the representations are never faithful!

Because of Lemma 8.1 one may think that the image of the quantum representations of
Mod(g) considered as projective representations (see Remark 7.11) is small or finite. It is
indeed true that the image of Mod(S1 × S1) is finite (proved by Gilmer in [21]). On contrast
Funar proved :

Theorem 8.3 (Funar, [20]). The image of the mapping class group Mod(g) under the rep-
resentation arising in the SU(2)-TQFT (in both the BHMV and RT versions) is infinite provided
that g ≥ 2, r 6= 2,3,4,6, and if g = 2 also r 6= 10.

Corollary 8.4. The quotients Mod(g)/ < {T4rγ |γ ⊂ g} > are infinite provided that g ≥
2, r 6= 2,3,4,6 and if g = 2 also r 6= 10.

8.2. Irreducibility

Suppose now that r is an odd prime. Then the following holds :

Lemma 8.5. A basis for V2r(S1 × S1) is formed by k copies of the core with framing 1 (in the
standard embedding of the torus in S3) each colored by Ω.

Proof. We already know that a basis (in general) is given by the vectors T := [D2 × S1,{0}×
S1, ] with  ∈ {0,1, . . . r − 2}. To prove our claim it is sufficient to pair the proposed basis
against the basis T and check that the pairing matrix is non-degenerate. It easily turns out
that, up to a permutation of the columns the resulting matrix is a Vandermonde matrix, thus
non-degenerate. 8.5

Since a knot colored by Ω also represents a surgery along the knot we may also think that
V2r(S1 × S1) is generated by some empty three-manifolds bounded by S1 × S1. This easily
implies that for each g the same is true. These “special" empty vectors, where used by
Gilmer and Masbaum [23] to build a lattice in Vp(g) which is acted upon by Mod(g).
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Proposition 8.6 (Roberts,[40]). Let r ≥ 3 be prime. The àMod(g)-module V2r(g) is irre-
ducible.

Proof. Let Hg be a fixed handlebody and Y ⊂ Hg be a trivalent spine of Hg let us denote by
c any r-admissible coloring of Y. We know that the vectors {[Hg, Y, c]} with c ranging over
the r-admissible colorings of Y form a basis of V2r(g). To prove that V2r(g) is irreducible,
by Schur’s lemma it is sufficient to prove that any endomorphism of V2r(g) commuting
with the action of àMod is λd. Observe that each skein in Hg can be represented as a linear
combination of skeins in a neighborhood of  − Y projecting on g without crossings and,
by Lemma 8.5 each such skein can be replaced by a suitable linear combination of Dehn-
surgeries along the same curve (or copies of the same curve). Now observe that the curve
with framing 1 colored by Ω represents the action of the Dehn-twist along the curve on
the skein module of g × [−1,1]. Thus all the vectors of V2r(g) are linear combinations
of elements of the group algebra C[Mod(g)] applied to the empty vector 0 = [Hg] =
[Hg, Y,0]. Let then T be the Dehn-twists along the curves in  − g bounding discs D in Hg
dual to the edges of Y; observe that by Theorem 6.16 it holds T([Hg, Y, c]) = λ(c)[Hg, Y, c]
where λ(c) = (−A)c(c+2) where c is the color of the edge of Y intersecting D. Since r is prime
the values of λ(c) are all distinct for different c. So if a transformation θ : V2r(g)→ V2r(g)
commutes with the action of Mod(g) it must hold θ([Hg, Y, c]) = λc[Hg, Y, c], ∀c. We only
need to prove that λc does not depend on c. This is due to the fact that each vector is
in C[Mod(g)] and hence we can write [Hg, Y, c] = γ[Hg, Y,0] for some γ ∈ C[Mod(g)].
But then θ([Hg, Y, c]) = θ · γ[Hg, Y,0] = γ · θ[Hg, Y,0] = γλ0[Hg, Y,0] = λ0[Hg, Y, c] but also
θ([Hg, Y, c]) = λc[Hg, Y, c]. 8.6

On contrast there are known values of r, g for which V2r(g) is reducible:

Theorem 8.7 (Andersen-Fjelstad, [3]). For all g ≥ 1 the representations V24(g), V36(g)
and V60(g) contain at least three invariant submodules.

Theorem 8.8 (Korinman, [29]). • If r is odd prime, then V4r(2) is the direct sum of
two irreducible sub-representations.

• If r1, r2 are two odd primes then V2r1r2 (2) is irreducible.

8.3. Detecting pseudo-anosov diffeomorphisms

In [4], the following conjecture (now known as the AMU conjecture) was formulated:

Conjecture 8.9 (AMU). Let  be a compact surface (possibly with boundary) such that
χ() < 0 and ϕ ∈ Dƒ ƒ+() be a pseudo anosov diffeomorphism. The action of ϕ on V2r(g)
has infinite order for all but finitely many r.

In these notes we did not recall the construction of the TQFT vector spaces for punctured
surfaces or surfaces with boundary. For the purpose of this section, let us just admit that for
each r ≥ 3 there is an extension of the TQFT to the category whose objects are surfaces with
finitely many points (or boundary components) decorated by colors in {0,1, . . . , r − 2}. The
AMU conjecture has been proven only for some of these cases, namely for the 4-punctured
sphere whose punctures are colored by 1 (see [4]) or more in general N (see [44]) and for a
once punctured torus whose puncture is colored by N (see [44], actually only for the SO(3)
theory, corresponding to taking A = exp( πp ) with p odd).

In the direction of detecting pseudo-anosov diffeomorphisms, let us also mention the fol-
lowing result (which, again, holds only for punctured surfaces) obtained in [14]:

Theorem 8.10. Let  be a punctured surface and φ :  →  a pseudo-Anosov map with
dilatation λ > 1. Let A = exp( πk2r ) with (k,2r) = 1. If

r > −6χ()
�

λ−9χ() − 9χ() − 1
�

+ 1
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then the action of ϕ on V2r() is non trivial for some coloring of the punctures.

8.4. Asymptotic fidelity

The following was proved independently by Andersen [2] and by Freedman, Walker and Wang
[19]; other proofs were later found by Marché-Narimanejad [36] and Costantino-Martelli [14]
(the latter in the case of punctured surfaces):

Theorem 8.11 (Asymptotic fidelity). For each g ≥ 1 the quantum representations are
asymptotically faithful :

⋂

r≥3
kerρ2r(Mod(g)) = Z(Mod(g)).

Proof. (This proof is taken from Freedman, Walker and Wang). Suppose h ∈ Mod(g) is not
central; then there exists a curve γ ⊂ g such that γ 6= h(γ). Take then a handlebody Hg
bounded by g in which γ bounds a disc D and let Y be a spine of Hg intersecting D along
an edge e. Observe that SredA0

(Hg) is a module over the algebra SredA0
(g) (where the action is

induced by inclusion). The skein represented by γ acts by a scalar on [Hg, Y, c]. To show that
h(γ) does not act as a scalar, observe that pushing it inside Hg and applying fusion rules one
can reduce h(γ) · [Hg, Y, c] to a linear combination of [Hg, Y, c′] for some colorings c′. Taking
r much larger than the maximal color cm one gets in any such fusion then one sees that
h(γ) · [Hg, Y, c] = c · [Hg, Y, cm] + .o.t where by “lowest order terms" we mean colorings
whose sum of colors is less than that of cm. This implies that the action of h(γ) is non
trivial (i.e. not a multiple of the 0-colored spine) if r is big enough because these colorings
represent linearly independent vectors in V2r(g). 8.11

8.5. The non semi-simple TQFTs

We conclude by citing some of the properties of the “non semi-simple TQFTs" recently con-
structed in [8] in order to compare them with those if the above “standard" SU(2)-TQFTs.

In [8] a new family of TQFTs was constructed by applying the universal construction to
a the “non semi-simple Reshetikhin-Turaev" invariants of closed three-manifolds defined in
[13]. These invariants are actually invariants of three-uples (M,T,ω) with M a closed oriented
three-manifold, T ⊂ M a (possibly empty) ribbon graph whose edges are colored by objects
of a certain category (generalizing the set of colors considered in the standard RT case) and
ω ∈ H1(M\T;C/2Z) is a cohomology class; these three-uples are subject to some compatibility
conditions which are generically satisfied. Clearly, in order to apply the universal construc-
tion, one needs to decorate the category Cobn so to include the datum of the cohomology
classes, so that in particular the vector spaces associated to a surface are indexed also by a
cohomology class on it : V(, ω), V′(, ω). Furthermore (and more importantly) the fact that
the invariants are defined only “generically" implies that in the new category of cobordisms
some objects have no duals and that V(, ω) and V′(, ω) although dually paired are different
(i.e. no linear or antilinear isomorphism is known between them in general).

Despite these apparent difficulties, the properties of these new TQFTs are promisingly
different from those of the standard RT TQFTs :

Theorem 8.12 ([8]). Let γ 6= γ′ ⊂  be non trivial disjoint simple closed curves and suppose
that [γ] = [γ′] 6= 0 ∈ H1(;Z). The action of the Dehn-twist Tγ along γ on V(,0) has infinite
order and the action of Tγ ◦ T−1γ′ (which belongs to the Torelli group) on V(, ω) has infinite
order for almost all ω.

As of today, no element in the kernel of these representations is known (compare the
above theorem with Corollary 8.2).
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Appendix A. Basic facts in category theory

The purpose of this appendix is to recall the basic definitions in category theory which we
will use in this work. A good reference for most of the topics recalled here is [27].

Definition A.1 (Categories, functors and natural transformations). A category C is a col-
lection of objects Ob(C ) and for each pair of objects (− ,+) a collection of “morphisms"
Mor(− ,+) such that :

1. for each three tuple of objects there are “composition" maps

◦ : Mor(1,2) × Mor(2,3)→ Mor(1,3)

which are associative in the following sense : (ƒ ◦ g) ◦ h = ƒ ◦ (g ◦ h) for all three tuple
of morphisms which can be composed.

2. for each object , Mor(,) contains a special morphism, called d such that ƒ ◦ d =
ƒ∀ƒ ∈ Mor(,′) (for any ′) and similarly d ◦g = g ∀g ∈ Mor(′,).

A category is small if both the objects and the morphisms form sets. The product of two
categories C ,D is the category C × D whose objects are pairs (1,2) ∈ Ob(C ) × Ob(D) and
whose morphisms Mor((1,2), (′1,

′
2)) = MorC (1,

′
1) × MorD(2,

′
2).

Definition A.2 (Isomorphisms). A morphism ƒ ∈ Mor(,′) is epic if for all ′′ and for all
g, g′ ∈ Mor(′,′′) it holds g ◦ ƒ = g′ ◦ ƒ =⇒ g = g′. It is monic if for all ′′ and for all g, g′ ∈
Mor(′′,) it holds ƒ ◦ g = ƒ ◦ g′ =⇒ g = g′. It is an isomorphism if it exists ƒ−1 ∈ Mor(′, ,)
such that ƒ−1 ◦ ƒ = d and ƒ ◦ ƒ−1 = d′ .

If ƒ is an isomorphism then it is both epic and monic : indeed for instance if g, g′ ∈
Mor(′,′′) are such that g ◦ ƒ = g′ ◦ ƒ then g ◦ ƒ ◦ ƒ−1 = g′ ◦ ƒ ◦ ƒ−1 =⇒ g = g′. It is not
true that if ƒ is monic and epic then it is an isomorphism : consider a category with two
objects and a single morphism ƒ ∈ Mor(,′) and only d, d′ (no morphism in Mor(′,));
then it is clearly epic and monic but not an iso.

Definition A.3 (Functors). A functor F : C → D is a map assigning to each object  of C an
object F() of D and to each ƒ ∈ Mor(− ,+) a morphism F(ƒ ) ∈ Mor(F(−), F(+)) such that
F(g ◦ ƒ ) = F(g) ◦ F(ƒ ) (whenever g ◦ ƒ exists) and F(d) = dF(), ∀. A functor F : C → D is
essentially surjective if for each W ∈ D there exists V ∈ C such that W is isomorphic to F(V).
It is faithful (resp. fully faithful) if for each pair of objects V,V′ ∈ C the map F : Mor(V,V′) →
Mor(F(V), F(V′)) is injective (resp. bijective).

Definition A.4 (Natural transformations). A natural transformation between a functor F :
C → D and a functor G : C → D is a map n : Obj(C)→ Mor(D) such that n() ∈ Mor(F(), G())
∀ ∈ Obj(C) and n(′) ◦ F(ƒ ) = G(ƒ ) ◦n()∀ƒ ∈ Mor(,′); it is a natural isomorphism if η() is
an isomorphism for each .

Two categories are equivalent if there exist functors F : C → D, G : D → C such that there
exist natural isomorphisms between F ◦G and dD and G ◦ F and dC.

Proposition A.5 ([27] Proposition XI.1.5). A functor F : C → D is an equivalence of categories
iff it is essentially surjective and fully faithful.

A category is essentially small if it is equivalent to a small one.
A category C is an Ab category if for each ,′ the collection Mor(,′) is an abelian group

and the composition is bilinear with respect to the group operation; it is k-linear if Mor(,′)
is a k-vector space where k is a fixed field.
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A.1. Monoidal categories and functors

Definition A.6 (Monoidal category). A monoidal category is a category C equipped with a
tensor product bifunctor ⊗ : C × C → C and an object denoted 1 such that :

1. For each  there exists natural isomorphisms ϕL : →  ⊗ 1 and ϕR : → 1⊗ ;

2. For each objects ,′,” there exists natural isomorphisms ψ,
′,” :  ⊗ (′ ⊗ ”) →

( ⊗ ′) ⊗ ”.

(Here naturality means that for all morphisms ƒ ∈ Mor(0,), g ∈ Mor(′0,
′), h ∈ Mor(′′0 ,”)

it holds ϕR◦ƒ = (d⊗ ƒ )◦ϕR, ϕL◦ƒ = (ƒ⊗ d)◦ϕL, and ψ,
′,”◦(ƒ⊗ (g⊗h)) = ((ƒ⊗g)⊗h)◦ψ0,

′
0,

′′
0 .

) Such that ϕR
1
= ϕL

1
and for all objects the following pentagon diagrams commute :

1 ⊗ (2 ⊗ (3 ⊗ 4))

ψ1 ,2 ,(3⊗4)tt

d⊗ψ2 ,3 ,4// 1 ⊗ ((2 ⊗ 3) ⊗ 4)

ψ1 ,2⊗3 ,4

��

(1 ⊗ 2) ⊗ (3 ⊗ 4)
ψ1⊗2 ,3 ,4

**

Pentgon eqtion

((1 ⊗ 2) ⊗ 3) ⊗ 4 (1 ⊗ (2 ⊗ 3)) ⊗ 4
ψ1 ,2 ,3⊗d
oo

( ⊗ 1) ⊗ ′

 ⊗ ′

ϕL⊗d
88

d⊗ϕR
′

&&
 ⊗ (1⊗ ′)

ψ,1,
′

OO

The category is strict if 1 ⊗  =  =  ⊗ 1 and ϕL = ϕR = d for all  ∈ Ob(C ), and finally for

each three objects ,′,′′ it holds  ⊗ (′ ⊗ ”) = ( ⊗ ′) ⊗ ” and ψ,
′,” = d⊗′⊗”.

Definition A.7 (Lax monoidal functors). A lax monoidal functor F : C → D between monoidal
categories is a functor such that there exist a natural morphism d : F(1)→ 1 and for all objects
,′ there exist natural morphisms ,′ : F()⊗ F(′)→ F(⊗′) which commute with all the
associators and identity morphisms, i.e. ∀,′, ∀ƒ ∈ Mor(,), ƒ ′ ∈ Mor(′,′) the following
holds:

F() F() ⊗ 1
(ϕL)−1

oo

F( ⊗ 1)

F((ϕL)−1)

OO

F() ⊗ F(1)


oo

dF()⊗d

OO F() 1⊗ F()
(ϕR)−1

oo

F(1⊗ )

F((ϕL)−1)

OO

F(1) ⊗ F()


oo

d⊗dF()

OO

F() ⊗ (F(′) ⊗ F(”))
ψ′ //

d⊗
��

(F() ⊗ F(′)) ⊗ F(”) ⊗d // F( ⊗ ′) ⊗ F(”)


��

F() ⊗ F(′ ⊗ ”)  // F( ⊗ (′ ⊗ ”))
F(ψ) // F(( ⊗ ′) ⊗ ”)

where we denoted ψ (resp. ψ′) the associator in C (resp. in D). A lax monoidal functor F is
monoidal if d,  are isomorphisms, and it is a strict monoidal functor if F(1) = 1 and for each
object ,′ of C it holds F( ⊗ ′) = F′() ⊗ F(′) and the corresponding maps d,  are d.
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Definition A.8 (Natural transformations of lax monoidal functors). Let C,D be two monoidal
categories and F, F′ : C → D be two lax monoidal functors. A natural tensor transformation
n : F → F′ is a natural transformation n : F → F′ such that the following diagrams commute
for every couple of objects U,V ∈ C:

F′(1)
d

!!
F(1)

n

OO

d′ // 1

F(U) ⊗ F(V)  //

n⊗n
��

F(U ⊗ V)

n
��

F′(U) ⊗ F′(V)  // F′(U ⊗ V)

A natural tensor transformation n : F → F′ is a natural tensor isomorphism if it is a natural
isomorphism (see the end of Definition A.4). A tensor equivalence F between monoidal cate-
gories C and D is a tensor functor F : C → D such that there exists a tensor functor G : D → C
and natural tensor isomorphisms n : G ◦ F→ dC and n′ : F ◦G→ dD.

From now on, when speaking of functors between monoidal categories we will always
mean lax monoidal ones and we will suppress the word “tensor”.

A.2. Braidings

Definition A.9 (Braided category). A braiding on a monoidal category C is the datum of
natural isomorphisms for every pair of objects ,′ ∈ Ob(C ) b,′ :  ⊗ ′ → ′ ⊗  such that
the following diagrams (known as “Hexagon equations") commute :

 ⊗ (′ ⊗ ′′)
b,(′⊗′′)//

ψ
��

(′ ⊗ ′′) ⊗ 
ψ−1 // ′ ⊗ (′′ ⊗ )

d⊗b′′ ,
��

( ⊗ ′) ⊗ ′′
b,′⊗d// (′ ⊗ ) ⊗ ′′

ψ−1 // ′ ⊗ ( ⊗ ′′)

( ⊗ ′) ⊗ ′′
b(⊗′′),”//

ψ−1

��

” ⊗ ( ⊗ ′)
ψ // (” ⊗ ) ⊗ ′

b′′ ,⊗d′
��

 ⊗ (′ ⊗ ′′)
d⊗b′ ,′′//  ⊗ (′′ ⊗ ′)

ψ // ( ⊗ ′′) ⊗ ′.

A braided category is a monoidal category equipped with a braiding. If for each pair of objects
,′ ∈ C it holds b′, ◦ b,′ = d⊗′ then the braiding is also called a symmetry and C is a
symmetric monoidal category.

Remark A.10. As proved in [27], Proposition XIII 1.2, the following diagrams always com-
mute in a braided category :

 ⊗ 1
b,1 // 1⊗ 



ϕL

OO

d // 

ϕR

OO 1⊗ 
b1, //  ⊗ 1



ϕR

OO

d // 

ϕL

OO

.
Furthermore when C is strict the commutativity of the hexagon diagrams is equivalent to

the following equalities :

b,′⊗′′ = (d′ ⊗ b,”) ◦ (b,′ ⊗ d′′ ) b′⊗′′, = (b′, ⊗ d′′ ) ◦ (d′ ⊗ b”,).

Definition A.11 (Braided functors). A braided functor F : C → D between braided monoidal
categories is a lax monoidal functor F such that for all the objects of C the following diagram
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commutes :

F() ⊗ F(′)


��

bF(),F(′)// F(′) ⊗ F()


��

F( ⊗ ′)
F(b,′ ) // F(′ ⊗ )

Theorem A.12. Let C be a braided category. Then there exists a strict braided category
C str and a monoidal equivalence F : C → C str which is also a braided functor.

Proof. It is Maclane’s coherence theorem. See [27] Proposition XI.5.1 and Exercice XIII.6.5 or
[46] Chapter XI, Remark 1.4. A.12

A.3. Pivotal categories

Because of Theorem A.12 we will from now on assume that all the monoidal categories are
strict.

Definition A.13 (Left and right duality). A left duality on a strict monoidal category C is
the datum for every object  of C of a left dual object ∗ and morphisms −→e : ∗ ⊗  → 1,
−−−→coe : 1→  ⊗ ∗ such that the following “triangular equalities" hold :

(d ⊗
−→e) ◦ (

−−−→coe ⊗ d) = d (−→e ⊗ d∗ ) ◦ (d∗ ⊗
−−−→coe) = d∗ .

If ƒ ∈ Mor(1,2) the left adjoint of ƒ , denoted ƒ∗ ∈ Mor(∗2 ,
∗
1 ) is the morphism defined as:

ƒ∗ := (−→e2 ⊗ d∗1 ) ◦ (d∗2 ⊗ ƒ ⊗ d∗1 ) ◦ (d∗2 ⊗
−−−→coe1 ).

Similarly a right duality on a strict monoidal category C is the datum for every object  of C
of a right dual object ∗ and morphisms ←−e :  ⊗ (∗) → 1, ←−−−coe : 1 → (∗) ⊗  such that
the following “triangular equalities" hold:

(←−e ⊗ d) ◦ (d ⊗
←−−−coe) = d (d(∗) ⊗

←−e) ◦ (
←−−−coe ⊗ d(∗)) = d(∗).

The right adjoint of ƒ ∈ Mor(1,2) is the morphism (∗ƒ ) ∈ Mor(∗2,∗ 1) defined as:

(∗ƒ ) := (d(∗1) ⊗
←−e2 ) ◦ (d(∗1) ⊗ ƒ ⊗ d(∗2)) ◦ (

←−−−coe1 ⊗ d(∗2)).

If C has both left and right dualities, then it is called autonomous.

Remark A.14. It can be proven (exercise!) that the left (resp. right) dual object, if it exists,
is unique up to isomorphism. Furthermore it is important to observe that the existence of
a dual object for  ∈ C is a property of V and not an additional structure one defines on C.
Finally it can be proven that if C is autonomous then, each V ∈ C is isomorphic to both ∗(V∗)
and (∗V)∗. But in general it is not true that (V∗)∗ is isomorphic to V.

Let Cop be the category whose objects are those of C and morphisms are Morop(1,2) =
Mor(2,1). Equip it with a strict monoidal structure given by V⊗opW :=W⊗V. Then if C has
a left duality, the “left dual functor" : L : C → Cop associating to each object its left dual and to
each morphism its left adjoint is a monoidal functor indeed the map 1,2 : L(1)⊗op L(2) =
∗2 ⊗ 

∗
1 → L(1 ⊗ 2) = (1 ⊗ 2)∗ is given by:

1,2 := (
−→e2 ⊗ d(1⊗2)∗ ) ◦ (d∗2 ⊗

−→e1 ⊗ d2⊗(1⊗2)∗ ) ◦ (d∗2 ⊗∗1 ⊗ coev1⊗2 ).

Similarly for the right dual functor R : C → Cop.

Definition A.15 (Pivotal categories). An autonomous category is pivotal if the left and right
duality functors coincide.
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A.4. Ribbon categories

Definition A.16. A strict, braided category C with left duality is ribbon if it is endowed with
a natural family of isomorphisms θ : → , ∀ ∈ Ob(C) such that for all 1,2 ∈ C it holds :

θ1⊗2 = (θ1 ⊗ θ2 ) ◦ b2,1 ◦ b1,2

and θ∗ = (θ)∗. (The naturality of the isomorphisms means that for each ƒ ∈ Mor(1,2) it
holds θ2 ◦ ƒ = ƒ ◦ θ1 .)

In a ribbon category C one can define a right duality by stipulating that for each  ∈ Ob(C)
it holds (∗) = ∗ and defining ←−e :=

−→e ◦ b,∗ ◦ (θ ⊗ d∗ ) and ←−−−coe := (d∗ ⊗ θ) ◦
b,∗ ◦

−−−→coe (for a proof that these morphisms do indeed define a right duality on C see [27]
Proposition XIV.3.5). Hence each ribbon category is autonomous; it can actually be proven
that it is also pivotal.
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