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CORRUGATION PROCESS AND ε-ISOMETRIC MAPS

Mélanie Theillière

Abstract. — Convex Integration is a theory developed in the ’70s by M. Gro-
mov. This theory allows to solve families of differential problems satisfying some
convex assumptions. From a subsolution, the theory iteratively builds a solution
by applying a series of convex integrations. In a previous paper [6], we proposed
to replace the usual convex integration formula by a new one called Corrugation
Process. This new formula is of particular interest when the differential problem
under consideration has the property of being of Kuiper. In this paper, we con-
sider the differential problem of ε-isometric maps and we prove that it is Kuiper
in codimension 1. As an application, we construct ε-isometric maps from a short
map having a conical singularity.
Résumé. — L’intégration convexe est une théorie développée dans les années 70

par M. Gromov. Cette théorie permet de résoudre des familles de problèmes dif-
férentiels vérifiant certaines hypothèses de convexité. A partir d’une sous-solution,
elle construit itérativement une solution en appliquant une succession d’intégra-
tions convexes. Dans un précédent article [6], on a proposé une formule, appelés
procédé de corrugation, alternative à la formule d’intégration convexe. Cette nou-
velle formule est particulièrement intéressante dans le cas où le problème différen-
tiel considéré possède la propriété d’être de Kuiper. Ici on considère le problème
différentiel des applications ε-isométriques et on prouve qu’il vérifie la propriété
d’être de Kuiper en codimension 1. A titre d’application, nous montrons com-
ment construire directement des applications ε-isométriques à partir d’applications
courtes ayant une singularité conique.

1. General introduction

1.1. The Nash–Kuiper Theorem

A map f : (M, g) → En between a Riemannian manifolds (M, g) and
the Euclidean space En = (Rn, 〈·, ·〉) is said to be isometric if g = f∗〈·, ·〉.
It is said to be strictly short if g − f∗〈·, ·〉 is positive definite (as usual
f∗h denotes the pullback of the metric h by f). In other words, the length
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246 MÉLANIE THEILLIÈRE

of the image of any curve in M by a strictly short map is shorter than the
length of the curve in M . The C1 embedding theorem of Nash and Kuiper
states that close to every strictly short map lies a C1-isometric map:

Theorem 1.1 ([3, 4]). — Let (Mm, g) be a compact Riemannian man-
ifold and let f0 : (Mm, g) → (Rn, 〈 ·, ·〉), with n > m, be a strictly short
embedding. Then for any ε > 0 there exists a C1-isometric embedding
f : (Mm, g)→ (Rn, 〈·, ·〉) such that, supx ‖f(x)− f0(x)‖ < ε.

The proof considers an increasing sequence of metrics gk converging to-
ward g and a decreasing sequence εk converging toward 0. A sequence of
maps f1, . . ., fk, . . . is then iteratively built such that, for each k, fk is an
εk-isometric map from (M, gk) to En i. e.

‖gk − f∗kh‖ < εk.

Parameters of the construction are chosen to insure the C1 convergence of
the sequence (fk)k so that the limit map f∞ is isometric.

1.2. Differential relations

We now introduce the formalism of Gromov’s Convex Integration The-
ory [2]. This theory can be seen as a wide generalization of Nash’s approach.
It provides a powerful tool to solve a large family of differential constraints.
We denote by

J1(M,W ) := {(x, y, L) |x ∈M, y ∈W, L : TxM → TyW a linear map} .
the 1-jet space of C1 maps between M and W . Every C1-map f gives rise
to a section j1f : x 7→ (x, f(x), dfx) of J1(M,W ) called the 1-jet of f . For
any section S0 : x 7→ (x, f0(x), Lx) we denote by f0 = bs S0 its base map.
A differential relation R is any subset of the 1-jet space J1(M,W ). For

instance, the ε-isometric condition defines the differential relation Is(ε) of
ε-isometric maps:

Is(ε) := {(x, y, L) | ‖gx − L∗hy‖ < ε}
where L∗h denotes the pullback by L of the metric h. Observe that, as a
topological subspace, Is(ε) is open.

Definition 1.2. — Let S : M → J1(M,W ) be a section. We say that
S is a formal solution of R if the image of S lies in R. Moreover, if there
exists a C1-map f : M → W such that j1f = S, we say that S is a
holonomic solution of R.
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For instance, building an ε-isometric map f is equivalent to finding a
holonomic section j1f of Is(ε).
Under some topological and convex assumptions on R, the Convex Inte-

gration Theory allows to deform a formal solution S0 to a holonomic one.
Each convex integration modifies the 1-jet of a formal solution (x0, f0, L0)
in a given direction u to obtain a new formal solution S = (x, f, L) such
that L(v) = df(v). Loosely speaking S is “partially” holonome in the di-
rection u. Here is how it works for M = [0, 1]m and W = En. In this case
a formal solution writes

S0 : x 7→
(
x, f0(x), v1(x), . . . , vm(x)

)
∈ R

where we have identified the 1-jet space with the product
J1([0, 1]m,Rn) = [0, 1]m × Rn × (Rn)m

and S0 is holonomic if there exists a map f such that
S0 = j1f : x 7→

(
x, f(x), ∂1f(x), . . . , ∂mf(x)

)
.

From a formal solution S0, the Convex Integration Theory builds a finite
sequence of formal solutionsSk such that for every k ∈ {1, . . . , m} we have

Sk : x 7→ (x, fk(x), ∂1fk(x), . . . , ∂kfk(x), vk+1(x), . . . , vm(x)) ∈ R.
In particular

Sm = j1fm : x 7→ (x, fm(x), ∂1fm(x), . . . , ∂mfm(x))
is a holonomic solution of R.

1.3. Corrugation Process

To build the sequence Sk, we propose in [6] to replace the usual for-
mula of the Convex Integration Theory by another one, called Corrugation
Process:

Definition 1.3. — Let f0 : [0, 1]m → Rn be a map, ∂j be a direction,
γ : [0, 1]m × R/Z → Rn be a loop family and N ∈ ]0,+∞[. We define the
map f1 : [0, 1]m → Rn by

(1.1) f1(x) := f0(x) + 1
N

∫ Nxj

s=0
γ(x, s)− γ(x)ds

where γ(x) =
∫ 1

0 γ(x, s)ds denotes the average of the loop t 7→ γ(x, t). We
say that f1 is obtained from f0 by a Corrugation Process in the direction
∂j and we denote f1 = CPγ(f0, ∂j , N).

VOLUME 35 (2017-2019)
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The Corrugation Process satisfies the following three properties which
are at the basis of the Convex Integration Theory [5].

Proposition 1.4 ([6]). — The map f1 = CPγ(f0, ∂j , N) satisfies
(P1) ‖f0 − f1‖C0 = O(1/N),
(P2) ‖∂if0 − ∂if1‖C0 = O(1/N) for every i 6= j.

Moreover if ∀ x ∈ [0, 1]m we have ∂jf0(x) = γ(x) then
(P3) ∂jf1(x) = γ(x,Nxj) +O(1/N) for all x ∈ [0, 1]m.

Provided that N is large enough, this proposition shows that the Corru-
gation Process allows to modify the jth partial derivative while keeping the
other derivatives under control. Consequently, this formula performs the
deformations required to build the sequence (Sk)k provided γ has values
in a well chosen region. For more details and for a proof of this proposi-
tion see [6]. We give below a coordinate free expression of the Corrugation
Process:

Definition 1.5. — Let f0 : U → (W,h) be a map from an open set
U ⊂ M , π : U → R be a submersion and γ : U × R/Z→ f∗0TW be a loop
family such that γ(x, .) : R/Z→ f∗0TWx for every x ∈ U . The map defined
by Corrugation Process is defined by

f1 = CPγ(f0, π,N) : x 7→ expf0(x)

(
1
N

∫ Nπ(x)

t=0
γ(x, t)− γ(x)dt

)

where exp : TW →W is the exponential map induced by the metric h.

1.4. Subsolutions

Subsolutions are a refinement of the notion of formal solution. This re-
finement is needed to ensure the existence of a loop family γ whose its val-
ues is chosen in an appropriate region and whose its average is the partial
derivative ∂jf0 under consideration (see property (P3) of Proposition 1.4).
Let R be a differential relation, σ = (x, y, L) ∈ R and (λ, u) ∈ T ∗xM

× TxM such that λ(u) = 1. We set
R(σ, λ, u) := ConnL(u) {v ∈ TyW | (x, y, L+ (v − L(u))⊗ λ) ∈ R}

where ConnaA denotes the path connected component of A that contains
a. We say that R(σ, λ, u) is the slice of R over S with respect to (λ, u).
Note that the linear map L + (v − L(u)) ⊗ λ coincides with L over kerλ
and maps u to v. We then denote by IntConv R(σ, λ, u) the interior of the
convex hull of R(σ, λ, u).

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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Definition 1.6. — Let U ⊂ M , π : U → R be a submersion and
u : U → TM be a vector field such that dπx(ux) = 1. Let x 7→ S(x) =
(x, f0(x), L(x)) be a formal solution of R over U . If for every x in U the
base map f0 = bs S satisfies

df0(ux) ∈ IntConv R(S(x), dπx, ux)

then the formal solution S is called a subsolution of R with respect to
(dπ, u).

In the case where U = [0, 1]m, W = Rn, π(x) = xj and u = ∂j , the
condition of the definition means that ∂jf0(x) lies in the interior of the
convex hull of

R(σ, dxj , ∂j)
= Connvj

{t ∈ Rn | (x, f0(x), v1, . . . , vj−1, t, vj+1, . . . , vm) ∈ R} .
From a subsolution S of R with respect to (dπ, u) the convex integra-

tion theory builds a map f1 whose derivative along ux lies in the slice
R(S(x), dπx, ux):

Lemma 1.7. — Let R be an open differential relation and let S be a
subsolution of R with respect to (dπ, u) and with base map f0 = bs S.
Then there exists a loop family γ such that for every x ∈ U we have
γ(x) = df0(ux) and for every (x, t) ∈ U × R/Z the image of γ lies in
R(S(x), dπx, ux). If we set f1 := CPγ(f0, π,N) for this loop family γ,
we have

∀ x ∈ U, df1(ux) ∈ R(S(x), dπx, ux)
for N large enough.

Proof. — The existence of γ follows the Integral Representation Lemma
of the Convex Integration Theory of Gromov ([2, p. 169] or [5, p. 29]). The
property on df1(ux) is a direct consequence of the point (P3) of Proposi-
tion 1.4. �

1.5. Kuiper relations

In the usual approach, the family of loops γ is constructed a posteriori
once the subsolution S given. However the construction of a holonomic
solution often requires to repeat the Corrugation Process in several direc-
tions ∂j and consequently needs to re-build at each step the loop family
γ on a different subsolution at each time. In [6], we propose to simplify
this approach by constructing a bigger loop family γ�γ that could be used
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indifferently regardless of the subsolution. This simplification leads to intro-
duce the notion of surrounding loop family and then the notion of Kuiper
relation.
Basically, a surrounding family is a family of loops lying inside R which

is double indexed by its base point σ and its average w and where (σ,w)
are allowed to vary in the largest possible space, that is, inside

IntConv(R, dπ, u) :=
{

(σ,w) ∈ p∗yTW
∣∣ w ∈ IntConv R(σ, dπx, ux)

}
.

In that definition, p∗yTW is the bundle over R induced by the projection
py : R →W , σ = (x, y, L) 7→ y.

Definition 1.8. — Let R be a differential relation of J1(U,W ). We say
that a loop family

γ�γ : IntConv(R, dπ, u) −→ C0(R/Z, TW )
(σ,w) 7−→ γ�γ(σ,w)(·)

is surrounding with respect to (dπ, u) if for every (σ,w) we have
(1) t 7→ γ�γ(σ,w)(t) is a loop in R(σ, dπx, ux),
(2) the average of t 7→ γ�γ(σ,w)(t) is w,
(3) there exists a continuous homotopy H : IntConv(R, dπ, u) × [0, 1]
→ TW such that H(σ,w, 0) = γ�γ(σ,w)(0), H(σ,w, 1) = L(ux) and
H(σ,w, t) ∈ R(σ, dπx, ux) for all t ∈ [0, 1].

Note that point (3) is a homotopic property needed to state a potential
h-principle for R.
Then for any subsolution S = (x, f0, L) we choose the loop family

γ(x, t) := γ�γ
(
S(x), df0(ux)

)
(t) ∈ R(σ, dπx, ux)

for every (x, t) ∈ U × R/Z, and we write CPγ�γ(S, π,N) := CPγ(f0, π,N).
We would like to ensure that all loops γ�γ(σ,w) share the same pattern.

Definition 1.9. — Let p, q > 0 be two natural numbers and A ⊂ Rq
be a parameter space. A family of 1-periodic curves c : A × R/Z → Rp is
said to be a pattern.

We denote by E → W the fiber bundle over W with fiber L(Rp, TyW )
= (Rp)∗ ⊗ TyW and we consider its pull back by the projection

q : IntConv(R, dπ, u)→W, (σ,w) 7→ y.

A section ψ of q∗E defines a family of linear maps ψ(σ,w) : Rp → TyW .
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Definition 1.10. — Let c be a loop pattern. If there exist a surrounding
loop family γ�γ : IntConv(R, dπ, u)→ C0(R/Z, TW ) with respect to (dπ, u),
a section ψ of q∗E → IntConv(R, dπ, u) and a map a : IntConv(R, dπ, u)
→ A such that, for all ((σ,w), t) ∈ IntConv(R, dπ, u)× R/Z,

γ�γ(σ,w)(t) = ψ(σ,w) ◦ c(a(σ,w), t)

we then say that R is a Kuiper relation with respect to (c, dπ, u).

If (c1, . . . , cp) denote the components of c in the standard basis of Rp
and if e1, . . . , ep denote the image of this basis by ψ, the above definition
writes

γ�γ(σ,w)(t) =
p∑

i=1
ci(a(σ,w), t) ei(σ,w).

We denote the periodic primitive of the ci’s by

Ci(a, t) =
∫ t

s=0
ci(a, s)− ci(a)ds.

Proposition 1.11. — Let c be a loop pattern, R be an open Kuiper
relation with respect to (c, dπ, u), S = (x, f0, L0) be a subsolution and γ�γ
be a c-shaped surrounding loop family. Then f1 = CPγ�γ(S, π,N) has the
following analytic expression

(1.2) f1(x) = expf0(x)

(
1
N

p∑

i=1
Ci(a(x), Nπ(x))ei(x)

)

where a(x) := a(S(x), df0(ux)), e(x) := e(S(x), df0(ux)) and x ∈ U . More-
over, if N is large enough, the section

x 7→ S1 := (x, f1, L1 = L0 + (df1(ux)− L0(ux))⊗ dπ)

is a formal solution of R.

In the case where U = [0, 1]m, W = Rn, π(x) = xj and u = ∂j the map
f1 = CPγ�γ(S, ∂j , N) is given by

f1(x) = f0(x) + 1
N

(
p∑

i=1
Ci(a(x), Nxj)ei(x)

)
.

In [6] the reader will find a proof of the Proposition 1.11 as well as
examples of Kuiper relations. In the next section, we prove that the relation
of ε-isometric maps is Kuiper in codimension one.
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2. The relation of ε-isometric maps

In this article, we prove the following theorem:

Theorem 2.1. — Let M and W be orientable Riemannian manifolds
such that dimW = dimM + 1. For every ε > 0, the relation Is(ε) is a
Kuiper relation.

The key point of the proof of this theorem is to build a loop family γ�γ
c-shaped for all couples (σ,w) such that σ belongs to Is(ε) and w belongs
to the convex hull of the slice Is(ε)(σ, λ, u), for some λ, u. To understand
the slice Is(ε)(σ, λ, u) and its convex hull, we first present its geometric
description and a description of its subsolutions. We then give a proof of
Theorem 2.1.

2.1. Geometric description of the relation of isometric maps

The relation of ε-isometric maps is a thickening of the relation of isomet-
ric maps

Is := {(x, y, L) | g = L∗h} ⊂ J1(M,W )
where g is a metric ofM and L∗h is the pullback by L of the metric h ofW .
So in this paragraph we give a geometric description of the relation of iso-
metric maps. Such a description can be found in [2, p. 202], [5, p. 194]. For
the sake of completeness we recall this description here in the coordinate-
free case and we give some extra details needed for our construction of a
surrounding loop family of the relation of ε-isometric maps.
Let σ = (x, y, L) ∈ Is. Let λ ∈ T ∗xM and u ∈ TxM such that λ(u) = 1.

For every v ∈ TyW , we set Lv := L+ (v − L(u))⊗ λ. We have

Is(σ, λ, u) := ConnL(u) {v ∈ TyW | (x, y, Lv) ∈ Is}
= ConnL(u) {v ∈ TyW | gx = L∗vhy} .

Note that, by the definition of Lv, we have Lv(u) = v and for every u0 ∈
kerλ we have Lv(u0) = L(u0), in particular Lv(kerλ) = L(kerλ). Let
w1 = α1u + a1 and w2 = α2u + a2 with α1, α2 ∈ R and a1, a2 ∈ kerλ. As
g = L∗h, we have

(g − L∗vh)(w1, w2)
= α1α2

(
g(u, u)−h(v, v)

)
+α1h(L(u)−v, L(a2)

)
+α2h

(
L(u)−v, L(a1)

)
.
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From this expression it is readily seen that g = L∗vh if and only if g(u, u) =
h(v, v) and v ∈ L(u) + L(kerλ)⊥. So v lies inside the (n − 1)-dimensional
sphere Su of radius ‖u‖g and inside the affine (n−m+ 1)-plane

Pu := L(u) + L(kerλ)⊥.

Thus Is(σ, λ, u) = Su ∩Pu is a (n−m)-dimensional sphere of TyW and its
convex hull is a ball of the same dimension (see Figure 2.1). Since we have
assumed n > m, the space Is(σ, λ, u) is arc-connected. Since Is(σ, λ, u) is
a (n−m)-dimensional sphere, IntConv Is(σ, λ, u) is a (n−m+ 1)-ball of
Pu.

10 MÉLANIE THEILLIÈRE
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Figure 2.1. The slice Is(σ, λ, u) and its convex hull : the (n −
m)-dimensional sphere in dark blue is Is(σ, λ, u) and the convex hull
IntConvIs(σ, λ, u) is the (n−m+1)-ball in light blue. P denotes the (m−1)-plane
L(kerλ)

�
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Figure 2.2. Illustration of a slice of Is(ε) : in blue, a piece of Is(ε)(σ, λ, u).
The slice Is(ε)(σ, λ, u) is obtained as the intersection of the ε-thickening of the
(n−m+ 1)-plane Pu and the ε-thickening of the (n−m)-sphere Su of radius r.

Proposition 2.2. — Let f0 : M →W be a C1-map and P := df0(ker dπ)
such that dim P (x) = m−1 for all x ∈ U . If f0 satisfies g|ker dπ = f∗0h|ker dπ,
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Figure 2.1. The slice Is(σ, λ, u) and its convex hull: the (n − m)-
dimensional sphere in dark blue is Is(σ, λ, u) and the convex hull
IntConv Is(σ, λ, u) is the (n − m + 1)-ball in light blue. P denotes
the (m− 1)-plane L(kerλ)

So a slice of the relation of ε-isometric maps is a thickening of Is(σ, `, u)
(see Figure 2.2).

2.2. Characterization of subsolutions of the relation of isometric
maps

Let proj0 be the orthogonal projection on kerλ in TxM and projP be the
orthogonal projection on P = L(kerλ) in TyW . We characterize subsolu-
tions of Is with respect to (dπ, u), for a submersion π : U ⊂ M → R and
a tangent vector field u : U → TM such that dπ(u) = 1, in the following
Proposition 2.2:

VOLUME 35 (2017-2019)
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Proposition 2.2. — Let f0 : M →W be a C1-map and P := df0(ker dπ)
such that dim P (x) = m−1 for all x ∈ U . If f0 satisfies g|ker dπ = f∗0h|ker dπ,
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Figure 2.2. Illustration of a slice of Is(ε): in blue, a piece of Is(ε)
(σ, λ, u). The slice Is(ε)(σ, λ, u) is obtained as the intersection of the
ε-thickening of the (n −m + 1)-plane Pu and the ε-thickening of the
(n−m)-sphere Su of radius r.

Proposition 2.2. — Let f0 : M → W be a C1-map and P :=
df0(ker dπ) such that dim P (x) = m − 1 for all x ∈ U . If f0 satisfies
g|ker dπ = f∗0h|ker dπ, then a section

x 7→ S(x) =
(
x, f0(x), Lx := (df0)x +

(
vx − (df0)x(ux)

)
⊗ dπx

)

is a formal solution of Is with respect to (dπ, u) if and only if, for every x,
the vector vx can be written in the form vx = projP (x) Lx(ux) + τx where
τx ∈ P (x)⊥ and ‖τx‖h = r(x) =

√
‖ux‖2

g − ‖ proj0 ux‖2
g.

Proof. — Recall that vx ∈ Is(S(x), dπx, ux) if and only if vx ∈ Su(x) ∩
Pu(x) i.e.

‖vx‖2
h = ‖ux‖2

g and projP (x) vx = projP (x) L(ux).

Decomposing vx in P (x)⊕P (x)⊥, we have vx = projP (x) L(ux)+ τ̃x, where
τ̃x is a vector of P (x)⊥ of norm ‖τ̃x‖h = r(x) by definition of r. Now we
have to give an expression of the radius r which only depends on u and not
to S. By the Pythagorean theorem we have

r(x)2 = ‖τ̃x‖2
h = ‖vx‖2

h − ‖ projP (x) L(ux)‖2
h.

As ‖vx‖h = ‖ux‖g, we then have ‖τ̃x‖2
h = ‖ux‖2

g − ‖projP (x) L(ux)‖2
h. The

space P = L(kerλ) depends on L, so S. Let ux = proj0 ux+(ux−proj0 ux)
with proj0 the orthogonal projection on kerλ. Then

L(ux) = L
(

proj0 ux + (ux − proj0 ux)
)

= L(proj0 ux) + L(ux − proj0 ux).
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As L is isometric we have, for any a ∈ kerλ and b ∈ (kerλ)⊥,

〈a, b〉 = 0⇔ 〈L(a), L(b)〉 = 0.

In particular, for b = u − proj0 u, that implies L(u − proj0 u) ∈ L(kerλ)⊥
= P (x)⊥. Thus projP (x) L(ux) = L(proj0 ux) and

∥∥∥projP (x) L(ux)
∥∥∥
h

= ‖L(proj0 ux)‖h = ‖proj0 ux‖g
the last equality comes from L is isometric. So

r(x)2 = ‖τ̃x‖2
h = ‖vx‖2

h − ‖proj0 ux‖2
g . �

2.3. Proof of Theorem 2.1

We begin with a preparatory Lemma 2.3, then describe IntConv Is(ε)(σ,
λ, u) ∩ Pu(w) and define a c-shaped loop family for the relation Is(ε). We
finally construct γ�γ and prove that it is surrounding.
Let σ = (x, y, L) ∈ Is(ε). Let λ ∈ T ∗xM , u ∈ TxM such that λ(u) = 1,

and let w ∈ IntConv Is(ε)(σ, λ, u). Note that as Is(ε) is a thickening of
Is and by definition of σ and w, the distance (for the metric h) between
w and Pu is less than 2ε, but w does not belong necessarily to Pu. We
denote by Pu(w) the affine (n−m+ 1)-plane that contains w and which is
a translation of Pu:

Pu(w) := {v ∈ TyW | projP w = projP v}

where P denotes L(kerλ). Thanks to the following Lemma 2.3, we can
assume that w belongs to Pu:

Lemma 2.3. — Let (σ,w) ∈ IntConv(Is(ε), λ, u) with σ = (x, y, L).
There exists a homotopy σt = (x, y, Lt) such that σ0 = σ, σt ∈ Is(ε)(σ, λ, u)
for all t ∈ [0, 1], and projP L1(u) = projP w.

Proof. — We set v0 = L0(u) = L(u). We can assume that ‖v0‖h > ‖w‖h.
Indeed, if ‖v0‖h < ‖w‖h we perform a first homotopy. Let

L̃t = L+ (ṽt − v0)⊗ λ

where

ṽt := projP v0 +
(

(1− t) + t

√
‖w‖2

h − ‖ projP v0‖2
h

‖v0 − projP v0‖h

)
(v0 − projP v0).
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This homotopy joins v0 to L̃1(u) = ṽ1 where ‖ṽ1‖h = ‖w‖h. Let V0
= v0 if ‖v0‖h > ‖w‖h, and V0 = ṽ1 if ‖v0‖h < ‖w‖h. In both cases, we
consider the homotopy Lt = L+ (vt − V0)⊗ λ with:

vt := t projP w + (1− t) projP V0 + ϕ(t)(V0 − projP V0)

and

ϕ(t) =

√
‖V0‖2

h − ‖t projP w + (1− t) projP V0‖2
h

‖V0 − projP V0‖2
h

.

Since ‖V0‖h > ‖w‖h the numerator is positive and ϕ is well defined. By
definition of ϕ, for every t, we have ‖vt‖h = ‖V0‖h. This property ensures
that σt = (x, y, Lt) ∈ Is(ε)(σ, λ, u) for all t ∈ [0, 1]. By the expression of
vt, we have projP v1 = projP w. �
This Lemma 2.3 and Point (3) of Definition 1.8 imply that it is enough to

construct the loop family γ�γ for every couple (σ,w) such that projP L(u) =
projP w. We assume in the sequel that this last condition is fulfilled together
with the fact that the codimention is one.

2.3.1. Description of IntConv Is(ε)(σ, λ, u) ∩ Pu(w).

By assumption n = m+ 1 therefore the space Pu(w) is a 2-plane. We de-
note by D(ρ) the open disk of Pu(w) with radius ρ and center projP (L(u))
and by A(ρmin, ρmax) the open annulus D(ρmax) \D(ρmin). The intersec-
tion of the thickened relation Is(ε)(σ, λ, u) with Pu(w) is either an annulus
or a disk depending on the value of ε. Precisely, let

r2
min(ε) := min

(
(‖u‖g − ε)2 − ‖ projP w‖2

h, 0
)

r2
max(ε) := (‖u‖g + ε)2 − ‖ projP w‖2

h.

because the sphere Su of Paragraph 2.1 is of radius ‖u‖g. A computa-
tion shows that Is(ε)(σ, λ, u)∩Pu(w) is the annulus A(rmin(ε), rmax(ε)) if
rmin(ε) > 0 and the disk D(rmax(ε)) if rmin(ε) = 0. In any case,

IntConv Is(ε)(σ, λ, u) ∩ Pu(w) = D(rmax(ε)).

In particular, we have w ∈ D(rmax(ε)) and L(u) ∈ A(rmin(ε), rmax(ε)). We
want to build a c-shape loop family inside A(rmin(ε), rmax(ε)), for that we
define a disk which will support γ�γ and such that a neighborhood of this
disk will be in A(rmin(ε), rmax(ε)) too. Let D(r̃) a disk where

r̃ = max
(√
‖L(u)‖2

h − ‖ projP L(u)‖2
h,
√
‖w‖2

h − ‖ projP w‖2
h + 1

3d1(w)
)
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where
d1(w) := dist

(
w, ∂

(
IntConv Is(ε)(σ, λ, u)

))

is the distance between w and the boundary of the convex hull of Is(ε)
(σ, λ, u). Moreover we have w ∈ D(r̃) and ∂D(r̃) ⊂ A(rmin(ε), rmax(ε)).

2.3.2. Parametrization of D(r̃).

Let ν be th unique unit normal vector of L(TxM) induced by the orien-
tation of M and W . We see Pu(w) as the complex plane C by identifying
the base (ν, (L(u)− projP L(u))/‖L(u)− projP L(u)‖h) with (1, i) and we
define a parametrization of D(r̃) by

b : [0, π]× [0, 1] −→ D(r̃)
(θ, β) 7−→ projP L(u) + βr̃eiθ + (1− β)r̃e−iθ.

This parametrization is 1-to-1 except over points of the form (0, β) and
(π, β). It maps the boundary of the square [0, π] × [0, 1] onto the circle
∂D(r̃).

2.3.3. The shape

We first define the parameter space A to be

A :=
{

(η, θ, β) ∈ ]0, 1
2 [×[0, π]× [0, 1]

∣∣∣∣ η 6 β 6 1− η
}
.

and then the shape c : A× R/Z→ C× R by
c(η, θ, β, t) :=

(
exp(igθ, β(t)) + η cos θ, 1

)
.

The image of c(η, θ, β, ·) is a whole circle of center (η cos θ, 1) and radius 1.
Let β′ = β− η

2 , the angular function gθ,β is the piecewise linear map given
by

gθ, β(0) = 0 and gθ, β
(

1
2

)
= 2π(i)

gθ, β(t) = θ on
[
ηθ

4π ,
β′

2 + ηθ

4π

]
(ii)

gθ, β(t) = 2π − θ on
[
β′

2 + η(2π − θ)
4π ,

1
2 −

ηθ

4π

]
(iii)

on [0, 1
2 ] and such that gθ,β(t) = gθ,β(1− t) for all t ∈ [0, 1

2 ] (see its graph
on Figure 2.3). A computation shows that

c(η, θ, β) =
(
βeiθ + (1− β)e−iθ, 1

)
.
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and then the shape c : A× R/Z→ C× R by

c(η, θ, β, t) := (exp(igθ,β(t)) + η cos θ, 1).

The image of c(η, θ, β, ·) is a whole circle of center (η cos θ, 1) and radius 1.
Let β′ = β− η

2 , the angular function gθ,β is the piecewise linear map given
by

(i) gθ,β(0) = 0 and gθ,β( 1
2 ) = 2π

(ii) gθ,β(t) = θ on
[
ηθ

4π ,
β′

2 + ηθ

4π

]

(iii) gθ,β(t) = 2π − θ on
[
β′

2 + η(2π − θ)
4π ,

1
2 −

ηθ

4π

]

on [0, 1
2 ] and such that gθ,β(t) = gθ,β(1− t) for all t ∈ [0, 1

2 ] (see its graph
on Figure 2.3). A computation shows that

c(η, θ, β) = (βeiθ + (1− β)e−iθ, 1).

��

�� � �

t = 1
�

�

�

w

t 7� ��t)

e�
��0)

Figure 2.3. Proof of Theorem 2.1 : Left : the graph of the function gθ,β ,
Right : the image of the loop γ in the affine plane Pu(w), the two circles visualise
the round-trip of the loop.

The loop family.– Since b induces a bijection between ]0, π[×]0, 1[ and
D(r̃), there exists a unique couple (θ, β) ∈ ]0, π[×]0, 1[ such that b(θ, β) =
w. We define two functions c1 and c2 by the equality

c(η, θ, β, ·) = (c1(·) + ic2(·), 1)

(η will be chosen later). We put

e1 := r̃
ν

‖ν‖h
, e2 := r̃

L(u)− projPL(u)
‖L(u)− projPL(u)‖h

and e3 := projPL(u)

and we define the loop family γ�γ by
γ�γ(σ,w)(t) := c1(t)e1 + c2(t)e2 + e3.
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Figure 2.3. Proof of Theorem 2.1: Left: the graph of the function gθ, β ,
Right: the image of the loop γ in the affine plane Pu(w), the two circles
visualise the round-trip of the loop.

2.3.4. The loop family

Since b induces a bijection between ]0, π[×]0, 1[ and D(r̃), there exists
a unique couple (θ, β) ∈ ]0, π[×]0, 1[ such that b(θ, β) = w. We define two
functions c1 and c2 by the equality

c(η, θ, β, ·) = (c1(·) + ic2(·), 1)

(η will be chosen later). We put

e1 := r̃
ν

‖ν‖h
, e2 := r̃

L(u)− projP L(u)
‖L(u)− projP L(u)‖h

and e3 := projP L(u)

and we define the loop family γ�γ by
γ�γ(σ,w)(t) := c1(t)e1 + c2(t)e2 + e3.

The image of the loop γ�γ(σ,w) is the translated circle ∂D(r̃) + r̃η cos θe1
which lies inside the annulus A(r̃(1− η), r̃(1 + η)) of Pu(w). Consequently,
to ensure that the image of γ�γ(σ,w) is in the relation, it is enough to choose
η such that A(r̃(1 − η), r̃(1 + η)) ⊂ A(rmin(ε), rmax(ε)) = Is(ε)(σ, λ, u) ∩
Pu(w). It is readily checked that the choice

η := 1
3 min

(
d1(w), d2(L(u))

)

where d2(L(u)) = dist(L(u), ∂A(rmin(ε), rmax(ε))) is convenient. It is also
straightforward to see that this loop family satisfies the Average Constraint:
γ�γ(σ,w) = w. The base point of the loop is γ�γ(σ,w)(0) = (1 + η cos θ)e1 + e3.
The homotopy H(s) := (cos s e1 + sin s e2) + η cos θe1 + e3 with s ∈
[0, π2 ] connects γ�γ(σ,w)(0) with η cos θe1 + e2 + e3 A linear homotopy joins
this last point to L(u) = (‖L(u) − projP L(u)‖h)e2/r̃ + e3. Consequently,
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Pu�w)

w

Pu�w)

w

v�

w

��u)

w

��u)

Figure 2.4. Proof of Theorem 2.1 : In purple, the trace of the relation
on Pu(w), in black (dashed line) the boundary of disk D(r̃) and in brown, the
annulus A(r̃(1−η), r̃(1 +η)) depending on whether

√
‖L(u)‖2

h
− ‖projPL(u)‖2

h
>√

‖w‖2
h
− ‖projPw‖2

h
+ 1

3d1(w) (left) or not (right), see the definition of r̃.

The image of the loop γ�γ(σ,w) is the translated circle ∂D(r̃) + r̃η cos θe1
which lies inside the annulus A(r̃(1− η), r̃(1 + η)) of Pu(w). Consequently,
to ensure that the image of γ�γ(σ,w) is in the relation, it is enough to choose
η such that A(r̃(1 − η), r̃(1 + η)) ⊂ A(rmin(ε), rmax(ε)) = Is(ε)(σ, λ, u) ∩
Pu(w). It is readily checked that the choice

η := 1
3 min(d1(w), d2(L(u)))

where d2(L(u)) = dist(L(u), ∂A(rmin(ε), rmax(ε))) is convenient. It is also
straightforward to see that this loop family satisfies the Average Constraint :
γ�γ(σ,w) = w. The base point of the loop is γ�γ(σ,w)(0) = (1 + η cos θ)e1 + e3.
The homotopy H(s) := (cos s e1 + sin s e2) + η cos θe1 + e3 with s ∈ [0, π2 ]
connects γ�γ(σ,w)(0) with η cos θe1 + e2 + e3 A linear homotopy joins this
last point to L(u) = (‖L(u) − projPL(u)‖h)e2/r̃ + e3. Consequently, the
loop family γ�γ is c-shaped and surrounding (see Definition 1.8). This proves
that Is(ε) is a Kuiper relation.

3. An application : desingularization of a cone to a surface
ε-isometric to a flat cylinder

Proposition 1.11 together with the Kuiper property of the relation of
ε-isometric maps are the reason of the absence of integrals in the formula
proposed in [3, 1] to solve Is(ε). The approach developed here also allows
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Figure 2.4. Proof of Theorem 2.1: In purple, the trace of the rela-
tion on Pu(w), in black (dashed line) the boundary of disk D(r̃) and
in brown, the annulus A(r̃(1 − η), r̃(1 + η)) depending on whether√
‖L(u)‖2

h − ‖ projP L(u)‖2
h >

√
‖w‖2

h − ‖ projP w‖2
h + 1

3d1(w) (left)
or not (right), see the definition of r̃.

the loop family γ�γ is c-shaped and surrounding (see Definition 1.8). This
proves that Is(ε) is a Kuiper relation.

3. An application: desingularization of a cone to a surface
ε-isometric to a flat cylinder

Proposition 1.11 together with the Kuiper property of the relation of
ε-isometric maps are the reason of the absence of integrals in the formula
proposed in [1, 3] to solve Is(ε). The approach developed here also allows
to apply the h-principle in its full generality for Is(ε). Indeed, in the above
cited references, the formulas only make sense when the base map f0 is an
immersion but in the framework of the h-principle this hypothesis is not
required: provided that S is a subsolution, any base map f0, singular or
not, is convenient.
Here, we illustrate this point with a basic example. We consider a singular

map sending a flat cylinder onto a cone and we use the Kuiper property
of Is(ε) to build an ε-isometric map arbitrarily closed (in the C0 sense) to
the initial singular map.

3.1. Formal solution

We identify the flat cylinder of height 1
20 and radius 1

2π with the space
Cyl = R/Z× [−10−1, 10−1] endowed with the Euclidean metric. We define
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our formal solution to be
S0 : (x, y) 7−→

(
(x, y), f0(x, y), v1(x, y), ∂2f0(x, y)

)

where f0 is a parametrization of a cone:

f0(x, y) = 1√
2

(
y cos(2πx), y sin(2πx), y

)

and v1 is such that ∂1f0(x, y) =
√

2πyv1(x, y). Precisely:

v1(x, y) =
(
− sin(2πx), cos(2πx), 0

)
.

Observe that for every (x, y) we have




‖v1(x, y)‖ = 1
‖∂2f0(x, y)‖ = 1
〈v1(x, y), ∂2f0(x, y)〉 = 0

so the section S0 is a formal solution of the relation of ε-isometric maps
for every ε > 0.

3.2. Subsolution

The section S0 fails to be holonomic only in its v1-component. To obtain
a holonomic section, we thus intend to apply a Corrugation Process in the
direction ∂1. To do so, we need to check that S0 is a subsolution with
respect to ∂1. As v1 and ∂2f0 are orthogonal, the slice Is(S0, ∂1) lies inside
the plane spanned by v1 and the normal vector

n(x, y) = v1(x, y) ∧ ∂2f0(x, y) = 1√
2

(
cos(2πx), sin(2πx),−1

)

(see the proof of Theorem 2.1). This slice is a circle a radius 1. The section
S0 is a subsolution if and only if the derivative ∂1f0 lies in the convex
hull of Is(S0, ∂1). This condition is equivalent to |y| < (

√
2π)−1. Since

y ∈ [−10−1, 10−1], this last inequality is fulfilled. This shows that S0 is
subsolution with respect to ∂1 of Is(S0, ∂1), and thus of Is(ε)(S0, ∂1) for
every ε > 0.

3.3. Corrugation Process

We consider the shape c : Cyl ×R/Z→ C×R defined in subsection 2.1
where C is identified with the plane spanned by (v1, n):

c(η, θ, β, t) :=
(

exp(igθ, β(t)) + η cos θ, 1
)
.
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Figure 3.1. Corrugation Process applied from a cone: Several images
of f1(Cyl) with η = 0.2 and, from left to right and up to down,
N = 6, 12, 24, 48. Observe the C0-density property (see Proposition 1.4
(P1)) : the larger N , the closer the surface to the cone.

In that expression, β and θ are defined by the relation

∂1f0 = βeiθ + (1− β)e−iθ.

Since v1 is collinear to ∂1f0 the coefficient β is constant equal to 1/2 and
θ = arccos(〈∂1f0, v1〉) = arccos(

√
2πy). For short we denote g for gθ,β . The

loop family γ is thus given by

γ(x, y, t) =
(

cos(g(x, y, t)) + η ‖∂1f0(x, y)‖
)
v1(x, y) + sin(x, y, t)n(x, y).

Observe that γ(x, y, t) ∈ Is(η)(S0, ∂1). The Corrugation Process generates
a map f1(x, y) = f0(x, y) + 1

N Γ(x, y,Nx) with

Γ(x, y, t) :=
∫ t

s=0
γ(x, y, s)− γ(x, y)ds.
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Recall that, from property (P3) of Proposition 1.4, we have
∂1f1(x, y) = γ(x, y,Nx) +O(1/N)

Let ε > 0 be given. To insure ∂1f1 ∈ Is(ε)(S0, ∂1) we have to choose η < ε

and N large enough.

3.4. Numerical implementation

We use the analytical expression of Proposition 1.11 together with the
above expression of γ to implement the Corrugation Process. The images
reveal corrugations whose shape varies from a small loop to the one of a
roof. A closer look to the surface shows that the shape of the corrugations
changes precisely when passing the vertex of the cone. The reason of this
behavior is that v1 the invariant by vertical translation (as opposed to the
invariance by central symmetry of the cone and of ∂1f0). When η decreases
toward zero the map g tends towards a piecewise constant map. Each loop
in the family γ stays at the two points cos θ v1 ± sin θ n for a duration of
1−η

2 each. At the limit, γ is a discontinuous map whose image is two points.
As a consequence, when η is small, the image f1(Cyl) looks like a piecewise
linear surface.

Figure 3.2. The change of the shape of a corrugation when passing the
conical singularity: Here N = 6 and η = 0.4.
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Figure 3.3. Lengths and Corrugations: In blue, two slices of the image
f1(Cyl) for N = 6, in pink, two slices for N = 24. On the right the
slices are above the horizontal plane passing though the vertex of the
cone. They are below this plane on the left. In all cases η = 0.2.

Figure 3.4. PL behavior: Here η = 0.001 and N = 12. Despite appear-
ances, the map f1 is still a C1 immersion. See the close up of Fig-
ure 3.5.
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Figure 3.5. Zoom on the peak of a corrugation : The peak is not a folding.
ForN large enough, the corrugations are immersed. A close-up shows the roundness
of the peak (in the foreground). The angles that appear are artefact due to the
discretisation step.
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Figure 3.5. Zoom on the peak of a corrugation: The peak is not a
folding. For N large enough, the corrugations are immersed. A close-
up shows the roundness of the peak (in the foreground). The angles
that appear are artefact due to the discretisation step.
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