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LIMIT HOLOMORPHIC SECTIONS AND
DONALDSON’S CONSTRUCTION OF SYMPLECTIC

SUBMANIFOLDS

Jean-Paul Mohsen

Donaldson proved (in [3]) that if L is a suitable positive line bundle over
a closed symplectic manifold X, then, for k sufficiently large, the tensor
power Lk admits sections whose zero sets are symplectic submanifolds of X
(the sections are approximately holomorphic and they satisfy some uniform
transversality condition). The construction relies on the following observa-
tion: the local geometry of the bundles Lk near any point p ∈ X, after a
normalization, converges to a model holomorphic Hermitian line bundle K
over (some ball in) the tangent space TpX. In this note, we will describe this
phenomenon in detail and exploit it to reformulate Donaldson’s theorem as
a compactness result: near each point p, the sections he obtains accumu-
late to holomorphic sections of K (that we call “limit sections”) and their
uniform transversality properties correspond to transversality properties
of their limits. Of course, similar considerations apply to all constructions
based on Donaldson’s techniques (e.g. [2, 5]).
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1. Limit sections

Let X = (X, ω, J, g) be a closed almost-Kähler manifold. Hence ω is a
symplectic form, J is an almost-complex structure and g is a Riemannian
metric, satisfying the following compatibility condition:

g(V,W ) = ω(V, JW ).
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Endow X with a prequantization L (a prequantization is a Hermitian line
bundle over X equipped with a unitary connection of curvature −i2πω).
The charts we will use are normal coordinates with respect to the renor-

malized metric gk = kg. Let B ⊂ Cn denote the unit ball, with
n = 1

2 dimRX. Fix, for every large integer k, a chart ϕk : B → X sat-
isfying two conditions:

(1) The chart ϕk is an exponential map for the metric gk (i.e. given
any unit vector v ∈ Cn, the curve t 7→ ϕk(tv) is a geodesic with
gk−length 1 velocity vector).

(2) The differential Dϕk(0) is a C−linear map.
Since ϕk is a local diffeomorphism, one can transfer toB the renormalized

almost-Kähler structure (ωk = kω, J, gk = kg) and it is well known that
this almost-Kähler structure tends to the standard flat Kähler structure on
B, as k →∞, in the C∞−topology.
The following observation is well-known to experts: the local geometry of

the bundle Lk converges to the geometry of a model line bundle. Fix some
unitary radially flat isomorphism between the pullback line bundle ϕ∗kLk
and the trivial Hermitian line bundle B × C → B. Hence, the connection
of ϕ∗kLk induces a unitary connection ∇k on B × C → B. As k → ∞, the
connection ∇k tends to some model connection ∇∞ on B×C→ B, defined
by:

∇∞ = d− iπ
n∑
α=1

(xαdyα − yαdxα).

There is a more conceptual description of ∇∞: the model connection ∇∞
is the only radially trivial connection with curvature

−i2π
n∑
α=1

dxα ∧ dyα.

Warning. Let s be a section of the trivial bundle B×C→ B. We say that
s is holomorphic if it is holomorphic for the connection ∇∞. Although the
section s is a function, it is not the usual concept of holomorphic function.
For example, the function

exp

(
−π2

n∑
α=1
|zα|2

)
is a holomorphic section and, more generally, the section s of B × C→ B

is holomorphic if and only if the function

s exp

(
π

2

n∑
α=1
|zα|2

)
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is holomorphic in the usual sense.
This set of tools is well-known to experts. We will use it to study se-

quences of sections. The following two definitions play an important role
in our reformulation of Donaldson’s theory.

Definition 1.1. — For every sufficiently large integer k, let sk be a
C∞−smooth section of Lk. We say that the sequence (sk) is renormalizable
if it satisfies the following compactness condition.
Let (kl) be a subsequence of the positive integers. For every sufficiently

large integer l, let ϕl be a chart satisfying conditions (1) for kl (that is, ϕl
is an exponential map for gkl

) and (2) and let jl be a unitary radially flat
isomorphism between the trivial line bundle B × C→ B and the pullback
bundle ϕ∗l Lkl . If σl denotes the section of the trivial bundle B × C → B

corresponding to the pullback section ϕ∗l skl
via the isomorphism jl, then

the sequence (σl) has a subsequence (σlm) which converges over B for the
smooth compact-open topology.

Definition 1.2. — The limit of (σlm) is called a limit section of the
renormalizable sequence (sk). Hence, a limit section is a section of B × C
→ B.

We emphasize that we don’t assume that all charts ϕl have the same
center.
Let (sk) be a renormalizable sequence. If the sections sk are holomor-

phic then the limit sections are holomorphic. More generally, let’s state
an informal principle: if the sections sk satisfy some closed condition then
one may infer that the limit sections satisfy some corresponding condition.
We won’t be more specific about this principle (we won’t even explain the
meaning of the word closed).
Of course, concerning open conditions, it goes in the opposite direction.

For example, if all limit sections are transverse to 0 then sk is transverse
to 0, for every sufficiently large integer k. If, in addition, the zero sets of
limit sections are symplectic submanifolds in B (for the symplectic form∑n
α=1 dxα ∧ dyα), then for every sufficiently large integer k, the zero set of

sk is a symplectic submanifold in X. Note that every complex submanifold
is symplectic. Hence one get the following proposition.

Proposition 1.3. — For every sufficiently large integer k, let sk be a
C∞−smooth section of Lk. Suppose that (sk) is a renormalizable sequence
and suppose that every limit section of the sequence (sk) is holomorphic
and transverse to 0. Then for every sufficiently large integer k, the zero set
of sk is a codimension 2 symplectic submanifold in X.
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In the integrable case (X is Kähler), the sections sk we will consider are
often holomorphic whereas in the non-integrable case (X almost-Kähler),
typically, the limit sections are holomorphic but the sections sk aren’t.

2. Transversality theorems

To compare with, let’s state a consequence of the Kodaira embedding
theorem.

Theorem 2.1. — Suppose J is integrable. Then, for every sufficiently
large integer k, there exists a holomorphic section sk of Lk which is trans-
verse to 0.

Proof. — Kodaira’s theorem implies that, for every sufficiently large k,
there are no base points. Hence, almost every section is transverse to 0, by
the Bertini theorem. �

Let’s first state Donaldson’s theorem in the integrable case.

Theorem 2.2. — Suppose J is integrable. Then, for every integer k > 1,
there exists a holomorphic section sk of Lk such that:

(1) The sequence (sk) is renormalizable.
(2) The limit sections of the sequence (sk) are transverse to 0.

In the integrable case, one may describe Donaldson’s theorem an elabo-
rate variant of Theorem 2.1. The variant has the advantage of being easily
transferable to symplectic geometry. Of course this was Donaldson’s main
goal and most applications of his techniques are symplectic and contact re-
sults. It is known that if X is almost-Kähler, then, in general, one can’t get
holomorphic sections. Nevertheless, we get asymptotically holomorphic sec-
tions. In our reformulation, the definition is quite simple: a renormalizable
sequence of smooth sections is asymptotically holomorphic if every limit
section is holomorphic for the connection ∇∞. Note that this definition
is weaker than the usual quantitative definition. However, in practice, the
following version of Donaldson’s theorem is sufficient for many corollaries.

Theorem 2.3. — For every integer k > 1, there exists a C∞−smooth
section sk of Lk such that:

(1) The sequence (sk) is renormalizable.
(2) The limit sections of the sequence (sk) are holomorphic and trans-

verse to 0.
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(Hence, for every sufficiently large integer k, the section sk is transverse
to 0 and, by Proposition 1.3, the zero set of sk is a codimension 2 symplectic
submanifold.)
Proof of Theorem 2.2 and Theorem 2.3. Donaldson’s techniques (in [3],

see also [1] and [4]) produce sections sk satisfying two famillies of estimates:

‖sk‖Cr, gk
= O(1)∥∥∂sk∥∥Cr, gk
= O

(
k−

1
2

)
(for every natural integer r), and a uniform transversality condition:

min
p∈X

(
‖sk(p)‖+ ‖∇sk(p)‖gk

)
> η

where one calculates the Cr−norm and the norm of ∇sk(p) with the renor-
malized metric gk = kg. Here η denotes a positive number, independent
of k.
Recall the notations of Definition 1.1. The section σl of B × C → B

corresponds to the pull-back section ϕ∗l skl
where ϕl is the exponential map

for the renormalized metric gkl
. The first estimate implies the following

estimate:
‖σl‖Cr = O(1)

on the unit ball B. Hence, some subsequence of (σl) converges in the smooth
topology and the sequence (sk) is renormalizable.
The connection of ϕ∗l Lkl induces a unitary connection∇kl on B×C→ B.

Let ∂
kl denote the (0, 1)−part of ∇kl and let ∂

∞ denote the (0, 1)−part of
the limit connection∇∞. Donaldson’s second estimate implies the following
estimate: ∥∥∥∂kl

σl

∥∥∥
Cr

= O
(
k
− 1

2
l

)
.

Since ∇kl tends to ∇∞, the (0, 1)−part ∂∞σl tends to 0 and the sequence
(sk) is asymptotically holomorphic.
The third estimate implies the following estimate:

min
p∈B

(‖σl(p)‖+ ‖∇σl(p)‖) >
η

2 .

Every limit σ∞ of a subsequence (σlm) (see Definition 1.2) satisfies the
same estimate:

min
p∈B

(‖σ∞(p)‖+ ‖∇σ∞(p)‖) > η

2 .

Hence, σ∞ is transverse to 0. The proof of Theorem 2.3 is completed. In
the integrable case, Donaldson’s sections are holomorphic and the proof of
Theorem 2.2 is similar. �
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As noted by Donaldson, the asymptotic transversality property provides
bounds for the Riemannian geometry of the zero set, see [3, Corollary 33].
For example, one gets the following result.

Proposition 2.4. — Let (sk) be a renormalizable sequence. Suppose
every limit sequence is transverse to 0. Let Yk be the zero set of sk. For
every sufficiently large integer k, if p lies in Yk and A ⊂ TpYk is a 2-plane,
then the sectional curvature KYk, gk

(p,A) of Yk at (p,A) for the metric gk
satisfies the following estimate:

|KYk, gk
(p,A)| 6 C

where the bound C is independent of k, p and A.

(Hence, if one prefers to calculate with the metric g, the sectional cur-
vature is bounded by some linear function of k because KYk, g(p,A) =
kKYk, gk

(p,A).)
Proof. — Define uk = max(p,A) |KYk, gk

(p,A)|. Since Yk is compact, there
exist a point pk ∈ Yk and a 2-plane Ak ⊂ Tpk

Yk satisfying the following
equation:

|KYk, gk
(pk, Ak)| = uk.

Let ϕk be a chart centered at pk satifying conditions (1) and (2) of Def-
inition 1.1. Consider the 2-plane A′k = (dϕk(0))−1(Ak) ⊂ Cn. Since the
set of 2-planes of Cn is compact, every subsequence of (A′k) admits a con-
vergent subsubsequence (A′kl

). The corresponding sequence σl (using the
notations of Definition 1.1) admits a limit σ∞ which is transverse to 0.
Therefore the zero set Y∞ ⊂ B of σ∞ is a submanifold and the local geom-
etry of the corresponding submanifolds (Ykl

) converges to the geometry of
Y∞. In particular, the sequence (ukl

) tends to |KY∞, µ(0, A′∞)| where µ is
the standard Euclidean metric on Cn and A′∞ is the limit 2-plane.
Hence every subsequence of the sequence (uk) admits a convergent sub-

subsequence and therefore (uk) is a bounded sequence. �
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