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Johnson-Morita theory in mapping class groups and monoids of homology
cobordisms of surfaces

TAKUYA SAKASAI

Abstract

This article is the notes of a series of lectures in the workshop “Winter Braids VI”, Lille, in February
2016. We begin by recalling fundamental facts on mapping class groups of surfaces and overview the
theory of Johnson homomorphisms developed by Johnson himself and Morita. Then we see how this
theory is extended as invariants of homology cobordisms of surfaces and discuss an application to
knot theory.

1. Introduction

The mapping class group of a compact oriented surface is defined as the group of all isotopy classes of
self-diffeomorphisms of the surface. The role of this group and its subgroup named the Torelli group in
low dimensional topology is widely accepted to be important. The structures of these mysterious groups
have been studied for a long time. In 1980’s, Dennis Johnson introduced a homomorphism, now called the
Johnson homomorphism, from the Torelli group to a certain symplectic module. He used it to prove several
fundamental but deep facts on the Torelli group. After that, Shigeyuki Morita clarified and extended this
theory. In a series of his works, he revealed close relationships to invariants of 3-dimensional manifolds
and cohomology of the mapping class group. Since then, this theory has been further extended by many
people in various directions.

This article is based on the author’s lectures to PhD students and postdocs titled “Johnson-Morita
theory” in the workshop “Winter Braids VI”, Lille, in February 2016. It also includes some supplemental
results and related problems. In the workshop, we started from the review of works of Johnson and Morita
together with fundamental facts on mapping class groups, and then discussed recent developments of the
theory of Johnson homomorphisms and its applications:

Talk 1: Mapping class group, Torelli group and the first Johnson homomorphism,
Talk 2: Higher Johnson homomorphisms,
Talk 3: Extension to homology cobordisms of surfaces and an application to knot theory.

Talk 1 corresponds to Sections 2 and 3, Talk 2 to Section 4 and Talk 3 to Sections 6 and 7. Section 5 col-
lects known problems on Johnson homomorphisms for mapping class groups, which were not mentioned
in the workshop.

Caution 1.1. For easier access to the theory of Johnson homomorphisms and to keep the talks in in-
troductory level, in the workshop the author did not discuss the most recent descriptions of the theory

MSC 2010: 55R40, 32G15, 57R20.
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due to Massuyeau [62] and Kawazumi-Kuno [53], which are sophisticated but need more preliminaries on
algebra, and explained arguments near to the original (classical) ones. The present article also follows
this line.

References are far from complete and the arguments in several places do not follow the chronological
order. For more details on mapping class groups, we refer to books of Birman [7] and Farb-Margalit [24],
and survey papers of lvanov [44] and Morita [75].

Notation 1.2. All maps act on elements from the left. Homology groups are assumed to be with coef-
ficients in the ring of integers Z. For two subgroups K and L in a group G, we denote by [K, L] the
commutator subgroup, which is generated by elements [k, (] := klk=1{~1 for k € K and [ € L. All mani-
folds and maps between them are assumed to be smooth.

2. Mapping class groups and Torelli groups

2.1. Mapping class groups

Let X4 be a closed connected oriented surface of genus g. We denote by Diff.(Zg4) the group of
orientation-preserving self-diffeomorphisms of 5 endowed with C*-topology. This group is known to
be a Fréchet Lie group so that it is a huge but not so bad topological space. For example, it has the same
homotopy type as a countable CW-complex. Let

Mg = mo(Diff L (Zg))

be the group of its path-connected components, which is by definition the diffeotopy group of £4. That is,
My is the group of all isotopy classes of orientation-preserving self-diffeomorphisms of 4. We custom-
arily call this group the mapping class group. Generally, the word “mapping class group” stands for the
homeotopy group, the group of all homotopy classes of (orientation-preserving) self-homeomorphisms.
However, the classical surface topology admits us to identify the diffeotopy group and the homeotopy
group for the surface Z4. (The proof of this fact seems to diverge to many classical papers. A good refer-
ence is Boldsen’s preprint [10].) In what follows, we call an element of Mg a mapping class.

The role of Mg in topology is very wide and important. By definition, it governs the symmetry of a
surface from a topological (homotopical) point of view. In the 3-dimensional case, every element of Mg is
used to construct a 3-manifold through the methods of Heegaard decompositions, mapping tori and open
book decompositions (fibered knots). In the 4-dimensional case, the group Mg, in particular relations of
elements of Mg are used to construct Lefschetz fibrations. More generally, elements of Mg serve as the
holonomy of oriented Z4-bundles. In fact, Earle-Eells [21] and Gramain [34] showed in different ways that
each connected component of the Fréchet Lie group Diff, (Xg) is contractible if g > 2, which implies
that the classifying space BDiff+(Zq) of Diff1(Zg) is homotopy equivalent to the Eilenberg-MacLane
complex K(Myg, 1) of My (see Remark 2.2 below for this complex). Therefore the group cohomology of
Mg is nothing other than the module of all characteristic classes of oriented Xg-bundles (see Morita [70]
for details).

The group My is important also in complex analysis, differential geometry, algebraic geometry and
mathematical physics through the geometry of the Teichmdller space and the moduli space of Riemann
surfaces.

So we now want to understand the structure of Mg. In a few low genus cases, the group is com-
pletely understood. When g = 0, it was shown by Munkres [78] that Diff, (52) is path-connected, that is,
M is trivial. (If you work in C%-category, the corresponding fact that every orientation-preserving home-
omorphism of S2 is homotopic, in fact isotopic, to the identity follows from Schénflies’ theorem and the
Alexander trick, both of which are classical results in topology. See Birman’s book [7, Chapter 4].) Soon
after the result of Munkres, Smale [94] showed that the rotation group SO(3) is a strong deformation
retract of Diff, (52) (see also the above cited papers by Earle-Eells and Gramain, where it is also shown
that each connected component of the Fréchet Lie group Diff; (X1) is homotopy equivalent to 1 = T2
regarded as the space of all parallel translations of T?2).

In positive genus cases, Mg give non-trivial groups. To see it, let us recall the well-known facts on a
generating system of Mg. Let ¢ be a simple closed curve in £g. A Dehn twist Tc € Mg along c is the
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isotopy class of the self-diffeomorphism of Zg which twists a regular neighborhood of ¢ as in Figure 2.1.
That is, we first cut the surface along ¢ and twist once smoothly to the right direction (the direction depends
on the orientation of X4) with support in the neighborhood, then we reglue the surface. Of course, such
a diffeomorphism has several kinds of ambiguity such as the choice of a regular neighborhood and the
speed of twisting, but determines a unique element in Mg. Moreover, the mapping class T depends only
on the homotopy class of c.

C
Figure 2.1: Dehn twist T along a simple closed curve ¢

One of the most fundamental results on Mg is that it is generated by Dehn twists. Furthermore, we
have the following:

Theorem 2.1 (Dehn, Lickorish). The mapping class group Mg is generated by (39 — 1) Dehn twists

3g—1 . . -
{T¢} 9= where the simple closed curves c1,C2, . . ., C3g—1 are given as in Figure 2.2.
i4i=1 g

Figure 2.2: The Lickorish generators

Indeed, more is known. Birman and Hilden gave a finite presentation of M in [9] using a covering ar-
gument. Then, following results of McCool, Hatcher-Thurston on the existence, Harer and Wajnryb gave
finite presentations of Mg for g > 3 (see Farb-Margalit [24, Section 5.2] for the precise statement). From
the presentation, we can immediately compute the abelianization H1(Mg) = Mg/[ Mg, Mg] (this way
of computation does not follow the chronological order):

0 (g=0)

7/127 (g =1, folklore as mentioned below)
7/10Z (g = 2, Mumford [77]) '
0 (g = 3, Powell [86])

Hl(Mg) =

Remark 2.2 (Homology of groups). The abelianization G/[ G, G] of a group G coincides with the first
homology group H1(G) of G. One definition of the homology group H«(G) of a (discrete) group G is
given by

H«(G) := H«(K(G, 1)),
where the right hand side is the (usual cellular) homology group of the Eilenberg-MacLane complex
K(G, 1). The CW-complex K(G, 1) is characterized up to homotopy equivalence by its homotopy groups:
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m1(K(G,1)) = G and mr(K(G,1)) = 0 for n # 1. For example, H«(Fn) = H«(vySt) for a free
group Fn of rank n and H«(m1(Zg)) = H«(Zg) for g > 1. Taking the homology of groups satis-
fies the functorial properties. That is, a group homomorphism f : G1 — G3 induces a homomorphism
fx : H«(G1) — H«(G2), which is compatible with the composition of homomorphisms, and the identity
map idg of G induces the identity map of H«(G). For a CW-complex X, we always have a continuous
map nx : X — K(m1(X), 1) inducing the identity on 1. Indeed, K(m1(X), 1) is obtained by adding 3-,
4-, ... cells to X to eliminate higher homotopy groups and the map nx : X — K(m1(X), 1) is taken to be
the inclusion. From the construction, we see that nx induces an isomorphism on Hy and a surjection on
H>. In what follows, we shall use homology of groups up to degree 3. For more details on (co)homology
of groups, we refer to Brown’s book [11]. A paper [56] of Korkmaz and Stipsicz is a good reference for a
systematic computation of the first and second homology groups of Mg.

2.2. Torelli groups

As seen above, the abelianization of Mg is small or trivial. This means that it is difficult to extract some
information on Mg from it. Hence, to understand the structure of Mg, we are required to find homo-
morphisms from Mg to other groups (or vice versa). One good way to do so is to consider actions of
Mg on other objects. The most fundamental one is the natural action of Mg on the first homology group
H := H1(Z4) = Z?9 of the surface £4. The module H has a natural non-degenerate anti-symmetric
bilinear form

U:HOH—Z

called the intersection pairing, which reflects the Poincaré duality of £4. Using this, we identify H with its
dualH* = Hl(Zg), the first conomology group. We take a symplectic basis {ai1, az, ..., ag, b1, b2,..., bg}
of H as in Figure 2.3. That is, the elements of the basis satisfy

ulai, aj) = (b, bj) =0,  u(ay bj) =6

Figure 2.3: A symplectic basis of H1(2g)

Note that the action of Mg on H preserves the intersection pairing u. In terms of group homomor-
phisms, this action is given by a homomorphism

0: Mg — Aut(H, u) = Sp(H).

Here the target is the symplectic (i.e. u-preserving) automorphism group of H and it is isomorphic to the
symplectic matrix group Sp(2g, Z) under the above basis. Using an elementary matrix transformation
technique, we see that 0 is surjective.

Using this representation, it is easy to see that My is non-trivial for g > 1. In fact, we can show by a
topological argument on the torus 1 = T2 that when g = 1, the map 0 : M1 — Sp(H) = Sp(2,7) =
SL(2, Z) gives an isomorphism.

The kernel of the action o is called the Torelli group denoted by Zy. That is, Zy consists of all isotopy
classes of self-diffeomorphisms of Z4 which act trivially on H. From the above discussion, we see soon
that Zp and Z; are trivial. However, Zg for g > 2 are highly non-trivial and seem to be more complicated
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and mysterious than Mg. At present, only the case when g = 2 is clarified. Mess [68] showed that Z> is
an infinitely generated free group.

Prior to Mess’ result, a generating system of Z; was given by Birman and Powell. A BP-map of genus
h is the product Ty, o T;Zl of two Dehn twists with distinct sign, where {y1, Y2} is a pair of disjoint,
homologous, non-bounding (non-separating) simple closed curves which bound a subsurface of genus h
with two boundary components (see Figure 2.4). Such a pair is called a Boundary Pair. On the other hand,
a BSCC-map of genus h is a Dehn twist along a Bounding (separating) Simple Closed Curve (see Figure
2.5) which bounds a subsurface of genus h with connected boundary. It is easy to see that BP-maps and
BSCC maps are elements in Zy. On the other hand, using Birman’s former result, Powell [86] showed that
for g > 3, Zy is generated by all BP-maps of genus 1 and BSCC-maps of genus 1 and 2. When g = 2,
BP-maps are all trivial and BSCC maps generate Z,. Note that Hatcher and Margalit [41] gave a new
self-contained proof of these facts.

Figure 2.4: aBP-map T, o T;Zl of genus h

J

C@... ol o ...@>

Figure 2.5: a BSCC-map T5 of genus h

2.3. Mapping class groups and 3-manifolds

We finish this section by mentioning a relationship of My and Zy to 3-dimensional topology. There are
several methods for constructing an oriented closed 3-manifold from a mapping class.

One of the methods is given by gluing two copies of handlebodies H(g) of genus g along their bound-
aries dH(g) = Xg by using an element in Mg, so that the resulting 3-manifold is oriented and closed.
More precisely, we fix an orientation of H(g) and denote by —H(q) the H(g) with opposite orientation.
There exists an orientation-reversing self-diffeomorphism (g of £4 such that the oriented closed 3-manifold
H(g) U, (—H(g)) obtained by identifying each x € a(—H/(q)) with (4(X) € dH(g) is the 3-sphere. We fix
such a diffeomorphism tg. Then, for a given mapping class [f] € Mg with f € Diff;(Zg), we construct

My 1= H(g) Uyof (—H(g)).

by identifying each x € a(—H(g)) with tg o f(X) € dH(g). It is easy to see that the resulting manifold
depends only on the mapping class of f. Consequently, we obtain an oriented closed 3-manifold M with
a decomposition M = Hg) Uss,, (—H(g)) with an identification map between aH(g) and a(—H/g)). Such a
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decomposition is called a Heegaard decomposition of genus g for M. If [ f] is in Zg, then My has the same
homology group as S3 = Mjq. That is, My is an integral homology 3-sphere. It is a classical fact that for
any oriented closed 3-manifold M, there exists [f] € Mg for some g such that M = M¢. For any oriented
integral homology 3-sphere M, [f] can be taken from Zg. In summary, we have the diagram:

uM, \ .
(2.1) | | Mq {oriented closed 3-manifolds}
g0

|

|_] Iy —— » {oriented integral homology 3-spheres}
9=0

Another method for obtaining an oriented closed 3-manifold from a mapping class is given by con-
structing the mapping torus. For f € Diff,(Zg), we construct a Z4-bundle Ty over Slpy

Tr =34 x[0,11/((x, 1) ~ (f(x), 0), x € Zg).

It is easy to see that the 3-manifold T¢ depends only on the conjugacy class of the mapping class of f.

3. Johnson’s results on the Torelli group

3.1. Johnson’s remarkable results

In the first half of 1980’s, Johnson gave seminal results on the structure of the Torelli group in a series
of his papers. In [45], he showed that only the BP-maps of genus 1 are needed for the generation of Zg
for g = 3. Since two BP-maps of the same genus are conjugate, his result means that Zy is normally
generated by one BP-map of genus 1. Moreover, he showed the following surprising fact by a tough
investigation of combinatorics of BP-maps:

Theorem 3.1 (Johnson [49]). For g > 3, there exists a finite set of BP-maps (of genus not necessarily
equal to 1) which generates Ig.

The next surprising result of Johnson is the determination of the abelianization H1(Zg). The (first)
Johnson homomorphism, which is our main concern, appears in it and gives the free part of H1(Zg). In
the following, A3H denotes the third exterior power of H, in which H is embedded by the map x — x A w
with w := Zf’zl a; A b;, the symplectic element.

Theorem 3.2 (Johnson [50, 51, 48]). (1) Forg = 3, there exists an Mg-equivariant surjective homomor-
phism

T1:Zg — A3H/H
whose kernel coincides with the subgroup K4 generated by the BSCC maps. Here Mg acts on Iy by the

conjugation and on A3H diagonally through o : Mg — Sp(H).
(2) For g = 3, the homomorphism T1 gives the free part of H1(Zg). More precisely,

H1(Zg) = A3H/H @ (2-torsions).

Remark 3.3. The precise description of H1(Zg) is given in [51]. In fact, the 2-torsion part of H1(Zg) is
governed by the Birman-Craggs-Johnson homomorphism (see papers of Birman-Craggs [8] and Johnson
[47]), which unifies the Rochlin invariants of homology 3-spheres associated with each element of Z via
various Heegaard embeddings of %4 into S3.

Remaining well-known problems are the following:
Problem 3.4. (1) Determine whether Zg is finitely presentable or not for g > 3.

(2) Determine whether /Cgq is finitely generated or not.
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It might be a good way of attacking the problem (1) to look for infinite index subgroups of Mg which are
finitely presentable and include Zg. As for (2), it was shown by Dimca and Papadima [20] that H1 (KCg) ® Q@
is finite dimensional over Q for g > 4.

[Addendum: In April 2017, the problem (2) was affirmatively solved by Ershov-He and Church-Putman
independently. It was announced that their joint paper will appear shortly.]

3.2. Mapping class groups of surfaces with connected boundary

To explain the definition of the Johnson homomorphism T1, it is useful to introduce a variant of Mg. Let
%g,1 be the surface obtained from X4 by removing an open disk. We define the mapping class group
Mg,1 of £g,1 to be the group of path-connected components of the Fréchet Lie group consisting of all
self-diffeomorphisms of X4, 1 fixing (a neighborhood of) 8%4,1 pointwise. Removing an open disk from X
does not affect on H1, so that we identify H1(Zg,1) with H. The Torelli group Zg,1 for Mg, 1 is defined as
the kernel of the natural action 0 : Mg,1 — Sp(H). Itis also normally generated by one BP-map of genus
1 for g = 3 (see [45]). Here, the genus of a BP-map (resp. BSCC-map) of Zg,1 is defined by the genus of
the subsurface bounded by the BP (resp. BSCC) not having the original boundary of Zg 1.

We have natural surjective homomorphisms Mg 1 — Mg and Zg,1 — Zg by extending each mapping
class of Zg,1 by the identity on the disk X4 — X1 to get a mapping class of ¥g. The kernels of these
homomorphisms are common and known to be isomorphic to the fundamental group of the unit tangent
bundle of £y (see Johnson’s paper [49, Section 3], for instance). Basically, this fact follows from the
homotopy exact sequence of the locally trivial fibration obtained by applying the fibering theorem of Cerf
[12] and Palais-Hirsch [84] to the Fréchet Lie groups of diffeomorphisms of X4, 1 (fixing a neighborhood of
92g,1) and Zg.

The fundamental group 1 := m1(Zg,1, *) of Xg 1 with respect to a base point * on the boundary is
a free group of rank 2g. Since the self-diffeomorphisms of ¥4 1 we are considering fix the base point *,
we have the natural action of Mg, 1 on 1. This is the reason we have introduced Mg, 1. In fact, this action
characterizes mapping classes.

Theorem 3.5 (Dehn, Nielsen, Baer, Epstein, Zieschang, et.al.). (1) The action Mg,1 — Aut(m) is injec-
tive and the image is given by

{p € Aut(m) | 9(&) =},

where ¢ € T is the (oriented) loop along the boundary.

(2) The above action induces an injection My — Out(m1(Zg)) whose image consists of the outer
automorphism classes of m1(Zg) = m/{(¢)) inducing the identity map on H2(m1(Zg)) = H2(Zg) = Z.
Here, {(¢)) denotes the normal closure of g in .

Recall that the outer automorphism group Out(G) of a group G is defined as the quotient group of Aut(G)
with respect to the normal subgroup of the inner (conjugation) automorphisms.

For the reader’s convenience, the abelianization of H1(Mg,1) is as follows (see Korkmaz-Stipsicz [56,
Section 5]):

0 (9=0)
N (9=1)

Mg )= 107 (9=2)
0 (9=3)

The proof of Theorem 3.2 is given by showing first the corresponding statements for Zg,1. The actions of
Mg,1 0nZg,1 and A3H are similar to those of M.

Theorem 3.6 (Johnson [50, 51, 48]). (1) For g = 2, there exists an Mg,1-equivariant surjective homo-
morphism
T1:2g1— A3H

whose kernel coincides with the subgroup Kq,1 generated by the BSCC maps.
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(2) For g = 3, the homomorphism T1 gives the free part of H1(Zg,1). More precisely,
H1(Zg,1) = A3H @ (2-torsions).

Once we show this theorem, it is easy to get the results for Zg.

3.3. The first Johnson homomorphism

The idea of the definition of the first Johnson homomorphism T for Zg, 1 is to consider the natural action
of Mg,1 on the 2-step nilpotent group /[, [, m]] instead of the action on H = m/[m, m]. Johnson
defined 11 as in the following way.
First, consider the map
T:Zg1 — Hom(m, [n, ml/[ 7, [m, m]])

assigning to [f] € Zg,1 @ homomorphism sending 'y € 7 to f« (M7~L, which is in [, 7] since Tg,1 acts
trivially on H = n/[ 7, m]. We identify [ 7, m]/[ 7, [ 7, m]] with A2H, the second exterior power of H, by the
map [ Y1, ¥Y2] — Y1 A ¥2 for y1, Y2 € T and their homology classes Y1, Y2 € H (see the isomorphism
(4.1) in the next section for a more general statement). Then using the identification H = H*, we have

Hom(m, [, m]/[m, [, m]]) = Hom(H, A2H) =H* ® A°H=H® A°H.

It is easy to check that the resulting map 7:Zg1 — H® A2H is an Mg,1-equivariant homomorphism,
where Mg, 1 acts on Zg,1 by conjugation and on H ® A2H diagonally through o : Mg,1 — Sp(H). We
observe from the following explicit computations for generators that the image of T coincides with the
Sp(H)-submodule A3H of H® A2H, where X Ay A Z € A3H correspondsto X ® (Y A 2)+y ® (2 A X) +
Z® (X AYy)EH® AZH.

Example 3.7. (1) In Figure 2.4, we remove an open disk from the subsurface bounded by y1 and y>
including g-th hole to get a surface %g,1. Then the BP-map T+, o T;Zl of genus hisinZg 1. For1 < h <
g—1, we have

h
T(Ty, oT;zl) = (leai A b,-) A bhi1 € ASHC H® A2H,
i=

where we regard {ai,...,aq, b1, ..., bg} as the lift of the symplectic basis in Figure 2.3 to H1(Zg,1) =
H.

(2) Similarly, the BP-map Ts € Zg,1 of genus h is obtained from Figure 2.5. For this map, we have
T(Ts) =0.

Consequently, we obtain an Mg, 1-equivariant homomorphism Zg,1 — A3H, which we denote by T1.

Note that this is only the starting point for the Johnson’s remarkable results. To prove Theorems 3.2
and 3.6, we need further tough arguments as in his papers. By definition, the kernel of T1 coincides with
the kernel of the natural action Mg,1 — Aut(n/[m, [7, m]]). Theorem 3.6 (1) says that it is just Kg,1,
which is a highly non-trivial fact.

Remark 3.8. After over 20 years of the publication of Johnson’s papers, alternative proofs of many of
his results were given by Putman [87, 88] (see also his lecture notes [89]) in a more conceptual and
generalized way.

4. Higher Johnson homomorphisms

4.1. Definition of higher Johnson homomorphisms

In [48], Johnson mentioned about a generalization of his homomorphism T1. After that, Morita [71] gave
an improvement of Johnson’s formulation and it is now commonly used. Hereafter, we discuss only gen-
eralizations to subgroups of Mg,1 for simplicity.

Notation 4.1. The lower central series {'kG }k>1 of a group G is defined inductively by
MG:=gaG, MG =[G, Mk-1G] (k= 2).
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The k-th nilpotent quotient N (G) of G is defined by Ni(G) := G/T'xG. We put N := N (m), the k-th
free nilpotent quotient of rank 2g.

The idea of the definition of higher Johnson homomorphisms T for k > 2 is to consider the natural
actions

Ok : Mg,1 — Aut(Ng)

of Mg,1 on the nilpotent quotients Nk, where 0> = 0 and we have used 03 to define T3.
From the definition, we have a central extension

0 — Mk/Tks1M— Niy1 — N — 1

for k > 2. It is classically known in combinatorial group theory (see Magnus-Karrass-Solitar [59] for in-
stance) that there is an Aut(m)-equivariant isomorphism

(4.1) Cemt/Tike1T = Ly,

where L is the degree k-part of the free Lie algebra £« := Pj>1 £ generated by H. The isomorphism
is explicitly given by

Cemt/Tke1md [y, [v2, - [ V=1, Yk1--- 11— [¥1. [V2, - [ Vi1, Vi1 -+ 1] € Lk

for y; € m and its homology class ¥; € H. In fact, the direct sum @;51(Ijn/Tj+17) is endowed with
a Lie algebra structure by commutators, and the isomorphisms for k > 1 yield the natural identification
@j>1(Ijm/Tj+1m) = L« as Lie algebras.

Example 4.2. We have £1 = H by definition. The anti-symmetry relation gives £2 = A2H. We have

the well-defined isomorphism £3 =N (H® A2H)/ A3 H sending [x,[y,z]] € £3 with X,y,Zz € H to
X® (y AZz) € (H® A2H)/ A3 H, where A3H is embedded in H® A2H by the map X A y A z —
X® (Y AZ)+y®(zAX)+z® (X A y) and embodies the Jacobi identity. It is difficult to give an explicit
description for components of £« in higher degrees.

The domain groups of higher Johnson homomorphisms are given by the following:
Definition 4.3. The Johnson filtration {Mg,1[ K]} k>0 of Mg,1 is defined by
./\/19,1[0] :=Mg,1, Mg,]_[k] = Ker(ak+1 :Mgl]_—)Aut(Nk.'.l)) (kZ 1)

We have Mg,1[1] = Zg,1 by definition, and Johnson’s result (Theorem 3.6 (1)) says that Mg 1[2] =
Kg,1. Since the intersection (1 kT is known to be trivial for the free group m (i.e. m is residually
nilpotent, see [59, Section 5.5] for example), Theorem 3.5 (1) implies that the intersection (o Mg,1[K]
is trivial.

We now consider the gap between 0k+2 and Ok+1.-

Theorem 4.4 (Andreadakis [3], Morita [72]). For k > 1, we have an exact sequence
0 — Hom(m, Mk+17/Tk+21) — Aut(Nk4+2) — Aut(Ng+1) — 1,

where the inclusionHom(, Mk+1T/Tk+21) — Aut(Nk+2) is given by assigning to ¢ € Hom(m, Tk+17T/Tk+21)
the automorphism of N+ induced from the map m> Yy — @(Y)Y € Nk+2 = /Tk42T.

Since the image of the restriction of ox4.2 to Mg, 1[ K] is sent to the trivial group by the map Aut(Ng42) —
Aut(Ng+1), we may consider the target of the restricted map to be Hom(m, k+17/Tk+2 7). Now we have

Hom(m, Mk+1m/Tks2m) = HomM(H, Liks1) =H* ® Lxy1 =H ® Liy1.
Consequently, we get to the definition of the k-th Johnson homomorphism
Tk 1= Ok+2| Mg (k] P Mg1[k] — H ® Li+1

for k > 1. When k = 1, this definition coincides with the one in the previous section. The homomorphism
Tk is Mg,1-equivariant, where Mg, 1 acts on Mg, 1[ k] by conjugation and on H® L1 diagonally through
0 : Mg,1 — Sp(H). The kernel of T¢ is Mg,1[k + 1].
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Example 4.5. In [71], Morita derived the formula of T, for BSCC-maps, generators of Kg,1. For the BSCC
Ts of genus h in Example 3.7 (2), we have

h
T2(Ts)= Y. (ai®bi—bj@a)ebjrajeH® L3=H& ((H® AZH)/ A° H).
ij=1

Remark 4.6. Prior to works of Johnson and Morita on {Mg,1[k]}k>0, Andreadakis [3] studied the au-
tomorphism group Aut(Fp) of free groups Fp, of rank n > 2 by using its action on the nilpotent quotients
Nk(Fn). In fact, he defined a filtration of Aut(Fp) as in the way we have discussed. By using the exact
sequence of Theorem 4.4, we can define Johnson homomorphisms for the subgroups in the filtration of
Aut(Fp). For more details, see Satoh’s survey paper [93].

Remark 4.7. Kawazumi [52] gave a unified description of Johnson homomorphisms by using Magnus
expansions of free groups. See also Massuyeau [62] and Kawazumi-Kuno [53] for the most recent de-
scriptions of Johnson homomorphisms and their extensions.

4.2. Refinement of higher Johnson homomorphisms
In [73], Morita defined a refinement
Tk : Mg, 1[k] — H3(Nk+1)

of the k-th Johnson homomorphism Tk : Mg,1[k] — H ® Li+1. It turns out to give a strong constraint on
the image of Tx in H ® Lx+1 by recovering T from Tk. For that, we recall the central extension

0— Lk+1 — Ngt2 — Ngp1 — 1.

The Lyndon-Hochschild-Serre spectral sequence (see Brown’s book [11, Chapter VII-6] for details) asso-
ciated with this central extension is of the form

Ef,,q =Hp(Nk+1) ® Hg(Lks1) =  Hax(Nks2).

By observing this spectral sequence, we obtain an exact sequence

d? o
(42)  Ha(Nir2) — (B2 o = H3(Nks1)) =5 (B2 = H® Lis1) = (ED, = Lis2) — O,

where the first map is induced from the projection N¢4+2 — Nk+1, the second map is the differential d% o
in the spectral sequence and the third map is just the bracket map in the free Lie algebra L« = Dj>1 L.

Theorem 4.8 (Morita [73]). For k > 1, the composition dg 0° Tk coincides with Tx. Consequently, the
image of T is in the Sp(H)-submodule

hg,1(k) :=Ker([+, -1:H® Li+1 — Lk+2).
See also Garoufalidis-Levine [28, Proposition 2.5] for a direct proof that the image of T« is in hg,1 (k).

Example 4.9. (1) When k = 1, it is easy to see from Example 4.2 that hg,1(1) = A3H. We observe that
H3(N>) = H3(H) = A3H and that the differential dglo is just the inclusion A3H < H ® £;. That is, we
have T1 = T1.

(2) Using Morita’s formula of T, mentioned in Example 4.5, Yokomizo [98] determined the full image of
T2 in hg,1(2). He showed that

hg,1(2)/Im T2 = (2/22)9~D29+1)

for g = 2 with a specific basis.
Since, at present, we do not have any generating system of Mg, 1[k] for kK > 3 which is explicitly
written, it is a difficult problem to determine the full image of higher Johnson homomorphisms.

Morita’s definition of Tk is purely algebraic and it is not easy to grasp its topological meaning. Later,
Heap [42] gave a topological definition of this homomorphism, which we see in the next subsection.
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Remark 4.10. The Johnson filtration { Mg[ k]} k>0 of Mg is obtained from the natural outer action Ok41 :
Mg — Out(Ni+1(m1(Zg))) in a similar way to that of Mg 1. The k-th Johnson homomorphism Ty for
Mgl k] is naturally induced from Tx : Mg,1 — hg,1(k) by taking an appropriate quotient of the target
hg,1(k). The restriction of the map Mg 1 - Mg to Mg, 1[ k] is surjective onto Mg[Kk].

4.3. Topological construction of the refinement of higher Johnson homomorphisms

Heap’s topological description of the refinement T uses the open book construction (decomposition) of
closed 3-manifolds. For a given mapping class [f] € Mg,1, we construct an oriented and closed 3-
manifold Cr by

(x, 1)~ (f(x),0) (x€Zg,1) )
(yzo)“'(y,t) (yeazg,l, tE[O,l]) '

The 3-manifold Cy depends only on the conjugacy class of the mapping class of f. This description of
the 3-manifold Cr is called the open book decomposition associated with [f] € Mg, 1. The image of
9%g,1 x {0} by the canonical projection p : g1 x [0, 1] - Cr gives a knot in Cr called the binding of
the open book. It is also regarded as a fibered knot in C¢ with a Seifert surface given by the projection of
Zg,l X {0}

Prior to Heap’s work, Johnson [48] stated that T« can be described via Massey products of mapping tori
and Kitano [54] gave the full proof. The following construction by Heap can be regarded as a refinement
of the description of Johnson and Kitano.

For a given mapping class [f] € Mg,1[k], we construct the oriented closed 3-manifold Cs as above.
The fundamental group of Cr is given by

T (Cr) =/ {(f« (V)Y |y em)).
Since fx : Nky1 — Ni41 is trivial, we have a commutative diagram

Cr:i=(3g1 %[0, 1])/(

M1(Zg1) = M (Zg1 x [0, 1]) — 2 m1(Cp)

| |

Nig+1 o Ni+1(m1(Cr))

whose bottom horizontal map is an isomorphism. Let Bf be the composition

By : Cr 12 K(ma(Cp), 1) — K(Nes1(ma (G, 1) 22 KW, 1)
of the natural continuous maps where nc; is the map mentioned in Remark 2.2 and the others are induced
from the homomorphisms in the above diagram. (In general, a group homomorphism f : G — G3 induces
a unique continuous map ft : K(G1, 1) — K(G2, 1) with (ft) « = f up to homotopy.) Define a map

6k : Mg,1[k] — H3(K(Nk+1, 1)) = H3(Nk+1)

by assigning to [f] € Mg,1[k] the image (Bf)«([Cr]) of the fundamental class [Cf] € H3(Cy) by
(Bf)«.
Theorem 4.11 (Heap [42]). The map 6 : Mg,1[k] — H3(N) is a homomorphism. It coincides with Ty
and the kernel of Ox = Tk is Mg,1[2k].

The additivity of the map 6, which can be checked directly without showing the coincidence with T,
will be mentioned in Section 6 in a generalized form. To see that the kernel of 6k = T is Mg,1[ 2k],
we recall H«(Nk+1) up to degree 3. The abelianization H1(Nk+1) of Nk+1 is N2 = H. By applying
Hopf’s general formula (see Brown’s book [11, Chapter II-5]) for the computation of H> to the presentation
N1 = n/Tks1 1, we have

H2(Nk+1) = (Tkramn [, T])/[ 7 Tie 1] = Tie 1/ Tk 2T = Ly 1.

The structure of H3(Nk4+1) was determined by Igusa and Orr as follows. For i > j, let ¢; : H3(N;) —

H3(Nj) be the map induced from the natural projection N; — N;. Define a filtration

H3(Nk+1) = FKYIH3(Nis1) D FKF2H3(Ngs1) D -+
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of H3(Nk+1) by FIH3(Nis1) :=Im (@ k41 : H3(N) = H3(Nk+1)).

Theorem 4.12 (Igusa-Orr [43]). The filtration {FlH3 (Nk+1)}k+1<i<2k+1 of H3(Nk+1) satisfies the fol-
lowing:

1. F2K*1H3(Nk+1) = 0, namely @ak+1,k+1 : H3(N2k+1) — H3(Nk+1) is the 0-map.

2. Fork+ 1 << 2k, the quotient G!H3(Nk+1) := FH3(Nk+1)/ FHTH3(Nk+1) is a finitely gener-
ated free abelian group whose rank depends only on L.

3. Fork+1<1<2k+1, wehaveKero,+1 =Imeak+1,0 € H3(N)).

From this theorem, we see that H3(Nk+1) is obtained from the finitely generated free abelian group
F2kH3(Nks1) = G2KH3(Nky1) by extending one after another by the finitely generated free abelian
groups ng_1H3(Nk+1), o, GKrIHS (Nk+1). Therefore we have a non-canonical direct sum decompo-
sition

H3(Nk+1) = 6K H3(Nks1) @ -+ © G2 H3(Nks1).

Note that in this direct sum decomposition, only the projection to the first summand is canonical. From
the exact sequence (4.2), it follows that the summand GK*1H3(Nk+1) coincides with hg,1(k). Hence the
composition of 8 with the first projection recovers the homomorphism T.

In summary, H3(N;) is described as in the following table ([99]):

J
k+1 k+1 ¢ .. 2_/<
> 3 6 8
4 4 5 6
3 3 4
2 |2

The direct sum decomposition of H3(N;)

Here, we denote g’H;;(N,-) by . The modules aligned vertically are mapped by ¢;;,i, isomorphically. We
have a non-canonical direct sum decomposition

(4.3) H3(Nk+1) = bg,1(K) ® -+ @ bg,1(2k —1).
From this isomorphism, we see that there is a non-canonical direct sum decomposition
IMTcEIMTc® -+ & IM Tok—1,

namely the refinement Ty gives a bigger free abelian quotient of Mg, 1[ k] than T for k > 2.

5. Further topics and problems on Johnson homomorphisms

In this section, we collect known problems on Johnson homomorphisms for mapping class groups to
show that they are related to many interesting subjects. The discussions here are more advanced than
the other parts of paper, so that the readers who study Johnson homomorphisms for the first time can skip
this section.
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5.1. Johnson homomorphisms and the symplectic derivation Lie algebra

The k-th Johnson homomorphism Tx : Mg 1[k] — bhg,1(k) can be regarded as an embedding of
Mg, 1[k]1/Mg,1[k + 1] into hg,1(k) € Hom(H, Li+1). By assembling the Johnson homomorphisms
Tk, we have an embedding
T:= P % : P Mg,1[k)/ Mg,1[k + 1] — bg,1 := EP bg,1(k)
k>1 k=1 k=1

as a graded module. The Johnson filtration {Mg,1[k]}k>1 starting from Mg 1[1] = Zg,1 is central
(i.e. [Mg,1[1], Mg,1[k]1] € Mg,1[k + 1] holds for all k = 1), for all Tx are Mg,1-equivariant. Hence
the module @y>1 Mg,1[k1/Mg,1[k+ 1] has a natural structure of a Lie algebra (over Z) whose bracket
operation is induced from taking commutators. It turns out that T becomes a graded Lie algebra embedding
under the following Lie algebra structure of hg,1.

The module End(£ « ) of all endomorphisms of L« is a Lie algebra whose bracket operation is given by
[A,B] = AB—BA for A, B € End(L«). We take the submodule Der(L£«) of all derivations of £«. Here
D € End(L£ ) is a derivation if

(5.1) DX, YD) =[D(X), Y]+ [X, D(Y)]

holds for any X, Y € L. It is easy to check that Der(L«) is a Lie subalgebra. By the equality (5.1), a
derivation D is characterized by its action on £1 = H. Hence we have

Der(£+) = Hom (H, @j»1£j) = D Hom(H, Lx+1) = EDH ® Lis1.
k=0 k=0

If we assign to H ® Li+1 degree k, Der(L«) becomes a graded Lie algebra. By a straightforward calcu-
lation, we have the following.

Proposition 5.1. D € H® Lk+1 isinbg,1(k) if and only if D is a symplectic derivation, namely D(w) = 0
holds forw = 37 . [aj, bi] € L3.
Theorem 5.2 (Morita [73]).
T=P 1% : P Mg, 1[kl/Mgalk + 1] — g1
k>1 k>1
is an Mg,1-equivariant Lie algebra embedding. In fact, the restriction of the action to Zg,1 is trivial, so that
T is Sp(H)-equivariant.

The determination of Im T is a difficult problem as is already mentioned. To make the situation simpler,
we take tensor products with  and consider the embedding
=P 1) B (Mg1[kl/Mg1lk+1])® Q— b1 ® Q.
k>1 k>1

From the discussion in the previous sections, T? and T? are surjective. By using an argument by Asada-

Nakamura [4, Lemma 2.2.8], we can see that T is Sp(H ® Q) = Sp(2g, Q)-equivariant. This means that
we may describe Im 7@ by using representation theory of symplectic groups. In fact, Asada and Nakamura
determined Im Tg‘D in terms of Sp(29g, Q)-representations.
In general, Morita showed that Im TE) is smaller than hg,1(k) ® Q. He defined an Sp(H)-equivariant
homomorphism
Trok+1 @ hg1(2k + 1) C H® Loks2 — H @ H®(2K+2) = o (2k+3)

H®id, e(2k+1) roj.
H H®(2k+1) proj S2k+1p

where S2k+1H s the (2k + 1)-st symmetric product of H. The map Tr2k+1 is called the frace map. By an
easy calculation, we see that Trak+1 is non-trivial.

Theorem 5.3 (Morita [73]). The homomorphism
Tgk.;.l : (Mg,1[2k+ 11/ Mg,1[2k + 2]) ®Q—bhg1(2k+1)8Q
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is not surjective for any k > 1. In fact,
Im Taks1 C Ker (Traks1 : hg,1(2k + 1) — S2K+1H)

holds fork > 1.

Generalizing the trace maps, Enomoto and Satoh [23] found more components in the cokernel of T@.
Different approaches to the cokernel were given by Conant-Kassabov-Vogtmann [17] and Kawazumi-Kuno
[53].

Based on Theorem 5.3, Morita posed the following:

Problem 5.4. Find topological meanings of the cokernel of T and the trace maps.

In [74], he suggests several approaches to attack this problem.

5.2. Integral homology 3-spheres

As mentioned in Section 2.3, any integral homology 3-sphere can be represented as My = H(g) U,yof
(—H(g)) for some g > 0 and f € Zy. On the other hand, we see by a topological observation that My =
Mglchmgcfohz holds for any diffeomorphisms hi, h2 € Ny, where Ny is the subgroup of Mg consisting
of all isotopy classes of diffeomorphisms of ¥4 = dH(g) which can be extended to diffeomorphisms of
Hg)-

In [71], Morita showed that for any integral homology 3-sphere My with f € Zg, there exist h1, h2 €
Ng N Zg such that Tl(gl o hyotgofohz)=0,which implies that any integral homology 3-sphere can
be represented as My for some g = 0 and f’ € k4. Precisely speaking, he gave this argument in Zg, 1.
However, it can be applied to Zy almost verbatim.

Applying this argument to the next filter g = Mg[ 2], Pitsch [85] proved that we may further take such
f’ from Mgy[ 3]. Now we have the following well-known problem.

Problem 5.5. Let kK > 4 be an integer. Can any integral homology 3-sphere be represented as My for
some g = 0 and f € Mg[k]?

In the same paper, Morita proved that assigning to f € kg4 the Casson invariant A(My) of the integral
3-sphere My gives a homomorphism A : Kg — Z. Moreover, he showed that there exists an Mg, 1-
invariant homomorphism d : Kg,1 — Z which sends any BSCC map of genus h to 4h(h — 1), and gave
a relationship between d and A.

5.3. Hain’s works on the Torelli Lie algebra

Finally, we mention deep results of Hain about a Lie algebra associated with the Torelli group. The Torelli
Lie algebra is the graded Lie algebra defined by
tg=Ptgk),  tgk) :=(MkZo/Tks1Zg) ® Q.
k=1
It plays an important role in the theory of finite type invariants for integral homology 3-spheres (see
Garoufalidis-Levine [27] and Habiro [37] for details). Since M'kZg € Mg[k], a natural homomorphism
tg — Im 79 is induced.

In [40], Hain gave an explicit presentation of the Lie algebra tg for g > 3. The proof requires deep
knowledge of algebraic geometry including the theory of relative Malcev completions and the mixed Hodge
theory, and hence it is beyond the scope of this article. Giving a topological proof of the presentation of t4
is a problem posed by Hain. We have also a presentation for the Lie algebra of Zy,1 (see Habegger-Sorger
(36]).

In the same paper, Hain further proved the following important facts.

Theorem 5.6 (Hain [40]). (1) t5(2) =Im 'rg ® Q forg = 6. The summand Q corresponds to the Casson
invariant homomorphism A described by Morita.

(2) The natural homomorphism tg — Im 79 is surjective for g > 3. In particular, the Lie algebraIm 19
is generated by its degree 1 part.
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(3) Forany k = 1, there exists a mapping class f € Mg,1[k] such that d(My) # 0.

The statement (2) and Enomoto-Satoh’s result mentioned in Section 5.1 provide powerful tools to
determine the rational Johnson image Im 7®. Up to now, Im TE) is determined for k < 6. The result is
given without proof in a paper [76, Table 1] of Morita, Suzuki and the author. The details will appear

elsewhere.

6. Monoids of homology cobordisms of surfaces

6.1. Homology cobordisms of surfaces

Monoids of homology cobordisms were introduced by Goussarov [33] and Habiro [37] in their study of
finite type invariants of 3-manifolds using their clover and clasper surgery theory. From our context, these
monoids are considered to be enlargements of the Johnson filtration of the mapping class group. A re-
markable point is that it is possible to extend Johnson homomorphisms to the monoids, which implies that
the theory of Johnson homomorphisms can be applied to wider objects in 3-dimensional topology. We
will see in Corollary 6.7 that considering monoids of homology cobordisms gives one answer to Morita’s
question (Problem 5.4).
The following definition is due to Garoufalidis and Levine [28]:

Definition 6.1. A homology cobordism over ¥4,1 consists of an oriented compact 3-manifold M with two
embeddings i, i : ¥g,1 < 9M, called the markings, such that:

1. i} is orientation-preserving and i_ is orientation-reversing;

2. itloxgy = i-loxg s

3. M = i1 (2g1) Ui-(2g,1) and i+(Zg,1) N i-(Zg,1) = i+(0Zg,1) = i-(8Zg,1), namely oM is
diffeomorphic to the double of X4 1;

4. The induced maps (i+)«, (i-)x : Hx(2Zg,1) — H« (M) are isomorphisms, namely M is a homology
product over Xg,1.

We denote a homology cobordism by (M, iy, i_).

Two homology cobordisms (M, iy, i-) and (N, j+, j—) over 4,1 are said to be isomorphic if there exists
an orientation-preserving diffeomorphism f : M — N satisfying j+ = f o i and j_ = f o i_. We denote by
Cg,1 the set of all isomorphism classes of homology cylinders over Zg 1. We define a product operation
on Cq,1 called stacking by

M, iy, 2)- (N, j+,j=) == (MU_o, )1 N, 14, j-)
for (M, iy, i), (N, j+,j-) € Cqg,1, which endows Cg,1 with a monoid structure (see Figure 6.1). The unit is
given by
1g1:=(%g,1x[0,1],id x 1,id x 0),
where collars of iy (Zg,1) = (id x 1)(Zg,1) and i_(Zg,1) = (id x 0)(Zg,1) are stretched half-way along
(0%2g,1) x [0, 1] so that iy (82g,1) = i—-(8%g,1).

Example 6.2. (1) For each self-diffeomorphism f of %4, 1 which fixes 0Zg,1 pointwise, we can construct a
homology cobordism by setting
(Zg,1x[0,1],idx 1,f x 0)

with the same treatment of the boundary as above. It is easily checked that the isomorphism class of
(Zg,1 x [0,1],id x 1,f x 0) depends only on the (boundary fixing) isotopy class of f and that this
construction gives a monoid homomorphism from the mapping class group Mg,1 to Cg,1. In fact, it is
an injective homomorphism (see Garoufalidis-Levine [28, Section 2.4], Levine [57, Section 2.1], Habiro-
Massuyeau [39] and [29, Proposition 2.3]).
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Figure 6.1: Stacking of homology cobordisms

(2) When g = 0, the monoid Cp,1 is naturally identified with the monoid 9% of integral homology
3-spheres whose product operation is given by the connected sum. Indeed, filling the boundary of a
homology cobordism over Zg,1 by a 3-ball induces the identification of the monoids. Moreover, for an
integral homology 3-sphere X, we have a homology cobordism ((Zg,1 x [0, 11)#X, id x 1, id x 0). This
construction gives a monoid embedding 9% — Cg,1. Indeed, we have a retraction Cg,1 — 9% by using
prime decompositions of 3-manifolds (see [31, Proposition 2.1]).

To a homology cobordism (M, iy, i) € Cg,1, we assign the automorphism
oM, iy, ) i= (i4); o (L)«
of H. It is easy to check that o(M, i, i) is in Sp(H) and this map defines a monoid homomorphism
0:Cq,1— Sp(H)
extending the action of Mg 1 on H.

Definition 6.3. A homology cobordism (M, iy, i) over g 1 belonging to Kero is called a homology
cylinder over £4,1. We denote by ZCq,1 the submonoid of Cg,1 consisting of homology cylinders over
Zg,1-

6.2. Johnson homomorphisms for homology cobordisms

One of the interesting things about Cg,1 is that we can extend the Johnson homomorphisms. Since the
fundamental group m1(M) of (M, iy, =) € Cq,1 is generally not isomorphic to m = m1(2g,1), there is
little hope of the existence of the natural action of Cg,1 on 7. However, what we need for the definition of
Johnson homomaorphisms is not the action on 1 but the action on the nilpotent quotients Nk = Nk (). Our
conditions for homology cobordisms are sufficient to obtain such actions as we see below.

A group homomorphism ¢ : G1 — G is said to be 2-connected if ¢ induces an isomorphism @« :

H1(G1) = H1(G>) and an epimorphism @« : H2(G1) - H2(G2).

Theorem 6.4 (Stallings [97]). If a homomorphism ¢ : G1 — G2 is 2-connected, then it induces an

~

isomorphism @ « : Nk(G1) = N (G2) of the k-th nilpotent quotients for every k > 2.

Forany (M, iy, i) € Cg,1, the homomorphisms (i+) «, (i)« : ™ — 1M1 (M) are 2-connected. Therefore
they induce isomorphisms (iy)«, (i)« : Nk — Nk (m1(M)) for every k > 2. Define a map

Ok : Cg,1 — Aut(Ny)

by ok(M, i}, i-) = (i+):1 o (i-)«. We see that gx is a monoid homomorphism extending the action of
Mg,1 on Ni.

Definition 6.5. The Johnson filtration {Cg,1[k]} k>0 of Cg,1 is defined by
Cg,1[0] :=Cg,1, Cg,1[K] := Ker(ok+1 :Cg1— Aut(Nk+1)) (k=1).
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We have Cg,1[1] = ZCg4,1 by definition. Differently from the case of Mg,1, the intersection (x5 Cg,1[K]
is not trivial since homology cobordisms obtained as in Example 6.2 (2) have trivial images by all ok.
In [28], Garoufalidis and Levine introduced the subgroup

Auto(Ng) := {(p € Aut(Ng)

There exists an endomorphism ¢ of m lifting ¢
and satisfying () = mod k4 1. ’

of Aut(N) and observed that the image of ok is included in it. Moreover, they showed that there exists
an exact sequence
1 — bg,1(k) — Auto(Nk+2) — Auto(Nk+1) — 1,

as a restriction of the sequence in Theorem 4.4. Using this, we define the k-th Johnson homomorphism
Tk @ Cg,1[ k] — bg,1(K)

for homology cobordisms by restricting ox+2 to Cg,1[k]. Clearly, this is an extension of T¢ for Mg, 1[K]
and in particular, the latter half of Theorem 4.8 automatically follows.
As for the image of ¢ for homology cobordisms, the following remarkable fact holds:

Theorem 6.6 (Garoufalidis-Levine [28], Habegger [35]). For k > 2, the image of ok coincides with
Auto(Ng).

Corollary 6.7. The k-th Johnson homomorphism Tk : Cg,1[ k] — bg,1(k) is surjective for any k > 1.

The proof by Garoufalidis and Levine uses a homological version of a classical surgery technique, what
we call “the middle homotopy group elimination”. Habegger’s proof uses more specific techniques in low
dimensional topology. It is interesting to compare these proofs.

6.3. Borromean surgery and closures of homology cobordisms

The most flexible construction of a homology cobordism is to use Borromean surgery introduced by
Matveev [66]. His theory was generalized to the theory of clover and clasper surgeries due to Gous-
sarov [33] (see also Garoufalidis-Goussarov-Polyak [26]) ) and Habiro [37] independently. In their theory,
Borromean surgeries serve as the elementary moves.

Consider a handlebody H3) of genus 3 in the standard position in 53 including the 6 component link
B each of whose components is given the O-framing as in Figure 6.2.

Figure 6.2: The handlebody H(3) with the 6 component link B

For an oriented 3-manifold M, we take an embedding C of the handlebody H(3) with the link B into M
and give a simultaneous surgery along the embedded framed link. The resulting 3-manifold M¢ is said to
be obtained from M by a Borromean surgery along C. The equivalence relation generated by Borromean
surgeries is called the Borromean surgery equivalence. Matveev showed that this surgery preserves the
homology and its torsion linking form, and moreover that two oriented closed 3-manifolds M1 and M,
can be obtained from one another by Borromean surgeries if and only if there exists an isomorphism
@ : H1(M1) = H1(M) preserving their torsion linking forms. In [60, Section 1], Massuyeau proved that
a Borromean surgery along an embedding C is equivalent to a Torelli surgery along the boundary Z of the
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embedded handlebody; once cut M along a surface X = Z4 (of any genus g) and reglue it by an element
of Zg.

Returning to homology cobordisms over X4, 1, we see that Borromean (Torelli) surgeries preserve the
conditions in Definition 6.1.

Theorem 6.8 (Habiro [37], Massuyeau-Meilhan [63]). Two homology cobordisms (M, i+, i), (N, j+,j-) €
Cg,1 are Borromean surgery equivalent if and only if 6(M, iy, i) = 0(N, j+, j-). In particular, the monoid
ICgq,1 of homology cylinders over £4,1 is the same as the set of all homology cobordisms which are
Borromean surgery equivalent to the trivial cylinder 1¢,1.

Let us observe a more close relationship between Cg,1 and oriented closed 3-manifolds.

Definition 6.9. For a homology cobordism (M, i, i-) over Zg 1, the closure Cy of (M, i, i) is defined
by
Cm = M/(is(X) ~ i(x), X € Zg,1).

It is easily checked that this construction is the same as gluing Zg,1 x [0, 1] to M along their bound-
aries and that if (M, {4, i_) =(Zg,1 x [0, 1],id x 1, f x 0) for [f] € Mg,1, we have Cy = Cy. Therefore
the closure construction is an extension of open book decompositions. Note that this construction is com-
patible with the Borromean surgery equivalence. Taking Theorem 6.8 into account, we have the following
commutative diagram:

C.
|_| Mg,]_(—> |_| Cg,1 u—» {oriented closed 3-manifolds}
g=>0 g=>0
|
U |_| Cg,1/Bo. B BN {oriented closed 3-manifolds}/Bo.
9>0
Habiro Matveev

|_| Sp(29, 7) e {H; &torsion linking form}/isom.

9>0
l ucC.

| | Sp(2g, 2)/conj.
g=0

In the diagram, the abbreviation “Bo.” stands for the Borromean surgery equivalence. The surjectivity of
the map uUC, follows from the fact proved by Alexander [1], Myers [80], Gonzéalez-Acuna (unpublished)
that any oriented closed 3-manifold has a fibered knot and a Seifert surface of some genus. That is, we
have a commutative diagram

|_| Cg1 —» {oriented closed 3-manifolds}
9>0

LCe.=0pen book decomp.
|_| Mg
g=0

Remark 6.10. Using the above mentioned fact, we can assign to an oriented closed 3-manifold X two
integers

op(X) :=min{g | X = Cr for some [f] € Mg,1},
hc(X) :=min{g | X = Cp for some (M, iy, i_) €Cq,1}.

Studying these numbers might be interesting. By definition, we have hc(X) < op(X) for any X. The
Mayer-Vietoris exact sequence for X = Cy = M U (Zg,1 x [0, 1]) gives the inequality

min{n | H1(X) is generated by n elements} < 2hc(X).
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It is easily checked that op(X) = 0 if and only if X = S3, while hc(X) = 0 if and only if X is an integral
homology 3-sphere.

Note that hc(X) depends only on H1(X) and its torsion linking form, namely the Borromean surgery
equivalence class. Indeed, suppose oriented closed 3-manifolds X, Y are given and Y is obtained from X
by a Borromean surgery along an embedding C : H3y) — X. We have X = Cy = MU (Zg,1 x [0, 1])
for some (M, iy, i-) € Cg,1 with g = hc(X). Then we may move the embedded handlebody %41 x
[0, 1] = H(2g) in X by an isotopy so that it does not intersect C(H(3)), which is possible because both
of C(H(3)) and Z4,1 x [0, 1] are closed regular neighborhoods of graphs. We have Y = Cpy. and hence
hc(Y) < hc(X). By the symmetry, we also have hc(X) < hc(Y). Therefore hc(X) = hc(Y) holds.

The author computed hc for a number of 3-manifolds (unpublished). Since Cig = #29(51 x 52) and
Cr, = #29_1(51 x 52) for any Dehn twist Ty € Mg,1 along a non-separating simple closed curve y, we
see that hc(X) = g holds if H1(X) is isomorphic to Z29 or Z29~1. The situation becomes complicated
when H1(X) is not free abelian. For example, we can directly check that for connected sums of lens
spaces L(p, q), we have hc(L(p, £1)#L(p’, £1)) = 1 for any p, p’, although hc(L(5, 1)4L(5, 2)) = 2.
Recently, Nozaki [83] showed that hc(L(p, q)) = 1 holds for all lens spaces by a number theoretical
method. Also, he generalized some of the facts mentioned here.

On the other hand, the integer op(X) has more topological nature and is difficult to compute. Using
Baker’s results [5, 6], we can determine whether op(X) = 1 holds when X is L(p, q) or L(p, @)#L(p’, q’).

6.4. Refinement of higher Johnson homomorphisms for homology cobordisms

Let us extend the refinement Tx = 6k of the k-th Johnson homomorphisms in Sections 4.2 and 4.3 to
homology cobordisms. Here we extend Heap’s construction as follows.

For a given homology cobordism (M, iy, i-) € Cg,1[k], we construct the closure Cy as mentioned
above. The fundamental group of Cy is given by

m1(Cm) = (M) {((i) « (V) (Y1) |y € ).

Since (M, iy, i-) € Cg,1[ k] implies that (i+)« = (i-)« : Nk+1 =Y Ng+1(m1(M)), we have a commuta-
tive diagram

(i) x=(i-)
m(Zg1) ——————— m1(Cm)

I, ]

Ng+1 ————— Nis1(m11(Cm))
((+)x=(i=)«
whose bottom horizontal map is an isomorphism. Let By be the composition

New ()7
Bm : Cy — K(m1(Cm), 1) — K(Ng+1(m1(CMm)), 1) ———— K(Ng+1, 1)

of the natural continuous maps as before. Define a map
Ok : Cg,1[ k] — H3(K(Nk+1,1)) = H3(Nk+1)

by assigning to (M, i, i-) € Cg,1[ k] the image (Bm)« ([Cm]) of the fundamental class [Cy] € H3(Cpm)
by (Bm) «-

Theorem 6.11 ([90]). We have a surjective homomorphism
Ok : Cg,1[k] — H3(Nk+1)
which extends 0k : Mg,1[k] = H3(Nk+1). The kernel of O is Cg,1[ 2k].

The additivity of 8¢ follows from the topological consideration given below. For (M, iy, i), (N, j+,j-) €
Cg,1[ k], we construct a 4-manifold

W=(Mx[0,11)UNx[0,11)U((Zg,1 x[0,1])x[0,3])
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by the following gluing rule: We glue (3(Zg,1 x [0, 1]))x [0, 1] to (M) x [0, 1]. We also glue (91g,1) x
[2,3]to oN x [0, 1] with opposite direction of unit intervals and opposite markings of homology cobor-
dism N and 4,1 x [0, 1]. Taking the definition of the closure into account, we see that W is the union
of Cym, Cy and
(=M x {1}NU(=Nx {1} U ((a(Zg,1 x [0,1])) x [1, 2]),

which is the closure —Cpu.y of the product (M, iy, i-)-(N, j+, j—) with opposite orientation. Since (M, i+, i),
(N, j+,j=) and their product are all in Cq,1[k], the (k + 1)-st nilpotent quotients of their fundamental
groups have natural identifications with N1 through markings. The continuous map By U By U By :
oW — K(Nk+1,1) naturally extends to By : W — K(Nk+1, 1). Then the equality o([W, oaW]) =
[Cm]+ [Cn]—[Cm.n] of cycles holds, implying the additivity of 6.

The surjectivity of the extended 8¢ follows from an argument using Corollary 6.7 and the direct sum
decomposition (4.3).

6.5. Equivalence relations among homology cobordisms of surfaces

Originally, Goussarov and Habiro independently introduced monoids of homology cobordisms over a sur-
face to apply their surgery theory generalizing Matveev’s Borromean surgeries. Their surgery techniques
named clover or clasper surgery also preserve homology of 3-manifolds and define the Y-equivalence
relation among 3-manifolds for kK > 1. Here the Y1-equivalence coincides with the Borromean surgery
equivalence. In general, two oriented compact 3-manifolds M and M’ are said to be Yk-equivalent if M’
is obtained from M by cutting M along an embedded surface £ = Zg 1 (of any genus g) and reglue it
by an element of 'kZgy,1. Here, we adopt the definition used in Massuyeau-Meilhan [64] in a number of
equivalent definitions of Yg-equivalences (see also Massuyeau [61, Appendix]).

Let us now consider Y,-equivalences for homology cobordisms over XZg,1. For details, see a survey
paper by Habiro and Massuyeau [39]. Define YkCg,1 to be the subset of Cg,1 consisting of homology
cylinders that are Yi-equivalent to the trivial cylinder 14,1. As seen in Theorem 6.8, we have Y1Cg,1 =
ICg,1. Itis easily checked from the definition that YxCg,1 is a submonoid of ZCg,1 and that the k-th Johnson
homomorphism Tk is invariant under Yi+1-equivalence of homology cobordisms. Goussarov and Habiro
showed that Y1Cg,1/Yk+1 is a finitely generated nilpotent group and in fact, Y«Cqg,1/Yk+1 is a finitely
generated abelian group. In [63] and [64], Massuyeau and Meilhan gave the following explicit descriptions
of YkCq,1/Yk+1 for k = 1, 2 by using invariants of homology cobordisms. The map Y1Cg,1 = Y1Cg,1/Y2 is
given by the first Johnson homomorphism and the (extension of) Birman-Craggs-Johnson homomorphism.
As a result, we have Y1Cg,1/Y2 = H1(Zg,1). The map Y2Cg,1 - Y2Cg,1/Y3 is given by the second
Johnson homomorphism, (the extension of) Morita’s homomorphism d and one more invariant coming
from a Reidemeister torsion invariant of the pair (M, i+ (M)).

In Massuyeau-Meilhan [64], another equivalence relation named the J-equivalence was introduced.
The definition is given by replacing MkZg,1 by Mg,1[k] in the definition of the Yi-equivalence. The Y;-
equivalence is the same as the J1-equivalence. Massuyeau and Meilhan gave explicit descriptions of J>-
and J3-equivalences among homology cylinders. By using these results, they recovered and generalized
(to the settings of homology cylinders) the results of Morita and Pitsch mentioned in Section 5.2.

The direct sum gYCg,l := @k>1 YkCq,1/Yk+1 has a natural structure of a Lie algebra. Habiro-Massuyeau
[38] determined the structure of gYCg,1®@ by using the LMO functor defined in Cheptea-Habiro-Massuyeau
[15]. See also a paper by Andersen, Bene, Meilhan and Penner [2] for a related work.

Remark 6.12. Garoufalidis and Levine [28] defined another equivalence relation among homology cobor-
disms by considering the 4-dimensional homology cobordism relation. The quotient 7g,1 with respect to
this equivalence relation becomes a group. It is easily checked that Mg,1 is embedded in the homology
cobordism group 4,1 and the actions ok : Cg,1 — Auto(N) factor through Hg,1.

Structures of the group #g,1 and its Johnson filtration were studied in Levine [57], Conant-Schneiderman-
Teichner [18], Kitayama [55], Song [95] and Cochran-Harvey-Horn [16] (see also a survey paper [92]). One
of the remarkable results was given by Cha, Friedl and Kim in [13], where it is shown that the abelianiza-
tion H1(Hg,1) has (Z/2Z)® as a direct summand for g > 1. Recently, Massuyeau and the author [65]
showed that H1(Hg,1) ® Q is non-trivial.
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Remark 6.13. As is discussed in Garoufalidis and Levine [28], Habegger [35] and Meilhan [67] for in-
stance, the relationship among mapping class groups, monoids of homology cobordisms and the ho-
mology cobordism group Hg,1 is similar to that among braid groups, monoids of string links and the
concordance group of string links.

7. Applications to homologically fibered knots

For a knot K in S3 with a Seifert surface R, we have a sutured manifold (Mg, K) constructed as follows.
We take an open regular neighborhood N(K) of K and cut S3— N(K) open along R to obtain a 3-manifold
Mg. The knot K (more precisely, dN(K)) is regard as a suture in the boundary dMg. When there exists
a Seifert surface R such that (Mg, K) is a product sutured manifold, the knot K is said to be fibered. In
our context, we consider the following class of knots defined by picking up a property satisfied by fibered
knots.

Definition 7.1 (Goda-S. [29]). A knot K in S3 is called a homologically fibered knot of genus g if it has
the following properties which are equivalent to each other:

(a) The Alexander polynomial A (t) of K is monic and its degree is equal to twice the genus g = g(K)
of K, namely Ax(t) up to multiplication by £t is of the form

Ak(t) = t29 + azg_]_tzg_l +---+ait+ 1.
(b) For any minimal genus Seifert surface R of K, its Seifert matrix S is invertible over Z.

(c) For any minimal genus Seifert surface R of K, the sutured manifold (Mg, K) is a homology cobor-
dism over R.

Aside from the name, the equivalence of the conditions (a), (b), (c) in the definition was mentioned in
Crowell-Trotter [19]. To see the conditions (b) and (c), it suffices to check for one minimal genus Seifert
surface.

Example 7.2. (1) All fibered knots are of course homologically fibered. It follows from Murasugi’s result
[79] that all homologically fibered knots which are alternating are fibered.

(2) Up to 11 crossings, all homologically fibered knots are known to be fibered. On the other hand,
there are totally 13 non-fibered homologically fibered knots of 12 crossings:

genus | number
2 0057, 0258, 0279, 0382, 0394, 0464, 0483, 0535, 0650, 0801, 0815
3 0210, 0214

Here each of the numbers in the right column indicates P with the non-alternating prime knot of 12-
crossings indexed by 12n_P in KnotInfo [14]. Their non-fiberedness was first shown by Friedl and Kim
in [25] using twisted Alexander invariants. In [30], Goda and the author gave another proof of the non-
fiberedness by using a Reidemeister torsion invariant discussed in [91].

(3) Pretzel knots P, = P(—2n+ 1, 2n+ 1, 2n? + 1) are homologically fibered knots of genus 1. Using
these knots and sutured Floer homology theory, we showed in [31] that the submonoid

Cigrrl :={(M, iy, L) €Cg,1 | M is an irreducible 3-manifold}

has a non-finitely generated abelian quotient for any g > 1. Note that Cg,1 itself has the monoid 9% as a
big abelian quotient (recall Example 6.2 (2)).

Constructing a homology cobordism from a given homologically fibered knot has an ambiguity arising
from taking a minimal genus Seifert surface and fixing a pair of markings. However, the following holds:
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Proposition 7.3 (Goda-S. [30, Proposition 2.5]). LetR1 and Ry be (maybe parallel) minimal genus Seifert
surfaces of a homologically fibered knot of genus g and let Mg, and Mg, be their sutured manifolds. For
any markings ix and j+ of 3Mg, and dMg,, there exists another homology cobordism N € Cg,1 such that

(MR]_I i+r l—) * N = N * (MR21j+Ij—)
holds as elements of Cg,1.

The claim for the case where R1 and R are disjoint in E(K) is easily proved. The general case where
R1 and R3 are not disjoint uses a theorem of Scharlemann and Thompson [96] saying that there exists
a sequence of minimal genus Seifert surfaces R; =S1 —- S — -+ = S, = Rz such that S; and Si+1
are disjoint in E(K) for i =1, 2, ..., n— 1. Using the argument in the first case repeatedly, we have the
conclusion.

Proposition 7.3 can be seen as a generalization of the fact that a fibered knot determines an element
of the mapping class group of a surface uniquely up to conjugation. It also provides a way to get invariants
of homologically fibered knots. For example, abelian quotients of Cg,1 mentioned in Remark 6.12 give
invariants. We also have invariants by considering class functions on the group Sp(H) = Sp(2g, Z)
through the representation 0. For example, we may use the Meyer functions [69] for g =1, 2.

Note that, differently from fibered knots, a homologically fibered knot does not necessarily have a
unique minimal genus Seifert surface. By using a theorem of Eisner [22], we see that the connected sum
of two non-fibered homologically fibered knots, which is again a homologically fibered knot, has infinitely
many non-isotopic minimal genus Seifert surfaces.

Finally, we present two results on homologically fibered knots related to Johnson homomorphisms. The
first one is that Johnson homomorphisms can be used as fibering obstructions of homologically fibered
knots.

Theorem 7.4 (Goda-S. [32]). The non-fiberedness of the 13 non-fibered homologically fibered knots of
12 crossings in Example 7.2 (2) is detected by 04 : Cg,1 — Auto(Na4).

The precise meaning of this theorem is as follows. We showed that for each of the 13 homologically fibered
knots, there exists a minimal genus Seifert surface R such that the homology cobordism (Mg, i4, i)
obtained by fixing i+ and i satisfies 04(MRg, i+, i) € 04(Mg,1). If the knot were fibered, it had a unique
minimal genus Seifert surface and the corresponding homology cobordism (in fact a product sutured
manifold) was mapped in 04(Mg,1) by 04. For the proof that 04(Mr, i+, i-) € 04(Mg,1), we used
Yokomizo’s result on the image 72(Kg,1) (Example 4.9 (2)).

The second one is that homologically fibered knots which cannot be distinguished by Johnson homo-
morphisms are ubiquitous.

Theorem 7.5 (Goda-S. [30]). LetK be a homologically fibered knot of genus g = 1 with a minimal genus
Seifert surface R. For any positive number V, there is a homologically fibered knot L of the same genus
and a minimal genus Seifert surface R’ of L satisfying that

1. The homology cobordisms (Mg, i+, i) and (Mg, j+,j—) cannot be distinguished by ok for any
k> 2.

2. L is a hyperbolic knot and the hyperbolic volume of the exterior S3 — L is bigger than V.

The proof relies on Myer’s theorem [82] on concordances of Seifert surfaces generalizing his previous
result [81].
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