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ON THE DYNAMICS ON THE SU(2)-CHARACTER
VARIETY OF A ONCE-PUNCTURED TORUS

Carlos Matheus

Abstract. — The natural SL(2,Z)-action on the SU(2)-character variety of a
once-punctured torus respects the level sets of the function κ describing the values
k ∈ [−2, 2] of the traces of the matrices associated to a small loop around the
puncture.

In 1998, R. Brown used Moser’s twisting theorem from KAM theory to show
that no element of SL(2,Z) can act ergodically on every level set κ−1(k). As it
turns out, Brown’s original argument seems to be missing a detail, namely, there is
no discussion of the twist condition in his application of Moser’s twisting theorem.

In 2002, H. Rüssmann improved Moser’s twisting theorem by establishing the
stability of (Brjuno) elliptic fixed points of real-analytic area-preserving maps in-
dependently of twist conditions.

In this note, we observe that Brown’s argument can be completed by applying
Rüssmann’s theorem instead of Moser’s twisting theorem.

Let Sg, n be a surface of genus g > 0 with n > 0 punctures. Given a
Lie group G, the G-character variety of Sg, n is the space X(Sg, n, G) of
representations π1(Sg, n)→ G modulo conjugations by elements of G.
The mapping class group Mod(Sg, n) of isotopy classes of orientation-

preserving diffeomorphisms of Sg, n acts naturally on X(Sg, n, G).
The dynamics of mapping class groups on character varieties was system-

atically studied by Goldman in 1997: in his landmark paper [3], he showed
that the Mod(Sg, 0)-action on X(Sg, 0, SU(2)) is ergodic with respect to
Goldman–Huebschmann measure(1) whenever g > 1.
The ergodicity result above partly motivates the question of understand-

ing the dynamics of individual elements of mapping class groups acting on
SU(2)-character varieties.
In this direction, Brown [1] studied in 1998 the actions of elements of

SL(2,Z) = Mod(S1, 1) on the character variety X(S1, 1, SU(2)). As it turns

(1)This nomenclature is not standard: we use it here because Goldman showed in [2]
that X(Sg, 0, SU(2)) has a volume form coming from a natural symplectic structure and
Huebschmann proved in [4] that this volume form has finite mass.
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out, if γ ∈ π1(S1, 1) is a small loop around the puncture, then the SL(2,Z)-
action on X(S1, 1, SU(2)) preserves each level set κ−1(k), k ∈ R, of the
function κ : X(S1, 1, SU(2))→ R sending [ρ] ∈ X(S1, 1, SU(2)) to the trace
of the matrix ρ(γ). Here, Brown noticed that the dynamics of elements of
SL(2,Z) on level sets κ−1(k) with k close to −2 fit the setting of the
celebrated KAM theory (assuring the stability of non-degenerate elliptic
periodic points of smooth area-preserving maps). In particular, Brown tried
to employ Moser’s twisting theorem to conclude that no element of SL(2,Z)
can act ergodically on all level sets κ−1(k), k ∈ [−2, 2].
Strictly speaking, Brown’s original argument is not complete because

Moser’s theorem is used without checking the twist condition.
In the sequel, we revisit Brown’s work [1] in order to show that his

conclusions can be derived once one replaces Moser’s twisting theorem by
a KAM stability theorem from 2002 due to Rüssmann [7].

1. Statement of Brown’s theorem

1.1. SU(2)-character variety of a punctured torus

Recall that the fundamental group π1(S1, 1) of an once-punctured torus
is naturally isomorphic to a free group F2 on two generators α and β such
that the commutator [α, β] corresponds to a loop γ around the puncture
of S1, 1.
Therefore, a representation ρ : π1(S1, 1) → SU(2) is determined by a

pair of matrices ρ(α), ρ(β) ∈ SU(2), and an element [ρ] ∈ X(S1, 1, SU(2))
of the SU(2)-character variety of S1, 1 is determined by the simultaneous
conjugacy class (ϕρ(α)ϕ−1, ϕρ(β)ϕ−1), ϕ ∈ SU(2), of a pair of matrices
(ρ(α), ρ(β)) ∈ SU(2)× SU(2).
The traces x = tr(ρ(α)), y = tr(ρ(β)) and z = tr(ρ(αβ)) of the ma-

trices ρ(α), ρ(β) and ρ(αβ) provide an useful system of coordinates on
X(S1, 1, SU(2)): algebraically, this is an incarnation of the fact that the
ring R[SU(2) × SU(2)]SU(2) of invariants of (A,B) ∈ SU(2) × SU(2) is
freely generated by the traces of A, B and AB.
In particular, the following Proposition 1.1 expresses the trace of ρ(γ)

= ρ([α, β]) in terms of x = tr(ρ(α)), y = tr(ρ(β)) and z = tr(ρ(αβ)).

Proposition 1.1. — Given A,B ∈ SL(2,C), one has

tr
(
ABA−1B−1) = tr(A)2 + tr(B)2 + tr(AB)2 − tr(A) tr(B) tr(AB)− 2
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Proof. — By Cayley–Hamilton theorem (or a direct calculation), any
M ∈ SL(2,C) satisfies M2− tr(M)M + Id = 0, i.e., M +M−1 = tr(M) Id.

Hence, for any X,Y ∈ SL(2,C), one has

XY + Y −1X−1 = tr(XY ) Id and XY −1 + Y X−1 = tr
(
XY −1) Id,

so that

tr(XY ) + tr
(
XY −1) = tr(X) tr(Y ).

It follows that, for any A,B ∈ SL(2,C), one has

tr
(
ABA−1B−1)+ tr

(
ABA−1B

)
= tr

(
ABA−1) tr(B) = tr(B)2

and

tr
(
ABA−1B

)
+ tr

(
AB

(
A−1B

)−1
)

= tr(AB) tr
(
A−1B

)
.

Since tr(AB(A−1B)−1) = tr(A2) = tr(A)2 − 2 and tr(A−1B) + tr(AB)
= tr(A) tr(B), the proof of the Proposition 1.1 is complete. �

1.2. Basic dynamics of SL(2,Z) on character varieties

Recall that the mapping class group Mod(S1, 1) is generated by Dehn
twists τα and τβ about the generators α and β of π1(S1, 1). In appropriate
coordinates on the once-punctured torus S1, 1, the isotopy classes of these
Dehn twists are represented by the actions of the matrices

τα =
(

1 1
0 1

)
, τβ =

(
1 0
1 1

)
∈ SL(2,Z)

on the flat torus R2/Z2. In particular, at the homotopy level, the actions
of τα and τβ on π1(S1, 1) are given by the Nielsen transformations

(1.1) τα(α) = α, τα(β) = βα, τβ(α) = αβ, τβ(β) = β.

Since the elements of Mod(S1, 1) = SL(2,Z) fix the puncture of S1, 1,
they preserve the homotopy class γ = [α, β] ∈ π1(S1, 1) of a small loop
around the puncture. Therefore, the Mod(S1, 1)-action on the character
variety X(S1, 1, SU(2)) respects the level sets κ−1(k), k ∈ [−2, 2], of the
function κ : X(S1, 1, SU(2))→ [−2, 2] given by

κ([ρ]) := tr(ρ(γ)).

Furthermore, each level set κ−1(k), −2 < k 6 2, carries a finite (Goldman–
Huebschmann) measure coming from a natural Mod(S1, 1)-invariant sym-
plectic structure [2, 4].

VOLUME 35 (2017-2019)
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In this context, the level set κ−1(2) corresponds to impose the restriction
ρ(γ) = Id ∈ SU(2), so that κ−1(2) is naturally identified with the character
variety X(S1, 0, SU(2)).

In terms of the coordinates x = tr(ρ(α)), y = tr(ρ(β)) and z = tr(ρ(αβ))
on X(S1, 1, SU(2)), we can use Proposition 1.1 (and its proof) and (1.1) to
check that

(1.2) κ(x, y, z) = x2 + y2 + z2 − xyz − 2

and

(1.3) τα(x, y, z) = (x, z, xz − y), τ−1
β (x, y, z) = (xy − z, y, x).

Hence, we see from (1.2) that:
• the level set κ−1(−2) consists of a single point (0, 0, 0);
• the level sets κ−1(k), −2 < k < 2, are diffeomorphic to 2-spheres;
• the character variety X(S1, 1, SU(2)) is a 3-dimensional orbifold
whose boundary κ−1(2) is a topological sphere with 4 singular
points (of coordinates 2(ε1, ε2, ε3) ∈ {−2, 2}3 with ε1ε2ε3 = 1)
corresponding to the character variety X(S1, 0, SU(2)).

After this brief discussion of some geometrical aspects of X(S1, 1, SU(2)),
we are ready to begin the study of the dynamics of Mod(S1, 1). For this
sake, recall that the elements of Mod(S1, 1) = SL(2,Z) are classified into
three types:

• g ∈ SL(2,Z) is called elliptic whenever | tr(g)| < 2;
• g ∈ SL(2,Z) is called parabolic whenever | tr(g)| = 2;
• g ∈ SL(2,Z) is hyperbolic whenever | tr(g)| > 2.

The elliptic elements g ∈ SL(2,Z) have finite order (because tr(g)
= 0,±1 and g2 − tr(g)g+ Id = 0) and the parabolic elements g ∈ SL(2,Z)
are conjugated to ±τnα for some n ∈ Z.
In particular, if g ∈ SL(2,Z) is elliptic, then g leaves invariant non-

trivial open subsets of each level set κ−1(k), −2 < k 6 2. Moreover, if
g ∈ SL(2,Z) is parabolic, then g preserves a non-trivial and non-peripheral
element δ ∈ π1(S1, 1) and, a fortiori, g preserves the level sets of the function
fδ : X(S1, 1, SU(2)) → [−2, 2], fδ([ρ]) := tr(ρ(δ)). Since any such function
fδ has a non-constant restriction to any level set κ−1(k), −2 < k 6 2,
Brown concluded that:

Proposition 1.2 ([1, Proposition 4.3]). — If g ∈ SL(2,Z) is not hy-
perbolic, then its action on κ−1(k) is not ergodic whenever −2 < k 6 2.

On the other hand, Brown observed that the action of any hyperbolic
element of SL(2,Z) on κ−1(2) can be understood via a result of Katok.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



DYNAMICS ON THE SU(2)-CHARACTER VARIETY 113

Proposition 1.3 ([1, Theorem 4.1]). — Any hyperbolic element of
SL(2,Z) acts ergodically on κ−1(2).

Proof. — The level set κ−1(2) is the character variety X(S1,0, SU(2)).
In other words, a point in κ−1(2) represents the simultaneous conjugacy
class of a pair (ρ(α), ρ(β)) of commuting matrices in SU(2).
Since a maximal torus of SU(2) is a conjugate of the subgroup

T =
{(

e2πiθ 0
0 e−2πiθ

)
: θ ∈ R/Z

}
,

we have that X(S1, 0, SU(2)) is the set of simultaneous conjugacy classes
of elements of T × T . In view of the action by conjugation(

0 1
−1 0

)(
eiθ 0
0 e−iθ

)(
0 1
−1 0

)−1

=
(
e−iθ 0

0 eiθ

)
of the element

w =
(

0 1
−1 0

)
of the Weyl subgroup of SU(2), we have

X (S1, 0, SU(2)) = (T × T )/w.

In terms of the coordinates (θ, ϕ) ∈ R2/Z2 given by the phases of the
elements ((

e2πiθ 0
0 e−2πiθ

)
,

(
e2πiϕ 0

0 e−2πiϕ

))
∈ T × T,

the element w acts by (θ, ϕ) 7→ (−θ,−ϕ), so that X(S1, 0, SU(2)) is the
topological sphere obtained from the quotient of R2/Z2 by its hyperelliptic
involution ι (and X(S1, 0, SU(2)) has only four singular points located at
the subset {0, 1/2}2 of fixed points of the hyperelliptic involution). More-
over, an element (

a b

c d

)
∈ SL(2,Z)

acts on T × T by mapping (θ, ϕ) to (aθ + cϕ, bθ + dϕ).
In summary, the action of SL(2,Z) on κ−1(2) is given by the usual

SL(2,Z)-action on the topological sphere (R2/Z2)/ι induced from the stan-
dard SL(2,Z) on the torus R2/Z2.
By a result of Katok [5], it follows that the action of any hyperbolic

element of SL(2,Z) on κ−1(2) is ergodic (and actually Bernoulli). �

VOLUME 35 (2017-2019)
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1.3. Brown’s theorem

The previous two propositions raise the question of the ergodicity of
the action of hyperbolic elements of SL(2,Z) on the level sets κ−1(k),
−2 < k < 2. The following theorem of Brown [1] provides an answer to this
question:

Theorem 1.4. — Let g be an hyperbolic element of SL(2,Z). Then,
there exists −2 < k < 2 such that g does not act ergodically on κ−1(k).

Very roughly speaking, Brown establishes Theorem 1.4 along the fol-
lowing lines. One starts by performing a blowup at the origin κ−1(−2)
= {(0, 0, 0)} in order to think of the action of g on X(S1, 1, SU(2)) as a
one-parameter family g(k), −2 6 k 6 2, of area-preserving maps of the
2-sphere such that g(−2) is a finite order element of SO(3). In this way, we
have that g(k) is a non-trivial one-parameter family going from a completely
elliptic behaviour at k = −2 to a non-uniformly hyperbolic behaviour at
k = 2. This scenario suggests that the conclusion of Theorem 1.4 can be
derived via KAM theory in the elliptic regime.
In the next (and last) section of this note, we revisit Brown’s ideas leading

to Theorem 1.4 (with an special emphasis on its KAM theoretical aspects).

2. Revisited proof of Brown’s theorem

2.1. Blowup of the origin

The origin κ−1(−2) of the character varietyX(S1, 1, SU(2)) can be blown
up into a sphere of directions S−2. The action of SL(2,Z) on S−2 fac-
tors through an octahedral subgroup of SO(3): this follows from the fact
that (1.3) implies that the generators τα and τβ of SL(2,Z) act on S−2 as

τα|S−2 (ẋ, ẏ, ż) = (ẋ, ż,−ẏ) , τ−1
β

∣∣
S−2

(ẋ, ẏ, ż) = (−ż, ẏ, ẋ) .

In this way, each element g ∈ SL(2,Z) is related to a root of unity

λ−2(g) ∈ U(1) = {w ∈ C : |w| = 1}

of order 6 4 coming from the eigenvalues of the derivative of g|S−2 at any
of its fixed points.

Example 2.1. — The hyperbolic element(
2 1
1 1

)
= τατβ

acts on S−2 via the element (ẋ, ẏ, ż) 7→ (ż,−ẋ,−ẏ) of SO(3) of order 3.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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2.2. Bifurcations of fixed points

An hyperbolic element g ∈ SL(2,Z) induces a non-trivial polynomial
automorphism of R3 whose restriction to κ−1([−2, 2]) describe the action
of g on X(S1,1, SU(2)). In particular, the set Lg of fixed points of this
polynomial automorphism in κ−1([−2, 2]) is a semi-algebraic set of dimen-
sion < 3.
Actually, it is not hard to exploit the fact that g acts on the level sets

κ−1(k), k ∈ [−2, 2], through area-preserving maps to compute the Zariski
tangent space to Lg in order to verify that Lg is one-dimensional (cf. [1,
Proposition 5.1]).
Moreover, this calculation of Zariski tangent space can be combined with

the fact that any hyperbolic element g ∈ SL(2,Z) has a discrete set of fixed
points in R2/Z2 and, a fortiori, in κ−1(2) = X(S1,0, SU(2)) to get that Lg
is transverse to κ except at its discrete subset of singular points and, hence,
Lg ∩ κ−1(k) is discrete for all −2 6 k 6 2 (cf. [1, Proposition 5.2]).

Example 2.2. — The hyperbolic element(
2 1
1 1

)
= τατβ

acts on X(S1,1, SU(2)) via the polynomial automorphism (x, y, z) 7→
(z, zy − x, z(zy − x) − y) (cf. (1.3)). Thus, the corresponding set of fixed
points is given by the equations

x = z, y = zy − x, z = z(zy − x)− y

describing an embedded pair of curves in R3.

In general, the eigenvalues λ(p), λ(p)−1 of the derivative at p ∈ Lg of
the action of an hyperbolic element g ∈ SL(2,Z) on κ−1(κ(p)) can be
continuously followed along any irreducible component `g 3 p of Lg.
Furthermore, it is not hard to check that λ is not constant on `g (cf. [1,

Lemma 5.3]). Indeed, this happens because there are only two cases: the
first possibility is that `g connects κ−1(−2) and κ−1(2) so that λ varies
from λ−2(g) ∈ U(1) to the unstable eigenvalue of g acting on R2/Z2; the
second possibility is that `g becomes tangent to κ−1(k) for some −2 < k

< 2 so that the Zariski tangent space computation mentioned above reveals
that λ varies from 1 (at `g ∩ κ−1(k)) to some value 6= 1 (at any point of
transverse intersection between `g and a level set of κ).

VOLUME 35 (2017-2019)
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2.3. Detecting Brjuno elliptic periodic points

The discussion of the previous two subsections allows to show that the
some portions of the action of an hyperbolic element g ∈ SL(2,Z) fit the
assumptions of KAM theory.
Before entering into this matter, recall that e2π iθ ∈ U(1) is Brjuno

whenever θ is an irrational number whose continued fraction has partial
convergents (pk/qk)k∈Z satisfying

∞∑
k=1

log qk+1

qk
<∞.

For our purposes, it is important to note that the Brjuno condition has full
Lebesgue measure on U(1).
Let g ∈ SL(2,Z) be an hyperbolic element. We have three possibilities

for the limiting eigenvalue λ−2(g) ∈ U(1): it is not real, it equals 1 or it
equals −1.

If the limiting eigenvalue λ−2(g) ∈ U(1) is not real, then we take an
irreducible component `g intersecting the origin κ−1(−2). Since λ is not
constant on `g implies that λ(`g) contains an open subset of U(1). Thus,
we can find some −2 < k < 2 such that {p} = `g ∩ κ−1(k) has a Brjuno
eigenvalue λ(p), i.e., the action of g on κ−1(k) has a Brjuno fixed point.
If the limiting eigenvalue is λ−2(g) = 1, we use Lefschetz fixed point

theorem on the sphere κ−1(k) with k close to −2 to locate an irreducible
component `g of Lg such that {pk} = `g∩κ−1(k) is a fixed point of positive
index of g|κ−1(k) for k close to −2. On the other hand, it is known that
an isolated fixed point of an orientation-preserving surface homeomorphism
which preserves area has index < 2. Therefore, pk is a fixed point of g|κ−1(k)
of index 1 with multipliers λ(pk), λ(pk)−1 close to 1 whenever k is close to
−2. Since a hyperbolic fixed point with positive multipliers has index −1,
it follows that pk is a fixed point with λ(pk) ∈ U(1) \ {1} when k is close
to −2. In particular, λ(`g) contains an open subset of U(1) and, hence, we
can find some −2 < k < 2 such that pk has a Brjuno multiplier λ(pk).

If the limiting eigenvalue is λ−2(g) = −1, then g2 is an hyperbolic element
with limiting eigenvalue λ−2(g2) = 1. From the previous paragraph, it
follows that we can find some −2 < k < 2 such that κ−1(k) contains a
Brjuno elliptic fixed point of g2|κ−1(k).

In any event, the arguments above give the following result (cf. [1, The-
orem 4.4]):

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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Theorem 2.3. — Let g ∈ SL(2,Z) be an hyperbolic element. Then,
there exists −2 < k < 2 such that g|κ−1(k) has a periodic point of period
one or two with a Brjuno multiplier.

2.4. Moser’s twisting theorem and Rüssmann’s stability
theorem

At this point, the idea to derive Theorem 1.4 is to combine Theorem 2.3
with KAM theory ensuring the stability of certain types of elliptic periodic
points.
Recall that a periodic point is called stable whenever there are arbitrarily

small neighborhoods of its orbit which are invariant. In particular, the
presence of a stable periodic point implies the non-ergodicity of an area-
preserving map.
A famous stability criterion for fixed points of area-preserving maps is

Moser’s twisting theorem [6]. This result can be stated as follows. Suppose
that f is an area-preserving Cr, r > 4, map having an elliptic fixed point
at origin (0, 0) ∈ R2 with multipliers e2πiθ, e−2πiθ such that nθ /∈ Z for
n = 1, 2, 3 . . . , r. After performing an appropriate area-preserving change
of variables (tangent to the identity at the origin), one can bring f into its
Birkhoff normal form, i.e., f has the form

(
ξ

η

)
7→

ξ cos
(

s∑
n=0

γn
(
ξ2 + η2)n)− η sin

(
s∑

n=0
γn
(
ξ2 + η2)n)

ξ sin
(

s∑
n=0

γn
(
ξ2 + η2)n)+ η cos

(
s∑

n=0
γn
(
ξ2 + η2)n)

+h(ξ, η)

where s = [r/2]−1, γ0 = 2πθ, γ1, . . . , γs are uniquely determined Birkhoff
constants and h(ξ, η) denotes higher order terms.

Theorem 2.4 (Moser twisting theorem). — Let f be an area-preserving
map as in the previous paragraph. If γn 6= 0 for some 1 6 n 6 s, then the
origin (0, 0) ∈ R2 is a stable fixed point.

The nomenclature “twisting” comes from the fact γ1 6= 0 when f is a twist
map, i.e., f has the form f(r, θ) = (r, θ + µ(r)) in polar coordinates where
µ is a smooth function with |µ′(0)| 6= 0. In the literature, the condition
“γn 6= 0 for some n” is called twist condition.

Example 2.5. — The Dehn twist τα induces the polynomial automor-
phism τα(x, y, z) = (x, z, xz − y) on X(S1, 1, SU(2)) = κ−1([−2, 2]). Each
level set κ−1(k), −2 < k < 2, is a smooth 2-sphere which is swept out

VOLUME 35 (2017-2019)
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by the τα-invariant ellipses Ck,x0 obtained from the intersections between
κ−1(k) and the planes of the form {x0} × R2.
Goldman [3] observed that, after an appropriate change of coordinates,

each Ck,x0 becomes a circle where τα acts as a rotation by angle cos−1

(x0/2). In particular, the restriction of τα to each level set κ−1(k) is a
twist map near its fixed points (±

√
2 + k, 0, 0).

In his original argument, Brown [1] deduced Theorem 1.4 from (a weaker
version of) Theorem 2.3 and Moser’s twisting theorem. However, Brown
employed Moser’s theorem with r = 4 while checking only the conditions
on the multipliers of the elliptic fixed point but not the twist condition
γ1 6= 0.
As it turns out, it is not obvious to check the twist condition in Brown’s

setting (especially because it is not satisfied at the sphere of directions
S−2).
Fortunately, Rüssmann [7] discovered that a Brjuno elliptic fixed point

of a real-analytic area-preserving map is always stable (independently of
twisting conditions):

Theorem 2.6 (Rüssmann). — Any Brjuno elliptic periodic point of a
real-analytic area-preserving map is stable.

Remark 2.7. — Actually, Rüssmann obtained the previous result by sho-
wing that a real-analytic area-preserving map with a Brjuno elliptic fixed
point and vanishing Birkhoff constants (i.e., γn = 0 for all n ∈ N) is
analytically linearisable. Note that the analogue of this statement is false in
the C∞ category (as a counterexample is given by (r, θ) 7→ (r, θ+ρ+e−1/r)).

In any case, at this stage, the proof of Theorem 1.4 is complete: it suffices
to put together Theorems 2.3 and 2.6.
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