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Séminaire de théorie spectrale et géométrie
Grenoble
Volume 35 (2017-2019) 197-244

A SURVEY ON SPECTRAL EMBEDDINGS AND
THEIR APPLICATION IN DATA ANALYSIS

David Tewodrose

Abstract. — The aim of this survey is to present some aspects of the Bérard–
Besson–Gallot spectral embeddings of a closed Riemannian manifold from their
origins in Riemannian geometry to more recent applications in data analysis.
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1. Introduction

The spectral embeddings we deal with in this survey were introduced
by P. Bérard, G. Besson and S. Gallot in [13] to provide new distances on
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the set of isometry classes of closed Riemannian manifolds – here and in
the sequel, by closed we mean compact without boundary, and we tacitly
assume the manifolds to be smooth and connected with smooth Riemannian
metric. Three families of embeddings of a given closed Riemannian manifold
(M, g) were proposed in this article:

• the unrescaled spectral embeddings Iat : M → l2,
• the rescaled spectral embeddings Ψa

t : M → l2,
• the spherical spectral embeddings Ka

t : M → S∞,
where l2 is the Hilbert space of square summable real-valued sequences,
S∞ is the unit sphere in l2, and t > 0 is a parameter. These embeddings all
depend on the choice of an orthonormal basis a of L2(M) made of eigenfunc-
tions of (minus) the Laplace–Beltrami operator −∆(M, g) of (M, g). They
are called spectral because they are defined via the spectrum of −∆(M, g).
For instance, the rescaled embeddings are defined by

Ψa
t :

{
M → l2

x 7→ sn, t(e−λi t/2ϕi(x))i> 1

where a = {ϕi}i> 0 is an orthonormal basis of L2(M) made of eigenfunc-
tions of −∆(M, g), the numbers 0 = λ0 < λ1 6 λ2 6 . . . → +∞ are the
corresponding eigenvalues, and sn, t is a rescaling factor.
The unrescaled spectral embeddings revealed more interesting in regard

to the authors’ original motivations because they led to the so-called spec-
tral distances, see Sections 2.1 and 2.2. However, the rescaled ones have
inspired remarkable developments in data analysis [9, 10, 23, 51] which, in
turn, have raised deep theoretical questions [5, 8, 49, 62].

The main interest in the maps Ψa
t lies in the fact that they are almost

isometric, in the sense that they imply pull-back Riemannian metrics gt on
M such that

gt = g + tA+ o(t), t ↓ 0,
in the sense of pointwise convergence, where A is a (0, 2)-tensor depending
only on the Ricci and scalar curvature of (M, g). This is [13, Theorem 5].
Of course, a celebrated result of J. Nash [26, 47] implies that (M, g) can
be smoothly and isometrically embedded into RD for some D depending
only on the dimension of M . But Nash’s embedding is less convenient
than the Bérard–Besson–Gallot ones when analysis on the manifold is the
matter: indeed, any reasonable piece of information on the eigenvalues or
eigenfunctions of ∆(M, g) directly affects the spectral embeddings, but not
Nash’s embedding. Nevertheless, the target space of the Bérard–Besson–
Gallot embeddings is a Hilbert space, while the target space of Nash’s one
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is Euclidean. This is one of the main reasons – numerical applications being
the other ones – why truncated versions of the maps Ψa

t , that is maps of
the form

[Ψa
t ]m :

{
M → Rm

x 7→ sn, t(e−λit/2ϕi(x))16 i6m

where m ∈ N\{0}, came under the spotlight. The works of J. Bates [8] and
J. Portegies [49] showed that under certain geometric constraints, namely
Ricci curvature and injectivity radius bounded from below together with
prescribed total volume, there exists a dimension m depending on the con-
straints such that [Ψa

t ]m is a smooth embedding for any t > 0. We explain
this result in Section 2.3. J. Portegies went further by showing that under
the same geometric constraints, the maps [Ψa

t ]m can be made arbitrary
close to being an isometry in the following sense: for any ε > 0, there exists
to > 0 such that for any t ∈ (0, to), there exists m depending on t, ε, and
the geometric constraints, such that

1− ε < |Dx [Ψa
t ]m| < 1 + ε

for any x ∈ M and m > m. We return to this quantitative statement in
Section 2.4.
In [51], in the search for substantial improvements of the spectral em-

bedding based techniques in data visualization, A. Singer and H.-T. Wu
introduced another family of unrescaled spectral embeddings

V at : M → l2, t > 0,

by considering the connection Laplacian for vector fields ∆C, (M, g) and
its spectrum in place of the Laplace–Beltrami operator ∆(M, g), and they
showed that the natural associated distances

dV DM, t(x, y) = ‖Vt(x)− Vt(y)‖l2

on M relates in a transparent way with the original Riemannian distance
dg when t ↓ 0, see Theorem 2.17. Later on, H.-T. Wu studied in [62] the
spectral distances naturally induced by the embeddings V at on the set of
isometry classes of closed Riemannian manifolds and got precompactness
results for these distances. We present this interesting alternative in Sec-
tion 2.5.
Finally, in Section 2.6 we deal with recent results from [5] where the

Bérard–Besson–Gallot spectral embeddings are studied in the context of
compact metric measure spaces satisfying the synthetic Riemannian Curva-
ture-Dimension condition RCD(K,N). Hopefully this may lead to new

VOLUME 35 (2017-2019)
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types of machine learning algorithms using approximations of a data set by
means of a singular metric measure space instead of a smooth Riemannian
manifold.
Let us spend more words on the link between these embeddings and data

analysis. A classical problem in data science is the following. Say that we
are given a phenomenon that we want to observe through several features.
We repeat this phenomenon a high number of times and collect at each
occurence some data related to the features. The data thus obtained can
be stored in a matrix where each column corresponds to one occurence of
the phenomenon and each row accounts for one feature. If D is the number
of features andN the number of occurences, we get this way aD×N matrix.
Each column of the matrix can be understood as a vector : this yields to a
point cloud in RD made of N elements. The structure of this point cloud
reveals some information. A notable piece of information is the number d
of constraints the phenomenon may truly be subject to. Finding d is of
crucial importance, especially when it is small compared to D. Indeed, in
most cases, D is too high to perform direct classifying tasks in a reasonable
amount of time on the original D-dimensional representation of the data
set. This is why we seek for a faster to handle d-dimensional representation.
This problem is usually called dimensionality reduction. For more about
this topic, we refer the non-expert reader to the introduction of [63] where
three concrete applications of dimensionality reduction are presented: one
from political science, one from psychology, and the last one from sociology.
Let us provide another popular example. Say that we want to classify

pictures of a same object taken under various angle and light conditions.
If the number of pixels used for the pictures is very high, say 64 × 64
= 4096, then we are left with classifying points in R4096, each coordinate
corresponding to the brightness on one pixel. However, the observation of
the object depends solely on three constraints: two for the angle conditions,
one for the light conditions. In this case, a dimensionality reduction looks
particularly relevant.
Classical techniques like Principal Component Analysis or Multidimen-

sional Scaling are very effective regarding this issue, but only when the data
lies on or near a low-dimensional linear subspace V of the feature space
RD, in which case finding the dimension d of V is part of the algorithm.
Problem is that they fail to detect the geometry or the true dimensionality
of a data set subject to non-linear constraints, like in the previous example
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where the angle under which the pictures are taken obeys a spherical con-
straint. For this reason, the past twenty years have registered the develop-
ment of new algorithms taking into account the possibly curved geometry of
the data point cloud: without claiming to be exhaustive, let us cite Locally
Linear Embedding [50], ISOMAP [57], Laplacian Eigenmaps [9], Diffusion
Maps [23] and Vector Diffusion Maps [51]. All these algorithms fall within
the framework of manifold learning, that is the study of data whose point
cloud representation in RD lies on (or near) a smooth submanifold Md

of RD.
In Section 3, we describe the Laplacian Eigenmaps and the Vector Diffu-

sion Maps algorithms for which the parallel with the Bérard–Besson–Gallot
spectral embeddings is blatant. Indeed, the rough idea behind Laplacian
Eigenmaps is to produce from the data point cloud a family of weighted
graphs (V, E , wt) serving as discrete approximations of M and to study
suitable operators −Lt on (V, E , wt). These operators can be viewed as dis-
crete approximations of the Laplace–Beltrami operator ∆M ofM . Thus the
eigenvalues λti and eigenvectors vti of Lt are reasonable approximations of
the eigenvalues λi and eigenfunctions ϕi of −∆M . From this observation,
one can define a discrete and finite counterpart ot the Bérard–Besson–
Gallot embeddings for the data point cloud in order to embed it almost
isometrically into some Euclidean space with low dimension.

Acknowledgements

The author would like to thank the anonymous referee for precious re-
marks and especially for having raised Open Problem 2.

2. Theoretical aspects

In this section, we present the theoretical motivations behind the Bérard–
Besson–Gallot embeddings, and list several important refinments.

2.1. Motivations from Riemannian geometry

Spectral embeddings were introduced by P. Bérard, G. Besson and S. Gal-
lot in [13] to tackle specific problems from Riemannian geometry. These
problems were described in [11, VI. E.]. We provide here a brief summary.

VOLUME 35 (2017-2019)
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In his celebrated book [32], M. Gromov introduced a distance on the set
of compact metric spaces, nowadays called Gromov–Hausdorff distance,
defined as follows: for two compact metric spaces (X, dX) and (Y, dY ), set

dGH
(
(X, dX), (Y, dY )

)
:= inf

(Z, i, j)

{
dH,Z(i(X), j(Y ))

}
,

where the infimum is taken over the set of triples (Z, i, j) such that Z is
a metric space and i : X ↪→ Z, j : Y ↪→ Z are isometric embeddings,
and dH,Z stands for the Hausdorff distance in Z. This distance is partic-
ularly relevant when restricted to special classes of Riemannian manifolds
satisfying geometric constraints. For instance, the set

N (n, S,D, V )
:=
{

(Mn, g) closed : |Sect | 6 S, diam(M) 6 D, vol(M) > V
}
,

where Sect and diam denotes the sectional curvature and the diameter
of (M, g) respectively and S,D, V > 0 are fixed geometric parameters,
is compact in the Gromov–Hausdorff topology. This grants for free uni-
form bounds on any geometric quantity that is continuous with respect to
the Gromov–Hausdorff topology. A drawback of this approach is that the
bounds thus obtained are not explicit. Moreover, several interesting quan-
tities are not preserved through Gromov–Hausdorff convergence, like the
dimension, the Betti numbers or the eigenvalues of the Laplace–Beltrami
operator: some counter-examples are given for instance in [12].
Still, it is tempting to investigate in that way the properties of the set

M(n,K,D) :=
{

(Mn, g) closed : Ric > K, diam 6 D
}
,

where K ∈ R and D > 0 are fixed, because manifolds in this set satisfy
common geometric and analytic properties like the Bonnet–Myers theo-
rem, the Bishop–Gromov theorem, the local L2-Poincaré inequality, and
so many more. It turns out that M(n,K,D) is precompact with respect
to the Gromov–Hausdorff topology(1) : from any sequence of Riemannian
manifolds belonging to this set, one can extract a convergent subsequence.
Limit points obtained in this way are complete metric spaces nowadays
called Ricci limit spaces. Their study has produced an abundant literature,
with critical works by K. Fukaya [28], J. Cheeger and T. Colding [20, 21, 22],
T. Colding and A. Naber [25], or S. Honda [33], to cite only a few.
On the other hand, a well-known result in spectral geometry (see e.g. [11,

V. 28]) asserts that for any K ∈ R and D > 0, there exists a positive

(1) this is Gromov’s celebrated precompactness theorem [32, Theorem 5.3].
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function Z(t) depending only on n,K,D such that

Z(M, g)(t) 6 Z(t)

for any (M, g) ∈M(n,K,D) and t > 0, where

Z(M, g)(t) :=
ˆ
M

p(x, x, t) d vol(x) =
+∞∑
i=0

e−λit

is the trace of the heat kernel of the manifold (M, g). This uniform bound
on a spectral quantity, as well as other related spectral results, led to the
search for spectral distances on the set of closed Riemannian manifolds
for which the set M(n,K,D) would have been at least precompact. Such
distances were introduced in [13] by means of spectral embeddings.
Let us conclude with mentioning the work of A. Kasue and H. Ku-

mura [36] in which were introduced other spectral distances via a different
heat-kernel based approach. These distances are finer than the Gromov–
Hausdorff topology and the sets M(n,K,D) are precompact for them as
well.

2.2. Spectral embeddings

Let (M, g) be a closed n-dimensional Riemannian manifold with Rie-
mannian volume measure vol and Laplace–Beltrami operator ∆. Here we
follow the convention that ∆ is a non-positive operator. Standard tools
from functional analysis show that −∆ is a densely defined self-adjoint
non-negative operator on L2(M) with discrete spectrum 0 = λ0 < λ1 6
λ2 6 . . . → +∞, or 0 = ν0 < ν1 < ν2 < . . . → +∞ if we ignore multi-
plicity, and that L2(M) can be decomposed into ⊕+∞

k=0Ek, where Ek is the
space of eigenfunctions associated to the eigenvalue νk. Moreover, ellip-
tic regularity theory implies that any eigenfunction of −∆ is smooth. The
operator −∆ generates a semi-group of self-adjoint operators (e−t∆)t> 0
acting on L2(M). This semi-group admits a positive kernel i.e. a function
p : M ×M × (0,+∞)→ (0,+∞) such that

e−t∆f(x) =
ˆ
M

p (x, y, t)f(y) d vol(y)

holds for any x ∈ M , t > 0, and f ∈ L2(M). This function p, called heat
kernel of (M, g), is jointly smooth with respect to any of its three variables.
Furthermore, for any orthonormal basis (ϕi)i> 0 of L2(M) adapted to the
decomposition L2(M) = ⊕+∞

k=0Ek, the sum of the functions(
(t, x, y) 7→ e−λitϕi(x)ϕi(y)

)
i> 0 converges in C∞((0,+∞)×M ×M)

VOLUME 35 (2017-2019)
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and provides the so-called spectral decomposition of the heat kernel:

(2.1) p(x, y, t) =
+∞∑
i=0

e−λitϕi(x)ϕi(y) ∀ x, y ∈M,

see [31, Theorem 10.13], for instance. Moreover, if y is fixed, we also have

∇p(·, y, t) =
+∞∑
i=0

e−λitϕi(y)∇ϕi in L2(TM),

where L2(TM) is the Hilbert space of L2 vector fields on M equipped with
the scalar product defined by

〈V,W 〉L2(TM) :=
(ˆ

X

g(V,W ) d volg
)1/2

for any V,W ∈ L2(TM).

Now that the appropriate context has been set up, let us introduce the
unrescaled and rescaled Bérard–Besson–Gallot spectral embeddings. They
both depend on the choice of an orthonormal basis of L2(M) adapted to
the decomposition L2(M) = ⊕+∞

k=0Ek. We write B(M, g) for the set of
such bases.
According to the motivations concerning spectral distances described in

the previous section, the most relevant family of embeddings is the follow-
ing.

Definition 2.1 (Unrescaled spectral embeddings). — Let (M, g) be a
closed Riemannian manifold. The unrescaled spectral embeddings ofM are
the maps

Iat :
{
M → l2

x 7→
√

vol(M)
(
e−λit/2ϕi(x)

)
i> 1

where t > 0 and a = {ϕi}i> 0 ∈ B(M, g).

Remark 2.2. — Note that (2.1) implies

‖Iat (x)‖2l2 = vol(M)
(
p(x, x, t)− e−λ0tϕ2

0(x)
)
,

and thus Iat (x) ∈ l2 for any x ∈M .

It is easily checked that the functions Iat are topological embeddings.
Indeed, continuity directly follows from the formula

‖Iat (x)− Iat (y)‖l2 = vol(M)
(
p(x, x, t) + p(y, y, t)− 2p(x, y, t)

)
SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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which is a straightforward consequence of (2.1). Injectivity stems from the
fact that any basis of L2(M) separates points. Lastly, since M is com-
pact, any one-to-one continuous function with domain M is necessarily an
homeomorphism onto its image.
The functions Iat permit to define the so-called spectral distances.

Definition 2.3 (Spectral distances). — For any t > 0 and any closed
Riemannian manifolds (M, g) and (M ′, g′), set

dSD, t((M, g),(M ′, g′)) :=max
{

sup
a∈B(M,g)

inf
a′∈B(M ′, g′)

dH, l2
(
Iat (M), Ia

′

t (M ′)
)
,

sup
a′ ∈B(M ′, g′)

inf
a∈B(M, g)

dH, l2
(
Ia
′

t (M ′), Iat (M)
)}

.

Note the analogy with the definition of Hausdorff distance in a metric
space (X, d): for any Y, Z ⊂ X, the Hausdorff distance between Y and Z
is set as

dH,X(Y,Z) := max
{

sup
y∈Y

inf
z ∈Z

d(y, z), sup
z ∈Z

inf
y∈Y

d(y, z)
}
.

It can be shown that dSD, t define distances on the set of isometry classes
of closed Riemannian manifolds. Moreover, for any geometric parameters
n,K,D, the set of isometry classes ofM(n,K,D) is precompact for any of
these distances: indeed, suitable estimates on the eigenvalues and eigenfunc-
tions for manifolds in this set show that the embeddings of such manifolds
form a subset of the space

h1 :=

{ξi}i ∈ l2 :
∑
i> 1

(
1 + i2/n

)
|ξi|2 < +∞


which is precompact in l2 by Rellich’s theorem.
A rescaled version of the spectral embeddings Iat was also proposed

in [13]. These rescaled embeddings turn out to have better properties from
a metric point of view.

Definition 2.4 (Rescaled spectral embeddings). — Let (M, g) be a
closed Riemannian manifold. The unrescaled spectral embeddings of M
are the maps

Ψa
t :

{
M → l2

x 7→ cnt
(n+2)/4 (e−λit/2ϕi(x)

)
i> 1

where t > 0, a = (ϕi)i> 1 ∈ B(M, g) and cn :=
√

2(4π)n/4.

VOLUME 35 (2017-2019)
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The Ψa
t maps are topological embeddings for the same reasons as the Iat

maps are. But they enjoy an additional property: when t ↓ 0, they tend to
be an isometry.

Theorem 2.5 (Asymptotic isometry). — For any t > 0 and a ∈ B(M,

g), the map Ψa
t is a smooth embedding. Moreover,

(2.2) [Ψa
t ]∗gl2 = g + t

3

(
Scal

2 g − Ric
)

+O(t2) when t ↓ 0,

in the sense of pointwise convergence, where Scal,Ric denotes the scalar
and Ricci curvatures of (M, g) respectively.

Here l2 is seen as a Riemannian manifold modelled on a Hilbert space
(see e.g. [39, Sections 1.1 and 1.6]) with tangent spaces Tf l2 all canonically
isomorphic to l2 itself and equipped with the Riemannian metric

(gl2)f (ξ, ζ) :=
∑
i

ξiζi

for any f ∈ l2 and ξ, ζ ∈ Tf l2, and [Ψa
t ]∗gl2 is the pull-back metric defined

in the usual way by

([Ψa
t ]∗gl2)x (u, v) := (gl2)Ψat (x) (DΨa

t (x) · u,DΨa
t (x) · v)

for any x ∈ M and u, v ∈ TxM . Using the definitions of all the objects
involved, this last line rewrites as:

(2.3) ([Ψa
t ]∗gl2)x (u, v) = c2nt

(n+2)/2
+∞∑
i=0

e−λit(Dϕi(x) · u)(Dϕi(x) · v).

Remark 2.6. — A version of Theorem 2.5 where the metric g depends
analytically on the parameter t while the volume form remains constant
was proved by H. Abdallah in [1].

Remark 2.7. — In [61], X. Wang and K. Zhu perturbed the Bérard–
Besson–Gallot embeddings to construct a family of isometric embeddings
Ft : Mn → Rq(t) for any t > 0 small enough, with q(t) >> t−n/2.

Remark 2.8. — The equation
d
dtgt = Scalgt

2 gt − Ricgt

defines the gradient flow of the Einstein–Hilbert functional E : g 7→´
M

Scal d vol (see [59, Section 6.1], for instance). Therefore, the flow de-
fined by the Bérard–Besson–Gallot spectral embeddings is tangent to the

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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Ricci–Bourguignon flow at the initial time, in the sense that
d
dt

∣∣∣∣
t=0

gt = Scal
2 g − Ric .

To the best knowledge of the author, there is no satisfactory explanation
of this simple observation in the literature.

Let us sketch a proof of Theorem 2.5. We refer to [58, Section 5.1]
for detailed computations. For convenience, we set pt(·, ·) := p(·, ·, t) and
gt := [Ψa

t ]∗gl2 . Take x ∈M and v ∈ TxM . From (2.3), we have

[gt]x(v, v) = c2nt
(n+2)/2

+∞∑
i=0

e−λit(Dϕi(x) · v)2.

Let us introduce here a useful notation. Let F : M × M → (0,+∞)
be a smooth function. We define d1F (x) : TxM × M → (0,+∞) by
d1F (x)(v, y) := (∂xF )(x, y) ·v and d2[d1F (x)](y) : TxM ×TyM → (0,+∞)
by d2[d1F (x)](y) · (v, w) = ∂y[d1F (x)(v, ·)](y) ·w for any y ∈M , v ∈ TxM
and w ∈ TyM . We call mixed derivative of F at (x, x) the map

DmixF (x, x) := d2 [d1F (x)
]

(x) : TxM × TxM → (0,+∞).

A direct computation with the spectral decomposition (2.1) shows that

Dmixpt(x, x) · (v, v) =
+∞∑
i=0

e−λit(Dϕi(x) · v)2

hence

(2.4) [gt]x(v, v) = c2nt
(n+2)/2Dmixpt(x, x) · (v, v).

Let us recall a classical result which is a consequence of the celebrated
Minakshisundaram–Pleijel small-time expansion of the heat kernel [14, 45].
We write inj(M) for the injectivity radius of (M, g) and use the classical
notation expx for the exponential map at x. Recall that expx is a smooth
diffeomorphism from Binj(M)(0n) ⊂ Rn ' TxM to Binj(M)(x), where 0n
denotes the origin in Rn.

claim 2.9. — For any x, y ∈ M such that d(x, y) < inj(M), where d is
the canonical Riemannian distance on (M, g),

(2.5) p(x, y, t) = 1
(4πt)n/2

e−
d2(x, y)

4t
(
u0(x, y) + tu1(x, y) +O(t2)

)
when t ↓ 0, where u0(x, y) = θx(exp−1

x (y))−1/2, θx is the density of
(exp−1

x )# vol with respect to the Lebesgue measure in TxM ' Rn, and
u1 is a smooth function such that u1(x, x) = Scal(x)/6. Moreover, (2.5)

VOLUME 35 (2017-2019)
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can be differentiated as many times as desired with respect to any of the
spatial variables x and y.

Thus

Dmixpt(x, x) · (v, v)

= 1
(4πt)n/2

[
Dmixe−

d2(x, x)
4t · (v, v)

(
u0(x, x) + tu1(x, x) +O(t2)

)
+ e−

d2(x, x)
4t︸ ︷︷ ︸

=1

(
Dmixu0(x, x) · (v, v) +O(t)

)]
.

A direct computation shows that

Dmixe−
d2(x, x)

4t · (v, v) = − 1
4tD

mixd2(x, x) · (v, v) = gx(v, v)
2t ·

Moreover, u0(x, x) = θx(0)−1/2 = 1, and as well-known, if (r, u) are polar
coordinates on TxM , then

(2.6) θx(r, u) = rn−1(1− (r2/6
)

Ricx(u, u) +O
(
r3) )

when r ↓ 0, what leads to

Dmixu0(x, x) · (v, v) = −1
6 Ricx(v, v)

via another direct computation. Thus

Dmixpt(x, x) · (v, v) =
1

(4πt)n/2

[
gx(v, v)

2t

(
1 + t

Scal(x)
6

)
− 1

6 Ricx(v, v) +O(t)
]
.

The result follows from multiplying this last line by 2t(4πt)n/2 = c2nt
(n+2)/2.

2.3. Truncated versions

For numerical applications (see Section 3), it is important to know whe-
ther truncating the rescaled spectral embeddings Ψa

t keep their nice metric
properties. Here by truncating we mean to consider the maps
(2.7)

[Ψa
t ]m :

{
M → Rm

x 7→ cnt
(n+2)/4 (e−λ1 t/2ϕ1(x), . . . , e−λm t/2ϕm(x)

)
where m is a positive integer. The main question is then:
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Question. — Does there exist an integer m depending only on the di-
mension n and on geometric parameters a1, a2, . . . such that for any closed
n-dimensional Riemannian manifold with geometric constraints dictated
by a1, a2, . . ., the maps [Ψa

t ]m are smooth embeddings for any t > 0 and
close to being an isometry for t smaller than a uniform threshold to > 0?

In fact, this question is not without interest neither from a theoretical
point, especially when placed in perspective with Whitney’s and Nash’s
celebrated embedding theorems.
In [8], J. Bates studied this question in the case of the functions

Φa :
{
M → RN

x 7→ (ϕi(x))i> 1.

He called maximal embedding dimension ofM the smallest positive integer
m such that the map

[Φa]m :
{
M → Rm

x 7→ (ϕ1(x), . . . , ϕm(x)).

is a smooth embedding for any a = {ϕi}i ∈ B(M, g). Note that the map
[Φa]m is a smooth embedding if and only if for some (or any) t > 0 the
map [Ψa

t ]m is so too, as the two maps are equal up to composition by the
invertible matrix cnt(n+4)/2 Diag(e−λ1t, . . . , e−λnt).

Bates’ main result is the existence of a uniform upper bound on the
maximal embedding dimension of Riemannian manifolds satisfying suitable
geometric constraints.

Theorem 2.10. — Let Ko > 0, io > 0 be fixed constants and n > 2 an
integer. Then there existsm = m(Ko, io, n) ∈ N such that [Φa]m : M → Rm
is a smooth embedding for any a ∈ B(M, g), where (M, g) is any closed
n-dimensional Riemannian manifold satisfying

(2.8) Ric > −(n− 1)Kog, inj(M) > io, vol(M) = 1.

Proof.
The proof can be divided into two steps:
(a) to show the existence of a dimension m = m(Ko, io, n) and a ra-

dius r = r(Ko, io, n) > 0 such that the map [Φa]m is a smooth
embedding when restricted to any ball Br in M with r ∈ (0, r),

(b) to check that any two points x, y ∈ M such that d(x, y) > r are
distinguished by [Φa]m.
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Roughly speaking, (a) is achieved via the combination of three results.
We need to introduce some terminology and notation to state them. We call
normalized any coordinate patch (U, h) around a point x of a Riemannian
manifold (M, g) such that h(x) = 0n and gij(0n) = δij for any i, j ∈
{1, . . . , n}, where (gij)i, j are the coefficients of g read in h. We write G
for the n × n matrix [gij ]i, j . Note that gij ∈ C∞(h(U)) for any i, j and
that we can define a family of norms on Rn, parametrized by h(U), by
setting |ξ|G(·) :=

∑
i, j gi, j(·)ξiξj for any ξ ∈ Rn. For brevity, we write |ξ|G

instead of |ξ|G(·). Lastly, we recall that for any α ∈ (0, 1), the Cα-norm of
a function f : Ω→ R, where Ω ⊂ Rn is an open set, is set as

[f ]α := sup
x∈Ω

|f(x)|+ sup
x, y ∈Ω, x 6= y

|f(x)− f(y)|
‖x− y‖α2

·

The first result comes from the work of P. Jones, M. Maggioni and
R. Schul [35]. It asserts that if (Mn, g) is a closed Riemannian manifold with
vol(M) = 1, if there exists a normalized coordinate patch (U, h) around a
point z ∈M satisfying

(i) h(U) = Br(0n) for some r > 0,
(ii) Q−1‖ · ‖2 6 | · |G 6 Q‖ · ‖2 for some Q > 1,
(iii) supi, j [gij ]Cα(Br(0n)) 6 C for some α ∈ (0, 1) and 0 < C < +∞,

then there exist a constant κ = κ(n,Q, α,C) > 1 and positive integers
i1, . . . , in such that for any a = {ϕi} ∈ B(M, g), the map

Φ̃a :
{
Bκ−1r(z) → Rn

x 7→ (γ1ϕi1(x), . . . , γnϕin(x)) ,

where γj := (
ffl
Bκ−1r

ϕij )−1/2 for any j ∈ {1, . . . , n}, satisfies

κ−1

r
d(x, y) 6

∥∥∥Φ̃a(x)− Φ̃a(y)
∥∥∥

2
6
κ

r
d(x, y)

for any x, y ∈ Bκ−1r(z), where d is the canonical Riemannian distance
of (M, g); in particular, Φ̃a is a bi-Lipschitz embedding onto its image.
Moreover, the eigenvalues associated with the eigenfunctions ϕi1 , . . . , ϕin
satisfy:

(2.9) κ−1

r2 6 λij 6
κ

r2 ∀ j ∈ {1, . . . , n}.

Of course since the ϕi are smooth, then Φ̃a is smooth too.
The second result is the construction of Cα-harmonic coordinate patches

by M. Anderson and J. Cheeger [7]. Let us recall that a coordinate patch
h = (h1, . . . , hn) on an n-dimensional Riemannian manifold (M, g) is called
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harmonic whenever ∆hi = 0 for any i. Moreover, for α ∈ (0, 1) given, h
is called Cα-harmonic if it is harmonic, normalized, satisfying (i) and (ii)
given above and:

rα sup
i, j

[gij ]Cα(Br(0n)) 6 Q− 1.(iii’)

M. Anderson and J. Cheeger proved that any n-dimensional Riemannian
manifold satisfying the constraints (2.8) can be covered by an atlas of Cα-
harmonic coordinate patches with a uniform radius called harmonic radius
that depends only on n,Ko, io, α,Q. Bates adapted the proof of this result
to show that the same result holds with (iii’) replaced by (iii). This permits
to apply the previous result.
The third result is a uniform bound on the eigenvalues of the Laplace–

Beltrami operator for closed Riemannian manifolds satisfying suitable geo-
metric constraints, see [13, Theorem 3]: for any D > 0, there exists
a constant Cs = Cs(n,K,D) > 0 such that for any closed connected
n-dimensional Riemannian manifold (M, g) with Ric > −(n − 1)Kg and
diam(M) 6 D, one has:

(2.10) λi > Csi
2/n ∀ i > 0.

Since there existsD > 0 such that diam(M) 6 D for any (M, g) such that
vol(M) = 1, then (2.10) is in force when we assume the constraints (2.8).
Applying (2.9), we get

κ

r2 > λij > Csi
2/n
j ∀ j ∈ {1, . . . , n}.

Choosingm as the ceiling value of (κr−2C−1
s )n/2−1 ensures Cs(m+1)2/n >

κr−2 and thus prevents i1, . . . , in to be greater than m. Then [Φa]m is a
local embedding because it takes into account the maps ϕi1 , . . . , ϕin that
separate points in balls of M .
The proof of (b) is obtained by a quick computation using suitable

information on the heat kernel. We do not provide the details here, see
[8, Section 3]. �

2.4. Quantitative versions

If (M, g) is a smooth Riemannian manifold and F : M → RN a smooth
function, the norm of the differential of F at a point x ∈M , namely

|DF (x)| := sup {‖DF (x) · v‖ : v ∈ TxM with g(v, v) = 1} ,
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provides an estimate on how far the function F is to be a local isometry
in a neighborhood of x. Of course |DF (x)| depends on the norm ‖ · ‖ we
put on RN . Here we will only consider the Euclidean norm ‖ · ‖2 and the
infinity norm ‖ · ‖∞ and write |DxF |2 and |DxF |∞ respectively for the
corresponding norms of F at x measured with these two norms.
It follows from Theorem 2.5 that the Bérard–Besson–Gallot rescaled

spectral embeddings (Ψa
t )t>0 are such that

|DΨa
t (x)|2 → 1

when t→ 0+. This observation raises a natural question: for any accuracy
parameter ε > 0, does there exist a threshold time to > 0 such that for any
t ∈ (0, to),

1− ε < |DΨa
t |2 < 1 + ε ?

Here and in the sequel we omit x in |DΨa
t (x)| to mean that the statement

holds for any x ∈M .
In [49], J. Portegies answered this question for several families of spectral

embeddings including the Bérard–Besson–Gallot rescaled ones, by consid-
ering the sets of closed Riemannian manifolds

M(n,K, i, V ) :=
{

(Mn, g) : Ric > Kg, inj(M) > i, vol(M) 6 V
}
,

where n ∈ N\{0}, K ∈ R and i, V > 0. From now on we consider these
parameters as fixed.
Let us begin with a family of maps introduced by Portegies himself. Let

(M, g) be a closed n-dimensional Riemannian manifold. For any positive
integer N , any q1, . . . , qN ∈M and any t > 0, consider the smooth map

G(q1, ..., qN ), t :
{
M → RN

x 7→ cnt
(n+1)/2(p(q1, x, t), . . . , p(qN , x, t)

)
where cn =

√
2π−n/2e−1/2 is a scaling factor. One can understand this map

as giving a picture of M snapshotted by the heat kernel at time t from the
viewing points q1, . . . , qN . Therefore, the more viewing points we have at
our disposal, the better we might recover the manifold. In order to catch the
geometry of the manifold in an optimal way, it sounds natural to consider
points in a δ-net(2) , with δ small. From a computational perspective though,
we cannot afford to use too many points, so δ cannot be too small. The
next Theorem 2.11 gives a quantitative estimate on δ to ensure that the

(2)We recall that for any δ > 0, a δ-net of a metric space (X, d) is a subset Y of X
such that the balls {Bδ/2(y)}y∈Y are disjoint while the union of the balls {Bδ(y)}y∈Y
covers X.
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mapG(q1, ..., qN ),t associated with any δ-net (q1, . . . , qN ) is in a range ε from
being an isometric embedding ofM into RN equipped with the norm ‖·‖∞.

Theorem 2.11 (Net heat kernel embeddings in (RN , ‖ · ‖∞)).
For any ε > 0, there exists to > 0 depending only on n,K, i, ε, and

No ∈ N depending only on n,K, i, V, ε such that for any t ∈ (0, to), there
exists a net parameter δ > 0 depending only on n,K, i, ε, t such that for
any δ-net {q1, . . . , qNo} of (M, g) ∈ M(n,K, i, V ), the map G(q1, ..., qNo ), t
is an embedding satisfying

1− ε < |DG(q1, ..., qNo ), t|∞ < 1 + ε.

Remark 2.12. — Portegies’ net heat kernel embeddings are inspired by
Gromov’s variant of the Kuratowski distance functions embedding [32]. The
link between heat kernel embeddings and distance functions embeddings is
given by Varadhan’s celebrated formula:

lim
t→ 0
−4t log(p(x, y, t)) = d2(x, y).

Remark 2.13. — Portegies also provided a truncated version of Theo-
rem 2.11, namely where the heat kernel involved in the definition of G is
replaced by pN which is defined by keeping only the N th first terms in the
spectral decomposition (2.1).

In order to replace the uniform norm on RN by the Euclidean norm,
Portegies introduced a family of suitably weighted heat kernel embeddings.
This leads to the following embedding theorem which states, roughly speak-
ing, that for any ε > 0, one can select a finite number of points on a manifold
inM(n,K, i, V ) from which to build a heat kernel embedding that is ε-close
to be an isometry. We call special points these heat kernel embeddings.

Theorem 2.14 (Special points heat kernel embeddings into (RN , ‖·‖2)).
For any ε > 0, there exists to > 0 depending only on n,K, i, ε such that
for any t ∈ (0, to), there exists λ > 0 and N ∈ N both depending only on
n,K, i, V, ε, t such that for any (M, g) ∈ M(n,K, i, V ), there exists points
q1, . . . , qN ∈M such that the map

Ht, λ
q1, ..., qN

:
{
M → RN

x 7→ c′nt
n+2

4 λ(p
(
q1, x, t), . . . , p(qN , x, t)

)
,

where c′n := 2(3n+4)/4πn/4 is a scaling factor, is an embedding satisfying

1− ε 6
∣∣∣DHt, λ

q1, ..., qN

∣∣∣
2
6 1 + ε.

Finally, let us provide Portegies’ truncated and quantitative version of
the Bérard–Besson–Gallot almost-isometry theorem.
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Theorem 2.15 (Almost isometric truncated Bérard–Besson–Gallot
spectral embeddings). — For any ε > 0, there exists to > 0 depending
only on n,K, i, ε such that for any t ∈ (0, to), there exists a truncation num-
ber m depending only on n,K, i, V, ε, t such that for any m > m, for any
(M, g) ∈ M(n,K, i, V ) and any a ∈ B(M, g), the map [Ψa

t ]m : M → RN is
a smooth embedding satisfying

1− ε < |D [Ψa
t ]m|2 < 1 + ε.

The proof of all these results is based on a quantitative construction on
the harmonic radius in terms of the parameters n,K, i, V . The proof by
M. Anderson and J. Cheeger was based on a contradiction argument which
did not provide such a quantitative estimate. By suitably exploiting the
Bishop–Gromov theorem and the segment inequality, one can show that for
any x ∈ M ∈ M(n,K, i, V ) and any orthonormal basis {ei}i of TxM , the
functions {d(pi, ·)}i, where pi := expx(ei/4) for any i ∈ {1, . . . , n}, form
a coordinate patch satisfying (i), (ii) and (iii’) with domain Br(x) where
r > 0 depends only on n,K, i, V . To turn these coordinates into harmonic
ones, one can replace them by their so-called harmonic replacement, that
is the solution of the Dirichlet problem{

∆hi = 0 on Br(x)
hi(·) = d(pi, ·) on ∂Br(x).

Bu using suitable interior elliptic estimates, a uniform bound on the dis-
tance functions for manifolds inM(n,K, i, V ), and a quantitative version
of the maximum principle, it can be shown that the maps {hi}i form a
harmonic coordinate patch with domain Br(x). We refer to [49, Appendix]
for more details.

2.5. Heat kernel embeddings via the connection Laplacian

In [51], A. Singer and H.-T. Wu introduced another family of unrescaled
spectral embeddings

V at : M → l2

of a closed Riemannian manifold (M, g). Their approach, very similar to the
one adopted in [13], relied on the heat kernel of the connection Laplacian
for vector fields. Let us recall that the connection Laplacian for vector fields
onM is the Friedrich extension ∆C : L2(TM)→ L2(TM) of the symmetric
operator ∆C : C∞c (TM)→ C∞c (TM) defined by

∆CV := tr
(
∇2V

)
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for any V ∈ C∞(TM), where ∇2V : C∞(TM) × C∞(TM) → C∞(TM)
is the second covariant derivative of V , tr is the trace operator on (1, 2)
tensors and C∞c (TM) (resp. C∞(TM)) is the space of compactly supported
smooth (resp. smooth) vector fields on M .
The operator −∆C is a non-negative self-adjoint second-order elliptic

operator on L2(TM) admitting a discrete spectrum 0 = λC0 < λC1 6 λC2
6 . . . → +∞, counted with multiplicity. Moreover, if we denote by 0
< νC1 < νC2 < . . . → +∞ the same spectrum counted without multiplicity,
we can decompose L2(TM) into ⊕+∞

k=1Ek, where Ek is the eigenspace of
−∆C corresponding to the eigenvalue νCk . We denote by BC(Ek) the set of
orthonormal bases of Ek, and define

BC(M, g) :=
+∞∏
k=1
BC(Ek).

The semigroup (e−t∆C )t> 0 generated by −∆C admits a kernel pC such
that for any x, y ∈M and t > 0,

pC(x, y, t) : TyM → TxM,

i.e.
e−t∆CV (x) =

ˆ
M

pC(x, y, t)V (y) d vol(y)

for any x ∈ M , V ∈ L2(TM) and t > 0. Moreover, pC is smooth in x and
y and analytic in t. Finally, just like the classical heat kernel, pC admits a
spectral decomposition: for any x, y ∈ X and t > 0,

(2.11) pC(x, y, t) =
+∞∑
i=0

e−λ
C
i tXi(x)⊗X]

i (y)

holds, where (Xi)i> 0 ∈ BC(M, g) and ·] is the sharp operator on vector
fields.

Definition 2.16 (Vector Diffusion Maps). — Let (M, g) be a closed
Riemannian manifold. The vector diffusion maps of M are the functions

V at :

M → l2

x 7→ vol(M)
(
e−(λCi +λCj )t/2gx

(
Xi(x), Xj(x)

))
i, j> 1

where t > 0 and a = (Xi)i> 0 ∈ BC(M, g).

Using the spectral decomposition (2.11), one can easily prove that the
vector diffusion maps are smooth embeddings and that the quantity

‖V at (x)− V at (y)‖
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does not depend on the choice of a ∈ B(M, g) for any x, y ∈M and t > 0.
Calling it

dV DM, t(x, y),

we get distances dV DM, t on M called vector diffusion distances. The next
Theorem 2.17 [51, Theorem 8.2] provides an information on how dV DM, t

behaves when t ↓ 0:

Theorem 2.17 (Short-time behavior of the Vector Diffusion Distances).
Let (M, g) be a closed n-dimensional Riemannian manifold. Then for any
x ∈ M , there exists to > 0 and C > 0 such that for all 0 < t < to and all
v ∈ TxM with ‖v‖2 � t, setting y = expx(v) one has∣∣cntn+1d2

V DM, t(x, y)− ‖v‖2
∣∣ 6 Ct,

with cn := (4π)n/n.

The proof of this theorem relies on the analogue of the Minakshisunda-
ram–Pleijel expansion for the connection heat kernel (see e.g. [15]): for any
x ∈ M and v ∈ TxM with ‖v‖ 6 t 6 inj(M), when t ↓ 0, writing y for
expx(v) we have

(2.12) pC(x, y, t)

= 1
(4πt)n/2

e−
‖v‖2

4t θx
(
exp−1

x (y)
)−1/2 (Φ0(x, y) + tΦ1(x, y) +O

(
t2
) )
,

where Φ0(x, y) is the parallel transport from TxM to TyM . Since

d2
V DM, t(x, y) = tr

(
pC(x, x, t)pC(x, x, t)]

)
+ tr(pC(y, y, t)pC(y, y, t)])

− 2 tr
(
pC(x, y, t)pC(x, y, t)]

)
,

applying (2.12) and (2.6) yields to the result, thanks to a simple computa-
tion.
The truncated vector diffusion maps were subsequently studied by

C.-Y. Li and H.-T. Wu who proved in [41] that for any closed smooth
Riemannian manifold (M, g) and any t > 0, there exists a positive integer
m such that for any m > m and any a ∈ B(M, g), the map

[V at ]m
2

:

M → Rm2

x 7→ vol(M)
(
e−(λCi +λCj )t/2gx(Xi(x), Xj(x))

)
1 6 i, j 6m

is a smooth embedding. However, a quantitative stamement in the form of
Theorem 2.15 is still open:
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Question – Open problem 1. — LetM(λ1, . . . , λk) be a class of (isome-
try classes of) closed Riemannian manifolds depending on some geometric
parameters λ1, . . . , λk. For any small ε > 0, does there exist to > 0 de-
pending only on λ1, . . . , λk, ε such that for any t ∈ (0, to), there exists a
truncation number m depending only on λ1, . . . , λk, ε, t such that for any
m > m, for any (M, g) ∈ M(λ1, . . . , λk) and any a ∈ B(M, g), the map
[V at ]m2 is a smooth embedding satisfying

1− ε <
∣∣∣D [V at ]m

2
∣∣∣
2
< 1 + ε.

In [62], H.-T. Wu used the vector diffusion maps to define the so-called
vector spectral distances.

Definition 2.18 (Vector Spectral Distances). — For any t > 0 and any
closed connected smooth Riemannian manifolds (M, g) and (M ′, g′), set

dV DM, t ((M, g), (M ′, g′))

:= max
{

sup
a∈B(M, g)

inf
a′ ∈B(M ′, g′)

dH, l2
(
V at (M), V a

′

t (M ′)
)
,

sup
a′ ∈B(M ′, g′)

inf
a∈B(M, g)

dH, l2
(
V a
′

t (M ′), V at (M)
)}

.

He showed that dV DM, t defines a distance on the set of isometry classes
of closed Riemanian manifolds for any t > 0 for which the setsM(n,K,D)
are precompact. A natural question raised by the referee is the following:

Question – Open problem 2. — Hoes does the vector spectral distances
relate to the spectral distances of Definition 2.3?

As a reasonable first step to answer this question, one could study the re-
lationship between the eigenvalues/eigenfunctions of the Laplace–Beltrami
operator and the eigenvalues/eigenvector fields of the connection Laplacian.
A result in that direction was found by B. Colbois and D. Maerten [24]: for
any closed connected Riemannian manifold (Mn, g) with Ric > −K(n− 1)
for some K > 0,

λCi 6 K(n− 1) + λi

for any i. However, to the best knowledge of the author, nothing else has
been obtained so far.
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2.6. Heat kernel embeddings for possibly non-smooth spaces

In the recent [5], the Bérard–Besson–Gallot spectral embeddings have
been studied in the context of compact metric measure spaces satisfying the
synthetic Riemannian Curvature-Dimension condition RCD(K,N), where
K ∈ R and N > 1 must be understood as a lower bound on the Ricci cur-
vature and an upper bound on the dimension, respectively. This condition
has been under extensive study over the past few years: see for instance the
survey [2]. We provide here a brief introduction and refer to [58] for details
and references.

2.6.1. A brief introduction to RCD(K,N) spaces

Let (X, d,m) be a Polish metric measure space, meaning here a Polish
(i.e. complete and separable) metric space equipped with a fully supported
Borel regular measure m that is finite and non-zero on balls with finite
and non-zero radius. Note that the assumption “m fully supported” can be
removed to the prize of technical complications we do not want to enter to
here.
The Cheeger energy of (X, d,m) is the functional defined on L2(X,m) by

setting

(2.13) Ch(f) = inf
fn→ f

{
lim inf
n→+∞

ˆ
X

|∇fn|2 dm
}
∈ [0,+∞]

for any f ∈ L2(X,m), where the infimum is taken over the set of sequences
{fn}n ⊂ L2(X,m)∩Lip(X) such that ‖fn− f‖L2(X,m) → 0, and where for
any locally Lipschitz function F , the function |∇F | – called slope of F – is
set as

|∇F |(x) :=

lim sup
y→x

|F (x)−F (y)|
d(x, y) if x ∈ X is not isolated,

0 otherwise.

The Cheeger energy must be understood as an abstract extension of the
classical Dirichlet energy of Rn defined on the Sobolev space H1 by

Di(f) :=
ˆ
Rn
|∇f |2

for any f ∈ H1. Accordingly, the finiteness domain of Ch is called (Cheeger
metric measure) Sobolev space of (X, d,m) and usually denoted

H1, 2(X, d,m).
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A suitable diagonal argument applied to optimal approximating sequen-
ces in (2.13) provides for any f ∈ H1, 2(X, d,m) the existence of an
L2-function |∇f |∗, called minimal relaxed slope of f , which gives integral
representation of Ch, that is:

Ch(f) =
ˆ
X

|∇f |2∗ dm.

The minimal relaxed slope is a local object, meaning that |∇f |∗ = |∇g|∗
m-a.e. on {f = g} for any f, g ∈ H1, 2(X, d,m). This, combined with the
integral representation property, ensures that |∇f |∗ is unique as a class of
L2-equivalent functions.
When equipped with the norm ‖ · ‖H1, 2 := (‖ · ‖2L2 + Ch(·))1/2, the

space H1, 2(X, d,m) is always a Banach space, but it might fail to be a
Hilbert space: this is the case for instance when (X, d,m) is a smooth non-
Riemannian Finsler manifold. In case H1, 2(X, d,m) is a Hilbert space, we
say that

(X, d,m) is infinitesimally Hilbertian.
A smooth Riemannian manifold equipped with the canonical Riemann-
ian distance and volume measure is an obvious case of an infinitesimally
Hilbertian metric measure space; actually, as shown in [43], a Riemann-
ian manifold equipped with the Riemannian distance and any arbitrary
positive Radon measure is always infinitesimally Hilbertian.
Let us now recall some basic facts from optimal transport theory. Let

P(X) be the set of probability measures on X, P2(X) the set of probability
measures µ on X with finite second moment, meaning thatˆ

X

d2(xo, x) dµ(x) < +∞

for some xo ∈ X. We also write Pa2 (X,m) for the subset of P2(X) made
of those measures that are absolutely continuous with respect to m. The
Wasserstein distance between two measures µ0, µ1 ∈ P2(X) is by definition

(2.14) W2(µ0, µ1) := inf
π

(ˆ
X×X

d(x0, x1)2 dπ(x0, x1)
)1/2

where the infimum is taken among all the probability measures π on X×X
with first marginal equal to µ0 and second marginal equal to µ1. Any mea-
sure π achieving the infimum in (2.14) is called optimal coupling between
µ0 and µ1. A standard result states that if the space (X, d) is geodesic
(meaning here that two points in X can be joined by a globally distance
minimizing curve), then the metric space (P2(X),W2) is geodesic too. Fi-
nally, for any N ∈ (1,+∞), the N -Rényi entropy relative to m, denoted by
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SN (·|m), is defined by:

SN (µ|m) := −
ˆ
X

ρ1− 1
N dm ∀ µ ∈ P(X),

where µ = ρm + µs is the Lebesgue decomposition of µ with respect to m.
We are now in a position to introduce the RCD(K,N) condition.

Definition 2.19. — Let (X, d,m) be a Polish metric measure space
and K ∈ R, N > 1 two parameters.

(1) [42, 55, 56] The space (X, d,m) is called CD(K,N) if for any µ0, µ1 ∈
Pa2 (X,m) with respective densities ρ0, ρ1, there exists at least one
W2-geodesic (µt)t∈ [0, 1] and an optimal coupling π between µ0 and
µ1 such that for any N ′ > N ,

SN ′(µt|m) 6 −
ˆ
X×X

[
τ

(1−t)
K,N ′ (d(x0, x1))ρ−1/N ′

0 (x0)

+ τ
(t)
K,N ′(d(x0, x1))ρ−1/N ′

1 (x1)
]

dπ(x0, x1),

where for any θ > 0,

τ
(K,N)
t (θ) :=



t
1
N

(
sinh(tθ

√
−K/(N−1))

sinh(θ
√
−K/(N−1))

)1− 1
N

if K < 0,

t if K = 0,

t
1
N

(
sin(tθ

√
K/(N−1))

sin(θ
√
K/(N−1))

)1− 1
N

if K > 0 and

0 < θ < π
√

(N − 1)/K,
∞ if K > 0 and

θ > π
√

(N − 1)/K,

if N > 1, and τ (K,N)
t (θ) = t if N = 1.

(2) [4] The space (X, d,m) is called RCD(K,N) if it is both CD(K,N)
and infinitesimally Hilbertian.

It is worth mentioning that CD(K,N) (and thus RCD(K,N)) spaces
satisfy the local doubling and Poincaré properties:

(i) (local doubling condition) for any R > 0 there exists CD = CD(K,
N,R) > 0 such that for any ball B with radius r ∈ (0, R),

m(2B) 6 CDm(B);
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(ii) (local weak (1, 1)-Poincaré inequality) for any R > 0 there exists
CP = CP (K,N,R) > 0 such that for any f ∈ Lip(X) and any ball
B with radius r ∈ (0, R), 

B

|f − fB |dm 6 CP r
 

2B
|∇f |dm.

Here 2B is the ball with same center as B but with doubled radius.
Moreover, any RCD(K,N) space has a notion of essential dimension in

the sense that there exists a unique integer dimd,m(X) := n ∈ [1, N ] such
that

(2.15) m (X \ Rn) = 0

where

Rn := {x ∈ X : Tan(X, d,m, x)} =
{(

Rk, dRk ,Lk/ωk, 0
)}

is the set of so-called n-regular points of (X, d,m) and for any x ∈ X,
Tan(X, d,m, x) is the set of tangents to (X, d,m) at x that is to say the
collection of all pointed metric measure spaces (Y, dY ,mY , y) such that, as
i→∞, one has(

X,
1
ri

d, m

m(Bri(x)) , x
)
mGH→ (Y, dY ,mY , y)

for some infinitesimal sequence (ri) ⊂ (0,∞), where mGH stands for the
measured Gromov-Hausdorff convergence. A first step towards this deep
structural result was achieved by A. Mondino and A. Naber who established
in [46] the a.e. decomposition

m

X\ bNc⋃
k=1
Rk

 = 0

of any RCD(K,N) space (X, d,m). Several groups of authors [27, 30, 37]
subsequently refined this result by proving the rectifiability of RCD(K,N)
spaces as metric measure spaces. Building upon this and a careful analysis
of the regularity of Regular Lagrangian Flows of Sobolev vector fields,
E. Brué and D. Semola finally proved (2.15) by a suitable contradiction
argument [18].
Finally, let us provide some examples of RCD(K,N) spaces.
• Smooth Riemannian manifolds (M, g) equipped with their canonical
Riemannian distance dg and volume measure volg with dimension
n bounded from above by N and Ricci curvature bounded from
below by K(n − 1) are RCD(K,N) spaces. For instance, the unit
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sphere in Rn equipped with the Riemannian metric induced by the
ambient Euclidean metric is RCD(1, n− 1).

• Weighted smooth n-dimensional Riemannian manifolds (M, dg,
e−V volg) with V ∈ C2(M) satisfying

Ric + HessV −
1

N − n
∇V ⊗∇V > Kg

are RCD(K,N) spaces. For instance, ([0, π], deucl, sinN−1(r) dr) is
a RCD(1, N) space.

• Two-dimensional cones with angle less than or equal to 2π are
RCD(0, 2) spaces. This is probably the simplest example of non-
smooth RCD space. Elaborated variations on this simple example
include cones over RCD spaces [38] and stratified spaces [16].

• The graph of any Lipschitz function f : Rn → R equipped with
the length distance and the n-dimensional Hausdorff measure is
RCD(K,n), whereK depends on the Lipschitz constant of the func-
tion.

• Two important classes of possibly highly non-smooth metric mea-
sure spaces are also RCD(K,N) spaces. These are the class of
Ricci limit spaces and Alexandrov spaces. Spaces in this latter class
are metric spaces with a synthetic notion of sectional curvature
bounded from below and are naturally endowed with a Hausdorff
measure of integer dimension, see [19, 48].

2.6.2. Heat kernel of RCD(K,N) spaces

Let us recall that a classical gradient flow (in a Hilbert space H) is the
solution of an ordinary differential equation of type

(2.16)
{
x′ = −∇F (x)
x(0) = x

where F : H → R∪{+∞} is a function satisfying some regularity assump-
tion (say C1, 1). In case the only regularity assumption on F is convexity,
one can still give a meaning to (2.16) by introducing the subdifferential of
F , defined as

∂F (x) :=
{
p ∈ H :∀ y ∈ H, F (y) > F (x) + 〈p, y − x〉H

}
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for any x ∈ H. Then we call gradient flow of F starting at x ∈ H any
locally absolutely continuous curve x : (0,+∞)→ H such that

(2.17)
{

x′(t) ∈ −∂F (x(t)) for a.e. t ∈ (0,+∞)
‖x(t)− x‖H → 0 when t→ 0.

The Komura–Brézis theorem [3, 17, 40] states that for any x in the closure
of the finiteness domain of F , there exists a unique gradient flow of F
starting at x.
Considering a metric measure space (X, d,m), it is easily checked that

Ch is convex and lower semicontinuous with respect to the L2(X,m)-norm.
Therefore, assuming that (X, d,m) is infinitesimally Hilbert, the Komura–
Brézis theorem applies and provides a family of maps

Pt : {∂Ch(·) 6= 0} ⊂ L2(X,m)→ L2(X,m), t > 0,

defined by Pt(f) := f(t) for any f ∈ L2(X,m) where f(·) is the gradient
flow of Ch starting from f . This family is called heat flow of (X, d,m)
because for any f such that ∂Ch(f) 6= 0, if we set −∆f as the element with
minimal norm in ∂Ch(f), it can be shown that

d
dtPtf = −∆Ptf

holds for a.e. t > 0. Moreover, using the infinitesimal Hilbertianity of the
space, one can show that:

(1) the maps (Pt)t> 0 are linear,
(2) the Laplacian ∆ coincides with the linear operator defined through

integration by parts:

D(∆) :=
{
f ∈ H1, 2(X, d,m) : there exists h =: ∆f ∈ L2(X,m)

such that
ˆ
X

〈∇f,∇g〉dm = −
ˆ
X

hg dm for all g ∈ H1, 2(X, d,m)
}
,

(3) the limit

〈∇f,∇g〉 := lim
ε↓0

|∇(f + εg)|2∗ − |∇f |2∗
2ε

defines a symmetric bilinear form on H1, 2(X, d,m)×H1, 2(X, d,m)
taking values in L1(X,m) and

E(f, g) :=
ˆ
X

〈∇f,∇g〉dm
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defines a strongly local Dirichlet form with domain H1, 2(X, d,m)
such that:

E(f, f) = Ch(f) ∀ f ∈ H1, 2(X, d,m).

When (X, d,m) is an RCD(K,N) space, then E is also a regular Dirichlet
form whose associated intrinsic distance coincides with d, see [4]. Then
the works of K.-T. Sturm on such Dirichlet forms [52, 53, 54] provide the
existence of a heat kernel for Ch, meaning in this context a locally Lipschitz
function p : X × X × (0,+∞) → (0,+∞) symmetric with respect to its
first two variables such that for any t > 0 and f ∈ L2(X,m),

Ptf(x) =
ˆ
X

p (x, y, t)f(y) dm(y) for m-a.e. x ∈ X.

Note that Sturm’s results hold in the class of metric measure spaces satisfy-
ing the doubling and Poincaré properties, so the existence of a heat kernel
on (X, d,m) uses both the CD(K,N) condition (notably to ensure the va-
lidity of these two conditions) and the infinitesimally Hilbertian condition.

2.6.3. Riemannian metrics on RCD(K,N) spaces

A notion of Riemannian metric can be formulated on RCD(K,N) spaces
thanks to the abstract calculus developed by N. Gigli in [29]. There is shown
that on an RCD(K,N) space (X, d,m) can be defined:

• a space of square integrable vector fields L2(TX) equipped with a
natural norm ‖ · ‖L2(TX) such that any f ∈ H1, 2(X, d,m) defines
an element ∇f ∈ L2(TX) with ‖∇f‖L2(TX) = |∇f |∗,

• its dual L2(T ∗X),
• their tensor products L2(TX) ⊗ L2(TX), L2(T ∗X) ⊗ L2(T ∗X),
L2(TX)⊗ L2(T ∗X),

• a local Hilbert–Schmidt norm ‖ · ‖HS : L2(T ∗X) ⊗ L2(T ∗X)
→ L0(X,m), where L0(X,m) is the set of m-measurable functions
on X.

Then a Riemannian metric on (X, d,m) is by definition a symmetric bilinear
form ḡ : L2(TX)× L2(TX)→ L0(X,m) that is L∞(X,m)-linear, meaning
that

ḡ(χV,W ) = χḡ(V,W )
for any χ ∈ L∞(X,m) and V,W ∈ L2(TX), and non-degenerate, that is to
say:

ḡ(V, V ) > 0 m-a.e. on {|V | > 0} for all V ∈ L2(TX).
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Any Riemannian metric ḡ can be represented by a unique element ḡ in
L2(T ∗X)⊗ L2(T ∗X) singled out by the following property:〈

ḡ,
∑
i

χi∇f1
i ⊗∇f2

i

〉
dual

=
∑
i

χiḡ
(
∇f1

i ,∇f2
i

)
for any finite collection χi ∈ L∞(X,m), f1

i , f
2
i ∈ H1,2(X, d,m) where

〈·, ·〉dual is the duality pairing. Moreover, there exists a unique Riemannian
metric g such that

g(∇f1,∇f2) = 〈∇f1,∇f2〉 m-a.e.

for any f1, f2 ∈ H1, 2(X, d,m). This metric is called canonical Riemannian
metric of (X, d,m).

2.6.4. Spectral and heat kernel embeddings

When (X, d,m) is a compact RCD(K,N) space, one can show that the
linear operator−∆ has a discrete spectrum 0 = λ0 < λ1 6 λ2 6 . . .→ +∞,
the eigenfunctions of −∆ all admit a Lipschitz representative, and the heat
kernel supports a spectral decomposition just like in the case of smooth
Riemannian manifolds:

(2.18) p(·, ·, t) =
∑
i> 0

e−λitϕi(·)ϕi(·) in C(X ×X),

p(·, y, t) =
∑
i> 0

e−λitϕi(y)ϕi(·) in H1, 2(X, d,m) for any y ∈ X.

Thus the Bérard–Besson–Gallot embeddings can be defined in a direct way
on (X, d,m). Let B(X, d,m) be the set of orthonormal basis of L2(X,m)
made of normalized eigenfunctions of −∆ listed in increasing order of cor-
responding eigenvalues. Then for any t > 0 and a = (ϕi)i ∈ B(X, d,m), we
can set

Ψa
t :

{
X → l2

x 7→ cnt
(n+2)/4 (e−λit/2ϕi(x)

)
i> 1

with cn =
√

2(4π)n/4. However, the heat kernel embeddings

Φt :
{
X → L2(X,m)
x 7→ p (x, ·, t),

where t > 0, are easier to handle in this context. Indeed, the study of
RCD(K,N) spaces often relies on blow-up arguments where the local anal-
ysis on (X, d,m) at x ∈ X is observed through the behavior of the rescaled
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spaces (X,
√
t
−1d,m(B√t(x))−1m, x) when t ↓ 0. Working with the heat

kernel in this case is especially convenient because of the simple scaling
formula

pt(x, y, 1) = m
(
B√t(x)

)
p (x, y, t)

where pt is the heat kernel of(
X,
√
t
−1

d,m
(
B√t(x)

)−1
m
)
.

Note that for any a = {ϕi}i ∈ B(X, d,m), the spectral decomposition (2.18)
implies

cnt
(n+2)/4Λa

(
Φt/2(x)

)
= Ψa

t (x)
for any x ∈ X and t > 0, where Λa is the isomorphism L2(X,m) 3 f

=
∑
i fiϕi 7→ {fi}i ∈ l2, so the properties of Φt can be deduced from those

of Ψa
t and vice-versa.

It follows from the same proof as in the Riemannian case that the maps
Φt (and then Ψa

t ) are Lipschitz embeddings for any t > 0. Moreover, when
(X, d,m) is a smooth Riemannian manifold (M, dg, volg), it is easily checked
that

(2.19) DΦt(x) · v coincides with
the square integrable function y 7→ gx(∇p(·, y, t)(x), v)

for any x ∈ X and v ∈ TxM . Writing v as the initial velocity of a smooth
curve γ : [0, 1]→M emanating from x, this writes as

[DΦt(x) · v] (·) = d
ds

∣∣∣∣
s=0

p(γ(s), ·, t).

This Riemannian formula extends to a first-order differentiation formula
in the general RCD(K,N) setting, see [58, Proposition 5.2.1]. Moreover,
following the Riemannian observation (2.19), one can define pull-back Rie-
mannian metrics on (X, d,m) induced by the heat kernel embeddings
(Φt)t>0.

Proposition 2.20 (Pull-back metrics). — For any t > 0, setting

(2.20) gt(V1, V2)(·) :=
ˆ
X

〈∇p(·, y, t), V1〉 〈∇p(·, y, t), V2〉dm(y)

for any V1, V2 ∈ L2(TX) defines a Riemannian metric on (X, d,m).

Next is one of the main theorems in [5] that brings information on the
asymptotic behavior of the heat kernel embeddings when t ↓ 0. Note that
the rescaling factor t(n+2)/2 in the classical Bérard–Besson–Gallot spectral
embeddings leads to two possible rescalings in the RCD context: t(n+2)/2
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or tm(B√t(x)). The second one turns out more natural since it takes into
account possible degeneracy points where the measure might not have an
Euclidean like infinitesimal behavior, but we provide a convergence result
for both.

Theorem 2.21. — Let (X, d,m) be a compact RCD(K,N) space with
essential dimension n. Set ĝt := tm(B√t(·))gt and g̃t := t(n+2)/2gt for any
t > 0. Then there exists a dimensional constant cn > 0 such that when
t ↓ 0,

(1) the weak convergence ĝt → cng holds in the sense that ĝt(V, V )
→ cng(V, V ) for any V ∈ L2(TX) in the weak topology of L1(X,m),

(2) the strong convergence ĝt → cng holds in the sense that

lim
t→ 0
‖|ĝt − g|HS‖L2 = 0,

(3) the weak convergence g̃t → cnF (·)g holds, where F (·) is the inverse
of the density of m with respect to H n (see [6, Theorem 4.1]),

(4) the strong convergence g̃t → cnF (·)g holds.

On a Riemannian manifold (M, g), the Riemannian distance between two
points x and y is set as

(2.21) dg(x, y) := inf
{ˆ 1

0

√
gγ(t)(γ′(t), γ′(t)) dt : γ ∈ Adm(x, y)

}
where Adm(x, y) is the set of C1 maps γ : [0, 1] → M such that γ(0) = x

and γ(1) = y. When M is compact, a simple proof based on the Arzelà–
Ascoli theorem shows that if {gt}t>0 is a family of smooth Riemannian
metrics converging uniformly to g as t ↓ 0, then dgt → dg pointwise. On
a compact RCD(K,N) space, the picture is different because, as far as
the author knows, no notion of a vector field along a curve exists yet in
this context, hence (2.21) must be given an appropriate meaning which is
still missing. For this reason, to turn a Riemannian metric on a compact
RCD(K,N) space into a distance remains a problem whose solving may
help tackling the following one:

Question – Open problem 3. — Can one turn the convergence results for
Riemannian metrics of Theorem 2.21 into convergence results for suitably
associated distances?

It is very natural to ask how sensitive the heat kernel embeddings might
be to measured Gromov–Hausdorff perturbations of the space (X, d,m).
The next Theorem 2.22 [5, Theorem 5.19] provides an answer to this ques-
tion.
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Theorem 2.22. — Let CRCD(K,N) be the set of compact RCD(K,N)
spaces equipped with the mesured Gromov–Hausdorff topology and CMS
the set of compact metric spaces equipped with the Gromov–Hausdorff
distance. Then

F :
{

CRCD(K,N)× (0,+∞) → CMS
((X, d,m), t) 7→

(
Φt(X), dL2(X,m)

)
is a jointly continuous map.

Remark 2.23. — It must be underlined that (Φt(X), dL2(X,m))
dGH→ (X, d)

when t ↓ 0 is still unknown. This is related to the issues raised before Open
Problem 3.

Finally, let us point out that a truncated and quantitative version of
Theorem 2.21 holds in the context of non-collapsed RCD(K,N) spaces
which are, by definition, RCD(K,N) spaces (X, d,m) with m = H bNc:
see [5, Theorem 6.9].
Let us now sketch the proof of (1) in Theorem 2.21. Take V ∈ L2(TX).

We must show

ĝt(V, V ) L1

−−⇀ cng(V, V ).

By the Vitali–Hahn–Saks and Dunford–Pettis theorems, this amounts to
showing ˆ

A

ĝt(V, V ) dm→ cn

ˆ
A

g(V, V ) dm

for any Borel set A ⊂ X. But this is a consequence of proving

(2.22)
ˆ
A1

ˆ
A2

tm
(
B√t(x)

)
〈∇p(·, y, t)(x), V (x)〉2 dm(x) dm(y)

→ cn

ˆ
A1 ∩A2

g(V, V ) dm

for any Borel sets A1, A2 ⊂ X, as revealed by taking A1 = X and A2 = A

and using Fubini’s theorem.
For L > 0 and t > 0 fixed, we split A2 into two parts:

ˆ
A1

ˆ
A2

tm(B√t(x)) 〈∇p(·, y, t)(x), V (x)〉2 dm(x) dm(y)

=
ˆ
A1

ˆ
A2 ∩BL√t (y)

. . . +
ˆ
A1

ˆ
A2 \BL√t (y)

. . . ·
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Using the sharp Gaussian estimates on the heat kernel established by
R. Jiang, H. Li and H.-C. Zhang in [34], we get

(2.23)

∣∣∣∣∣
ˆ
A1

ˆ
A2\BL√t(y)

. . .

∣∣∣∣∣ 6 C(L)

where C(L) → 0 when L → +∞. Thus all the relevant information is
contained in the other part of the integral. To deal with this latter, set
dt :=

√
t
−1d and mt := m(B√t (z))−1m. Let ωn be the volume of the unit

ball in Rn equipped with the Lebesgue measure, and Ĥ n := H n/ωn. Then
the idea is to replace V by ∇f for a suitable function f ∈ H1, 2 chosen so
that for all y ∈ Rn, the rescalings

f√t, y = 1√
t

(
f − (f)√t, y

)
∈ H1, 2 (X, dt,mt) ,

where (f)√t, y denotes them-mean-value of f over the ballB√t (y), converge
in a suitable sense to a Lipschitz and harmonic function f̂ on(

Rn, deucl, Ĥ n
)

such that
n∑
i=1

∣∣∣∣∣ ∂f̂∂xj
∣∣∣∣∣
2

= g(V, V )2(y).

Then if p̂e is the heat kernel of (Rn, deucl, Ĥ n), we get
ˆ
BL
√
t(y)

tm(B√t(x))
〈
∇p(·, y, t)(x),∇f(x)

〉2 dm(x)

=
ˆ
B

dt
L

(y)
mt(Bdt

1 (x))
〈
∇p√t(·, y, 1)(x),∇f√t,y(x)

〉2 dmt(x)

t ↓ 0−−→
ˆ
BL(0n)

Ĥ n(B1(x))
〈
∇p̂e(·, 0n, 1)(x),∇f̂(x)

〉2 dĤ n(x)

=cn(L)
n∑
j=1

∣∣∣∣∣ ∂f̂∂xj
∣∣∣∣∣
2

= cn(L) g(V, V )2(y)

with cn(L)→ cn when L→ +∞. We obtain in a similar manner
ˆ
A2 ∩BL√t(y)

tm(B√t(x)) 〈∇p(·, y, t)(x), V (x)〉2 dm(x)

t ↓ 0−−→ cn(L)g(V, V )(y)1A2(y)
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for m-a.e. y ∈ X, unifomly in y. Therefore, the convergence is preserved
when we integrate with respect to y ∈ A1, thusˆ

A1

ˆ
A2 ∩BL√t (y)

tm(B√t (x))〈∇p(·, y, t)(x), V (x)〉2 dm(x) dm(y)

t ↓ 0−−→ cn(L)
ˆ
A1 ∩A2

g(V, V ) dm.

This combined with (2.23) implies (2.22) by letting L tend to +∞.

3. Applications to data analysis

In this section, we present two manifold learning algorithms that are
based on the spectral embedding theorems described in the previous sec-
tion. A manifold learning algorithm takes in input a data set represented as
a point cloud in RD and gives in output a lower dimensional representation
of the data set, provided the original point cloud {x1, . . . , xN} ⊂ RD lies
on (or near) a smooth submanifold M of RD. Note that in this setting,
only the original point cloud is known: the submanifold M as well as its
dimension are unknown a priori.
A common feature of these algorithms is the construction of a weighted

graph (V, E , w) from the point cloud {x1, . . . , xN} and the study of the
eigenvalues and eigenvectors of suitable operators on this graph.
Let us fix some notation for this section. M is a d-dimensional subman-

ifold of RD that we may sometimes explicitely assume to be closed. M
is equipped with the Riemannian metric inherited from the ambiant Eu-
clidean metric, and we denote by d, vol and ∆ the associated canonical
distance, volume measure and Laplace–Beltrami operator, respectively.

3.1. Laplacian Eigenmaps

The first algorithm we present is due to M. Belkin and P. Niyogi [9].

3.1.1. The setting

Let x1, . . . , xN ⊂ RD be lying on a smooth d-dimensional submanifold
M of RD. Let (V, E) be the graph constructed from X := {x1, . . . , xN}
by setting V := X and building E by means of one of the two following
options:

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



SPECTRAL EMBEDDINGS: A SURVEY 231

(1) choose ε > 0 and define E as the collection of couples (xi, xj) ∈ V×V
such that ‖xi − xj‖RD 6

√
ε,

(2) choose an integer n between 1 and N and define E as the collection
of couples (xi, xj) ∈ V×V such that for any i, the point xj is among
the n nearest neighbors of xi, i.e. the value ‖xi − xj‖RD is among
the n smallest values of the set {‖xi − x‖RD : x ∈ X}.

Write i ∼ j as a shorthand for (xi, xj) ∈ E and set deg(i) as the degree of
the point xi that is the number of points xj such that i ∼ j. Assume (V, E)
to be connected: if this is not the case, the algorithm can be performed on
each connected component.

3.1.2. A rough explanation

A classical definition of the Laplacian on a graph (V, E) is obtained by
mimicking the property of the classical Euclidean Laplacian to measure the
difference between a function and its mean-value on small balls: by Taylor’s
expansion, any function f ∈ C2(Rn) is such that

f(x)−
 
Br(x)

f = cnr
2∆f(x) + o

(
r2) , r ↓ 0,

for any x ∈ Rn, with cn = (2n + 4)−1. Then the Laplacian on (V, E) is
usually defined by setting

∆(V, E)f(xi) := f(xi)−
1

deg(i)
∑
j∼ i

f(xj)

for any f : V → R and xi ∈ V. The operator ∆(V, E) is sometimes called nor-
malized Laplacian of (V, E), in opposition to the unnormalized one defined
by

∆′(V, E)f(xi) := deg(i)f(xi)−
∑
j∼ i

f(xj).

The addition of a weight w to (V, E) modifies the geometry of the graph in
the sense that it measures the proximity between points: if w(i, j) is big,
then xi and xj must be understood as close, while if w(i, k) is small, xi
and xk must be understood as far apart. Then the contribution of f(xj)
to the analogue of ∆(V, E)f(xi) in this weighted context should be more
important than the contribution of f(xk). This is reflected in the following
definitions:

∆(V, E, w)f(xi) = f(xi)−
1

d(i)
∑
j∼ i

w(i, j)f(xj)
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and
∆′(V, E, w)f(xi) = d(i)f(xi)−

∑
j∼ i

w(i, j)f(xj)

for any f : V → R and xi ∈ V, where

d(i) :=
∑
j∼ i

w(i, j).

Let us anticipate on the next paragraph and point out that from this
perspective, the operators Lt considered by M. Belkin and P. Niyogi are
the normalized weighted Laplacians of the weighted graphs (V, E , wt) where

(3.1) wt(i, j) :=

e−
‖xi−xj‖2

RD
t if i ∼ j,
0 otherwise,

for any xi, xj ∈ V. Let us explain the choice of this weight. Recall that
M is a d-dimensional sublmanifold of RD. As well-known, the Laplace–
Beltrami operator on M can be expressed in terms of the heat kernel: for
any f ∈ C2(M) and x ∈M ,

−∆Mf(x) = ∂

∂t

∣∣∣∣
t=0

ˆ
M

p (x, y, t)f(y) d vol(y),

so we can make the rough approximation

∆Mf(x) ≈ 1
t

(
f(x)−

ˆ
M

p (x, y, t)f(y) d vol(y)
)

for t > 0 sufficiently small. When t → 0, the heat kernel p(x, ·, t) tends to
the Dirac mass at x. In particular, it localizes so strongly that for some
small ε > 0, one can consider as negligible the values of p(x, ·, t) outside
the ball Bε(x). By the Minakshisundaram–Pleijel expansion and the simple
observation

(3.2) d(x, y) = ‖x− y‖RD + o(‖x− y‖RD ), y → x,

which is a consequence ofM being equipped with the restriction of the Eu-
clidean metric, we get that p(x, ·, t) can be approximated by the Gaussian
term

1
(4πt)d/2

e−
‖x−·‖2

RD
4t 1Bε(x)(·).

Thus we may write

∆Mf(x) ≈ 1
t

(
f(x)− 1

(4πt)d/2

ˆ
Bε(x)

e−
‖x−y‖2

RD
4t f(y) d vol(y)

)
.
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Now if {x1, . . . , xN} is a point cloud lying on M , defining the associated
graph (V, E) by choosing, for instance, the first option to construct E with
the above parameter ε, at each point xi ∈ V we can approximate the
integral in the previous expression by a Riemann sum over the neighbors
of xi:

∆Mf(xi) ≈
1
t

f(xi)−
1

(4πt)d/2
1

deg(xi)
∑
j∼ i

e−
‖xi−xj‖2

RD
4t f(xj)

 .

Since d is unknown a priori, one may replace the dimensional coefficients
(4πt)d/2 deg(xi) by unknown varying coefficients αi. In order to have an
operator vanishing on constant functions, we must choose

αi = deg(xi)−1
∑
j∼ i

e−‖xi−xj‖
2
RD

(4t)−1

for any i. This finally leads to

∆Mf(xi) ≈
1
t
Ltf(xi).

This suggests a correspondance between the eigenvalues λi and eigen-
functions ϕi of ∆M and the eigenvalues λti and eigenvectors ϕti of Lt of the
following type:

λi ≈
1
t
λti and ϕ ≈ ϕti.

3.1.3. The algorithm

Let t > 0 be a parameter. Define wt according to (3.1). Let Wt be
the N × N matrix whose (i, j)th entry is wt(i, j) and Dt the diagonal
square matrix of same size as Wt with ith diagonal term defined as dt(i)
:=
∑
j∼i wt(i, j); note that dt(i) is sometimes called weighted degree of

xi. Set
Lt := IN −D−1

t Wt

where IN is the N ×N identity matrix, and note that for any v = (v1, . . . ,

vN ), the ith coordinate of the vector Ltv is

vi −
1

dt(i)
∑
j∼ i

wt(i, j)vj .

Since Lt is equivalent to a symmetric matrix:

Lt = D
−1/2
t

(
I −D−1/2

t WtD
−1/2
t

)
D
−1/2
t ,
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then it admits eigenvalues that we list in increasing order:

λt0 6 λ
t
1 6 . . . 6 λ

t
N−1.

Note that λt0 = 0 corresponds to the eigenspace generated by the constant
vector (1, . . . , 1).

For any i between 1 and N1, write ϕti for the normalized eigenvector of
Lt corresponding to the eigenvalue λti – here by normalized we mean that
‖ϕti‖RN = 1. Then the Laplacian Eigenmaps of the data point cloud are
the embeddings Φtm : X → Rm, where 1 6 m 6 N − 1, defined by

Φtm(x) = (ϕt1(x), . . . , ϕtm(x))

for any x ∈ X. The Laplacian Eigenmaps may be seen as the discrete
counterpart of the truncated Bérard–Besson–Gallot embeddings (2.7). As
so they provide, for t small enough, a faithful representation of the point
cloud into a low dimensional Euclidean space.

3.2. Convergence of the Laplacian Eigenmaps

In [10], M. Belkin and P. Niyogi studied the behavior of their algorithm
when N goes to +∞ by replacing the fixed data points x1, . . . , xN by ran-
dom variables X1, . . . , XN . They proved that in this case, the eigenvalues
and eigenvectors appearing in their algorithm converge to those of minus
the rescaled Laplace–Beltrami operator −∆ := −∆/ vol(M), provided M
is closed, what we assume from now on.
Let (Ω,A,P) be a fixed probability space. All the random variables con-

sidered in the sequel have domain Ω. We recall that a sequence of real-
valued random variables {Yi}i> 1 converges in probability to another real-
valued random variable Y if P(|Yi−Y | > ε)→ 0 for any ε > 0, and that it
converges almost surely to Y if there exists a P-negligible set N ⊂ Ω such
that Yn(ω)→ Y (ω) for any ω ∈ Ω\N .
Let {Xi}i> 1 be independant and identically distributed random vari-

ables on M with law vol := vol / vol(M). For any integer N > 1 and any
t > 0, let (V, E , wt) be the random graph and

Lt, N := IN −D−1
t, N Wt, N

the random matrix obtained by applying the Laplacian Eigenmaps process
to the random variables X1, . . . , XN . To avoid technicalities, we assume
that E has been constructed by using the second option with n = N .

Let λt, N0 , . . . , λt, NN−1 and ϕt, N0 . . . , ϕt, NN−1 be the (random) eigenvalues
and normalized eigenvectors of Lt, N .
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In order to establish the convergence in probability of the spectrum of
Lt, N towards the one of −∆, M. Belkin and P. Niyogi introduced two
intermediary random operators:

• the point cloud Laplace operator

Lt, N : C(M)→ C(M)

defined by

Lt, Nf(x) = 1
t

1
(4πt)d/2

(
1
N

N∑
i=1

e−
‖x−xi‖2

RD
4t (f(x)− f(xi))

)
for any f ∈ C(M) and x ∈M ,

• the Gaussian functional approximation of ∆

Lt : L2(M)→ L2(M)

defined by

Ltf(x) = 1
t

1
(4πt)d/2

(ˆ
M

e−
‖x−y‖2

RD
4t (f(x)− f(y)) dvol(y)

)
for any f ∈ L2(M) and x ∈M .

The point cloud Laplace operator Lt,N acting on the Banach space (C(M),
‖ · ‖∞) can be viewed as the difference between the multiplication operator
Mt,N and the finite rank operator St, N defined by

Mt, Nf(x) = wt, N (x)f(x)

and St, Nf(x) = 1
t(4πt)d/2

1
N

N∑
i=1

e−
‖x−xi‖

2
RD

4t f(xi)

for any f ∈ C(X) and x ∈M , where

wt, N (x) := t−1(4πt)−d/2N−1
N∑
i=1

e−‖x−xi‖
2
RD

(4t)−1
.

Therefore, the eigenvalue problem

(3.3) Lt, Nf = νf

admits a finite number of solutions.
Since any function f : M → R defines a function fV : V → R by setting

fV(Xi) := f(Xi) for any Xi ∈ V, if f is a solution of (3.3), then

Lt, NfV = νfV .

From there, one gets that the spectrum of Lt, N coincides with the one of
Lt, N , and that if f is an eigenfunction of Lt, N , then fV is an eigenfunction
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of Lt, N . Thus it is sufficient to show the convergence of the spectrum of
Lt, N towards the one of −∆.
Before stating the main theorem of this paragraph, let us point out that

the eigenvalues {λi}i> 0 of −∆ satisfy

λi = vol(M)λi
for any i, where {λi}i are the eigenvalues of −∆, and that the set of or-
thonormal basis of L2(M) made of corresponding eigenfunctions coincides
with B(M, g).

Theorem 3.1. — Let {λi}i be the eigenvalues of −∆ and {ϕi}i ∈
B(M, g). Then there exists an infinitesimal sequence {tN}N ⊂ (0,+∞)
such that for any i, the following are true in probability when N → +∞:

λtN , Ni → λi and
∥∥∥ψtN , Ni − ϕi

∥∥∥
∞
→ 0,

where the {ψt, Ni }i are normalized eigenfunctions of Lt, N for any t > 0.

The proof of this theorem is made of two steps. We only explain here
how to get the convergence result for the eigenvalues.

Step 1. — The first step consists in showing that the spectrum of the
point cloud Laplace operator Lt, N converges as N goes to +∞ to the one of
the Gaussian functional approximation Lt. This is a direct consequence of
a general theorem obtained by M. Belkin, O. Bousquet and U. von Luxburg
in [44]. For completeness, let us cite this theorem. The proof is a suitable
application of Hoeffding’s inequality. We use the notation σ(T ) to denote
the spectrum of an operator T .

Theorem 3.2. — Let (X, d, µ) be a compact probability metric measure
space, k : X × X → [0,+∞) a continuous and symmetric map such that
k(x, y) > 0 for any x 6= y in X, and {Xi}i>1 independant and identically
distributed random variables on X with same law µ. For any N > 1, let
(VN , EN , k) be the random weighted graph constructed from {X1, . . . , XN}
and LN the associated random matrix obtained by applying the Laplacian
Eigenmaps process. Let Pk : C(X)→ C(X) be the operator defined by

Pkf(x) =
ˆ
X

k(x, y)(f(x)− f(y)) dµ(y)

for any f ∈ C(X) and x ∈ X. Then for any λ ∈ σ(Pk)\{1} and any
neighborhood U ⊂ C of λ that does not contain any other eigenvalue of Pk,

(1) any sequence {λN}N such that λN ∈ σ(LN )∩U for any N satisfies

λN → λ almost surely,
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(2) if λ is simple with associated normalized eigenfunction ϕ and {λN}N
is such that λN ∈ σ(LN ) ∩ U with normalized associated eigenvec-
tor ϕN = (ϕN (X1), . . . , ϕN (XN )) for any N , then there exists a
sequence {εN}N ⊂ {−1, 1}N such that

sup
16 i6N

|εNϕN (Xi)− ϕ(Xi)| → 0 almost surely.

Remark 3.3. — [44, Theorem 15] also contains a convergence result when
λ is not simple formulated in terms of spectral projections.

Step 2. — The second step is to study the difference between −∆
and its Gaussian functional approximation Lt. This study is based on an
elementary result.

Lemma 3.4. — LetH be a Hilbert space and A,B two non-negative self-
adjoint operators on H with discrete spectrum listed in increasing order
{λi(A)}i and {λi(B)}i respectively. Then for any ε > 0,

sup
x∈H

∣∣∣∣ 〈(A−B)x, x〉
〈Ax, x〉

∣∣∣∣ 6 ε
implies

1− ε 6 λi(A)
λi(B) 6 1 + ε for any i.

Thanks to this lemma, if we set Dt := (Id−e−t∆)/t for any t > 0, then
showing

(3.4) sup
f∈L2(M)

∣∣∣∣ 〈(Dt − Lt)x, x〉
〈Dtx, x〉

∣∣∣∣ = o(1) when t ↓ 0

implies
λi(Lt) = λi(Dt) + o(1) when t ↓ 0

for any i, hence the desired result since

λi(Dt) =
(
1− e−λit

)
/t→ λi when t ↓ 0.

Let us explain how to prove (3.4). Take α > 0 to be suitably chosen later,
and f ∈ L2(M). Write f =

∑
i aiϕi and set

f1 :=
∑
λi6α

aiϕi and f2 :=
∑
λi>α

aiϕi.

Straightforward manipulations based on the Cauchy–Schwarz inequality
lead to

(3.5)
∣∣∣∣ 〈(Dt − Lt)f, f〉
〈Dtf, f〉

∣∣∣∣ 6 3‖(Dt − Lt)f1‖L2

|〈Dtf, f〉|
+ ‖(Dt − Lt)f2‖L2‖f2‖L2

|〈Dtf, f〉|
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and the result follows from three estimates. The first one is

〈Dtϕi, ϕi〉 >
1
2 min

(
λi, 1/

√
t
)

for any i, which is an easy consequences of the concavity and monotonicity
of F : λ 7→ (1− e−λt)/t. This estimate notably implies

(3.6) 〈Dtf, f〉 >
λ1

2 and 〈Dtf, f〉 >
1
2 min(α, 1/

√
t)‖f2‖2L2 .

The two others are

(3.7)
‖(Dt − Lt)f1‖L2 6 C1

√
tα

d+2
4 and

‖(Dt − Lt)f2‖L2 6 C2‖f2‖L2

where C1 and C2 depend on the submanifold M . The proof of these two
estimates is too long to be described here, but we stress out the fact that
it involves only classical tools from geometric analysis, like the change of
variable with exponential coordinates, the Sobolev embeddingW d

2 +1, 2(M)
↪→ Lip(M) and the Minakshisundaram–Pleijel expansion. Combining (3.5),
(3.6) and (3.7), we get∣∣∣∣ 〈(Dt − Lt)f, f〉

〈Dtf, f〉

∣∣∣∣ 6 C3

(√
tα

d+2
4 + max

(
1/α,

√
t
))

where C3 > 0 depends on the submanifold M , so that choosing α = t−
2
d+6 ,

for instance, implies (3.4).

Remark 3.5. — For more convergence results including information on
the convergence rate, we refer to [60] and the references therein.

3.3. Singer–Wu Vector Diffusion Maps

The second algorithm we present is due to A. Singer and H.-T. Wu [51].
The rough idea is to compare two vectors in the data point cloud after hav-
ing used an orthonormal transformation to make them as close as possible.

The setting. — Let x1, . . . , xN ⊂ RD be lying on a smooth d-dimen-
sional submanifold M of RD. Set X := {x1, . . . , xN}.

The algorithm. — Choose two decreasing functions K1,K2 : [0,+∞)
→ [0,+∞) both supported in [0, 1](3) . For any ε > 0, set

Kε
α(·) := Kα

(
·/
√
ε
)

(3)A. Singer and H.-T. Wu chose for K1 the Epanechnikov kernel K(u) = (1−u2)χ[0, 1]
and for K2 the Gaussian kernel K(u) = exp(−u2)χ[0, 1].
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for any α ∈ {1, 2} and

N ε
i :=

{
x ∈ X : ‖x− xi‖RD 6

√
ε
}
,

that is the set of
√
ε-neighbors of xi, for any i ∈ {1, . . . , N}. Choose two

numbers 0 < ε1 < ε2 in such a way that d 6 inf{|N ε
i | : 1 6 i 6 N}, so

that the sets of neighbors N ε
i all contain at least d elements.

Step 1. — Local PCA. The goal of this step is to construct for any
xi ∈ X a suitable family of orthonormal vectors {ui,1, . . . , ui,d} ⊂ RD
serving as an approximation of an orthonormal basis of TxiM . To simplify
the presentation, let us writemi := |N ε

i | andN ε
i := {xj1 , . . . , xjmi}. Define

the matrix
Ai := [λjk(xjk − xi)]16 k6mi

where λjk :=
√
Kε1

1 (‖xjk − xi‖RN ) for any k. Note that the columns of
Ai are the vectors xjk − xi rescaled by a factor λjk which gets big when
‖xjk−xi‖RN is small: in this way, the closer a point is from xi, the bigger the
norm of the corresponding column of Ai is. Compute the singular valued
decomposition

Ai = UiDiV
∗
i

and form the D×d matrix Oi by selecting the d first columns of the matrix
Ui: if Ui = [ui, 1, . . . , ui,D], then

Oi := [ui,1, . . . , ui, d] .

Step 2. — Alignment. The goal of this step is to provide, for any xi
and xj close enough, an orthogonal matrix Oij serving as an approximation
of the parallel transport operator between TxiM and TxjM . This process
is called alignment. The parameter ε2 helps quantifying the proximity be-
tween xi and xj . For any xi ∈ X and xj ∈ N ε2

i , set

Oij := argmin
{∥∥O −OTi Oj∥∥HS : O ∈ O(d)

}
.

The solution of this minimization problem is Oij = Uij V
T
ij where Uij and

Vij are provided by the singular valued decomposition of OTi Oj .
Step 3. — Weighted graph. Define from X a graph (V, E) by setting

V := X and

E :=
{

(xi, xj) ∈ X ×X : ‖xi − xj‖RD <
√
ε2
}
.

We use again the notation j ∼ i to mean that (i, j) ∈ E . Equip (V, E) with
the weight w defined by wij := Kε2

2 (‖xi − xj‖RD ) for any 1 6 i, j 6 N .
Here again points xj that are close to xi gets more importance than those
that are far from xi.
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Step 4. — Averaging operator. Consider the Nd×Nd matrix S made
of N ×N blocks (S(i, j))16 i,j6 d of size d× d, where

S(i, j) :=
{

(dw(i))−1wijOij when i ∼ j,
0 otherwise,

where dw(i) :=
∑
j∼ i wij . For any v = (v(1), . . . , v(N)) ∈ RNd where each

v(i) is a vector of Rd, the vector Sv = (Sv(1), . . . Sv(N)) is such that

(Sv)(i) = 1
deg(i)

∑
j∼ i

wijOijv(j)

for any i. Understanding each v(i) as a vector in TxiM and the vector
Oijv(j) as an approximation of the parallel transport of v(j) ∈ TxjM into
TxiM , we see that the matrix S acts as a local weighted averaging operator
for vector fields – local because it takes into account only the points xj in
the √ε2-neighborhood of xi.

Step 5. — Vector diffusion mappings. Set

S̃ := D−1/2SD1/2

where D is the diagonal dN × dN matrix whose ith diagonal d × d block
is dw(i)Id. Since S̃ is symmetric, it admits eigenvalues λ1, . . . , λnd and as-
sociated normalized eigenvectors v1, . . . , vnd. We order the eigenvalues in
decreasing order of modulus: |λ1| > |λ2| > . . . > |λnd|. A direct computa-
tion shows that for any k ∈ N and 1 6 i, j 6 nd,∥∥∥S̃2k(i, j)

∥∥∥2

HS
=

nd∑
l, r=1

(λlλr)2k〈vl(i), vr(i)〉〈vl(j), vr(j)〉

= 〈Vk(i), Vk(j)〉

where we have set

Vk(i) :=
(
(λlλr)k〈vl(i), vr(i)〉

)
16 l,r6nd

.

Then for any t > 0, the maps

Vt : X 3 xi 7→
(
(λlλr)k〈vl(i), vr(i)〉

)
16 l,r6nd

are called vector diffusion mappings of X and the maps

[Vt]m : X 3 xi 7→
(
(λlλr)k〈vl(i), vr(i)〉

)
16 l,r6m

are their truncated analogues. These latter maps serve as embeddings of
the data set into the Euclidean space Rm2 .
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Remark 3.6. — The connection between the vector diffusion mappings
and the vector diffusion maps for closed Riemannian manifolds is estab-
lished in [51, Section 5] in a similar fashion as the one between the Laplacian
Eigenmaps and the Bérard–Besson–Gallot spectral embeddings.
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