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GROUPS ACTING ON QUASI-MEDIAN GRAPHS. AN
INTRODUCTION

Anthony Genevois

Abstract. — Quasi-median graphs have been introduced by Mulder in 1980 as
a generalisation of median graphs, known in geometric group theory to naturally
coincide with the class of CAT(0) cube complexes. In his PhD thesis, the author
showed that quasi-median graphs may be useful to study groups as well. In the
present paper, we propose a gentle introduction to the theory of groups acting on
quasi-median graphs.

1. Introduction

CAT(0) cube complexes were introduced by Gromov in his seminal
paper [17] as a convenient source of examples of CAT(0) and CAT(-1)
groups. But their strength really appeared with the recognition of the
central role played by the combinatorics of their hyperplanes, initiated
by Sageev in his thesis [26]. Since then, several still open conjectures for
CAT(0) spaces were verified for CAT(0) cube complexes, including the
(bi)automaticity of cubulated groups [24], the Tits Alternative for groups
acting freely on finite-dimensional CAT(0) cube complexes [27], and the
Rank Rigidity Conjecture [6]. Recently, CAT(0) cube complexes were also
crucial in the proof of the famous virtual Haken conjecture [1].
Independently, Roller [25] and Chepoï [8] realised that the class of

CAT(0) cube complexes can be naturally identified with the class of the
so-called median graphs. These graphs were known by graph theorists for
a long time since they were introduced by Nebeský in 1971 [23]. Since then,
several classes of graphs were introduced as generalisations of median
graphs (see for instance [7] and references therein), including the main sub-
ject of this article, quasi-median graphs, which were introduced by Mulder
in 1980 [22] and more extensively studied by Bandelt, Mulder and Wilkeit
in 1994 [3].
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In [11], we showed that quasi-median graphs appear naturally in several
places in geometric group theory, and that finding group actions on such
graphs may be extremely useful. The goal of this article is to give a gentle
introduction to the formalism introduced in [11].

The paper is organised as follows. In Section 2, we notice that the ge-
ometry of quasi-median graphs is quite similar to the geometry of CAT(0)
cube complexes. In particular, we generalise the definition of hyperplanes
and show that geometry essentially reduces to the combinatorics of the hy-
perplanes. In Section 3, examples of groups acting on quasi-median graphs
are given. We focus on graph products, wreath products, and diagram
groups. In Section 4, we introduce and study rotative stabilisers of hy-
perplanes. They are used to embed graph products into groups acting on
quasi-median graphs, and, under some assumptions, a decomposition as a
semidirect product is proved. Finally, Sections 5 and 6 are dedicated to
topical-transitive actions, which can be used to prove combination theo-
rems. Applications to the groups mentioned in Section 3 are given. We
conclude this article by describing in Section 7 recent successes in the geo-
metric study of automorphism groups of graph products based on quasi-
median graphs.

2. Quasi-median graphs look like CAT(0) cube complexes

Quasi-median graphs may be defined in many different ways; see for
instance [3]. In [11], the definition we used is the following:

Definition 2.1. — A graph is weakly modular if it satisfies the follow-
ing two conditions:
(triangle condition) for any vertex u and any two adjacent vertices v, w at
distance k from u, there exists a common neighbor x of v, w at distance
k − 1 from u;
(quadrangle condition) for any vertices u, z at distance k apart and any
two neighbors v, w of z at distance k − 1 from u, there exists a common
neighbor x of v, w at distance k − 2 from u.

A graph is quasi-median if it is connected, weakly modular and if it does
not contain K−4 and K3,2 as induced subgraphs. See Figures 2.1 and 2.2.

Although this definition turns out to be convenient to work with, the
analogy with CAT(0) cube complexes is not clear. This analogy becomes
more explicit thanks to the following two statements (which were originally
proved only for finite graphs). We refer to the corresponding references for
the needed definitions.
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Figure 2.1. The triangle and square conditions.

Figure 2.2. The graphs K−4 and K3,2.

Theorem 2.2. — [2] Let X be a finite graph. The following statements
are equivalent:

• X is median;
• X is a rectract of a hypercube;
• X is obtained from cubes by gated amalgams.

Theorem 2.3. — [28, 3] Let X be a finite graph. The following state-
ments are equivalent:

• X is quasi-median;
• X is a rectract of a product of complete graphs;
• X is obtained from prisms (ie., products of complete graphs) by
gated amalgams.

Roughly speaking, if one says that CAT(0) cube complexes or median
graphs are obtained by gluing cubes together in a “nonpositively-curved
way”, then quasi-median graphs are obtained by gluing prisms together in
a “nonpositively-curved way”. So edges become cliques, and cubes become
prisms. This analogy motivates the following definition, which mimics the
definition of hyperplanes in CAT(0) cube complexes. See Figure 2.3 for
examples.

VOLUME 35 (2017-2019)
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Figure 2.3. A quasi-median graph and some of its hyperplanes.

Definition 2.4. — A hyperplane is an equivalence class of edges, where
two edges e and e′ are said equivalent whenever there exists a sequence of
edges e0 = e, e1, . . . , en−1, en = e′ such that, for every 1 6 i 6 n−1, either
ei and ei+1 are opposite sides of some square or they are two sides of some
triangle. Alternatively, if we say that two cliques are parallel whenever they
respectively contain two opposite sides of some square, then a hyperplane
is the collection of edges of some class cliques with respect to the transitive
closure of parallelism.

One says that an edge or a clique is dual to a given hyperplane if it
belongs to the associated class of edges. Of course, because two distinct
equivalence classes are necessarily disjoint, an edge or a clique is dual to a
unique hyperplane.

Definition 2.5. — The carrier of hyperplane J , denoted by N(J), is
the subgraph generated by the union of all the edges of J . A fiber of J is
a connected component of ∂J = N(J)\\J , ie., the subgraph obtained from
N(J) by removing the interiors of the edges of J .

Now, the point is that, in the same way that the geometry of a CAT(0)
cube complex reduces to the combinatorics of its hyperplanes, the geom-
etry of a quasi-median graph reduces as well to the combinatorics of its
hyperplanes. More precisely:

Theorem 2.6 ([11, Proposition 2.15 and 2.30]). — Let X be a quasi-
median graph. For every hyperplane J , the following statements hold.

• The subgraph X\\J obtained from X by removing the interiors
of the edges of J is disconnected, possibly with infinitely many
connected components. Each such component, called a sector, is
gated.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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• A fiber of J is a gated subgraph; in particular, it is a quasi-median
graph on its own right.

• The carrier of J is naturally isometric to a product F × C where
F is an arbitrary fiber of F and C an arbitrary clique dual to J .
Furthermore, N(J) is a gated subgraph.

Moreover, a path in X is a geodesic if and only if it crosses at most once
each hyperplane. As a consequence, the distance between any two vertices
of X coincides with the number of hyperplanes which separate them.

Recall that, given a graph X and a subgraph Y ⊂ X, a gate in Y for
some vertex x ∈ X is a vertex y ∈ Y such that, for every z ∈ Y , there
exists a geodesic between x and z passing through y. If every vertex of X
has a gate in Y , then Y is gated. It is worth noticing that a gated subgraph
must be convex. In fact, gated subgraphs in quasi-median graphs play the
same role as convex subcomplexes in CAT(0) cube complexes. The reason
is that one can project vertices onto gated subgraphs, just by taking the
corresponding gates: note that the gate, when it exists, is the unique vertex
of the subgraph minimising the distance to the initial vertex. In median
graphs, convex subgraphs are always gated, but it is no longer true in quasi-
median graphs: an edge in a triangle is obviously convex, but the vertex
of our triangle which does not belong to this edge have two nearest-point
projections. For more information on projections onto gated subgraphs in
quasi-median graphs, we refer to [11, Section 2.3].
Let us mention that, in the same way that median graphs can be filled

in to get a CAT(0) space, quasi-median complexes, ie., prism complexes
obtained from quasi-median graphs by filling in every clique with a simplex
and every one-skeleton of an n-cube with an n-cube, define CAT(0) spaces
as well.

Theorem 2.7 ([11, Theorem 2.120]). — Quasi-median complexes are
CAT(0).

It is worth noticing that a CAT(0) cube complex can be naturally as-
sociated to any quasi-median graph. Indeed, endow a given quasi-median
graph X with a structure of wallspace by declaring that a sector and its
complement is wall, and next cubulate this wallspace to get a CAT(0) cube
complex C(X). See Figure 2.4 for an example. Then the canonical map
X → C(X) is a quasi-isometry, which is furthermore equivariant, meaning
that if a group acts on X then it naturally acts on C(X) as well. As a
consequence, every group acting geometrically (resp. properly, fixed-point

VOLUME 35 (2017-2019)
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Figure 2.4. A quasi-median graph and its dual CAT(0) cube complex.

freely) on a quasi-median graph acts geometrically (resp. properly, fixed-
point freely) on a CAT(0) cube complex.
Therefore, a natural question is: why do we care about quasi-median

graphs? The first reason is that a quasi-median graph may appear more
naturally than a CAT(0) cube complex, making the quasi-median graph
easier to handle. For instance, we are convinced that quasi-median graphs
provide the good framework to study the geometry of graph products (see
Section 3). The second reason is that one can exploit the specific structure
of hyperplanes in quasi-median graphs to define particular kinds of actions
on such graphs which provide interesting information on the group (see
Sections 4, 5 and 6).

3. Quasi-median graphs appear in Nature

In this section, our goal is to describe four classes of groups which act
naturally on quasi-median graphs: graph products, (some) wreath products,
diagram products and some graphs of groups.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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3.1. Graph products

Let us begin by recalling the definition of graph products, as introduced
in [16]:

Definition 3.1. — Let Γ be a simplicial graph and G a collection of
groups indexed by the vertices of Γ. The graph product ΓG is the group
defined by the relative presentation

〈Gu, u ∈ V (Γ)|[Gu, Gv] = 1, (u, v) ∈ E(Γ)〉 ,

where [Gu, Gv] = 1 is an abbreviation for: [g, h] = 1 for every g ∈ Gu and
h ∈ Gv.

Notice that, if Γ has no edges, then ΓG coincides with the free product
of all the groups of G; and if Γ is complete graph, then ΓG coincides with
the direct sum of all the groups of G. Usually, one says that graph products
interpolate between free products and direct sums. Next, notice also that, if
all the groups of G are infinite cyclic, we recover right-angled Artin groups;
and if all the groups of G are cyclic of order two, we recover the right-angled
Coxeter groups.

Theorem 3.2. — [11, Proposition 8.2] Let Γ be a simplicial graph and
G a collection of groups indexed by V (Γ). The Cayley graph X(Γ,G) of ΓG
associated to the generating set

⊔
G∈G

G\{1} is a quasi-median graph.

Graph products are our examples where the link between groups and
graphs is the strongest. In [11], one of our major contributions to the study
of geometric properties of graph products is the characterisation of rela-
tively hyperbolic graph products. Before stating our theorem, we need to
introduce some vocabulary.
Given a finite simplicial graph Γ and a collection of groups G indexed

by V (Γ), we will say that a subgraph Λ 6 Γ is vast if the subgroup of ΓG
generated by the vertex-groups corresponding to the vertices of Λ, ie., ΛG,
is infinite; otherwise, Λ is said narrow. Notice that a subgraph is narrow
if and only if it is complete and all the vertex-groups labelling its vertices
are finite. A join Λ1 ∗ Λ2 6 Γ is large if both Λ1 and Λ2 are vast.

Definition 3.3. — Let Γ be a finite simplicial graph and G a collection
of groups labelled by V (Γ). For every subgraph Λ ⊂ Γ, let cp(Λ) denote the
subgraph of Γ generated by Λ and the vertices v ∈ Γ such that link(v)∩Λ
is vast. Now, define the collection of subgraphs Jn(Γ) of Γ by induction in
the following way:

VOLUME 35 (2017-2019)
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• J0(Γ) is the collection of all the large joins in Γ;
• if C1, . . . , Ck denote the connected components of the graph whose
set of vertices is Jn(Γ) and whose edges link two subgraphs with
vast intersection, we set

Jn+1(Γ) =

cp

 ⋃
Λ∈C1

Λ

 , . . . , cp

 ⋃
Λ∈Ck

Λ

 .

Because Γ is finite, the sequence (Jn(Γ)) must eventually be constant
and equal to some collection J∞(Γ). Finally, let J(Γ) denote the collection
of subgraphs of Γ obtained from J∞(Γ) by adding the singletons corre-
sponding to the vertices of Γ\

⋃
J∞(Γ).

Theorem 3.4. — [11, Theorem 8.35] Let Γ be a finite simplicial graph
not reduced to a single vertex and G a collection of finitely generated groups
labelled by V (Γ). The graph product ΓG is relatively hyperbolic if and only
if J(Γ) 6= {Γ}. If so, ΓG is hyperbolic relatively to {ΛG | Λ ∈ J(Γ)}.

Example 3.5. — Let ΓG denote the graph product illustrated by Fig-
ure 3.1. Then ΓG is hyperbolic relatively to the three subgroups respectively
generated by the vertex-groups of the three red subgraphs.

Figure 3.1. A relatively hyperbolic graph product and its peripheral
subgroups.

3.2. Wreath products

Recall that, given two groups G and H, the wreath product G oH is the
semidirect product (⊕

h∈H

G

)
oH
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where H acts on the direct sum by permuting the coordinates. Often, such
groups are described as lamplighter groups in the following way. Fix two
generating sets R and S ofG andH respectively. Notice that R∪S, when we
identify G with its copy in the direct sum labelled by the identity element,
generates G oH. An element ((gh)h∈H , k) of the wreath product is thought
of as the following configuration: each vertex h ∈ H of the Cayley graph
of H (corresponding to S) is a lamp whose color is gh ∈ G, and an arrow
points to the vertex k ∈ H to indicate the position of the lamplighter. Now,
right-multiplying this element by some r ∈ R corresponds to modifying the
color of the lamp at the vertex k ∈ H, ie., where the lamplighter is, from
gk to gkr; and right-multiplying the element by some s ∈ S corresponds
to moving the lamplighter from k to the adjacent vertex ks. Thus, the
Cayley graph of G oH (corresponding the generating set R ∪ S) encodes a
lamplighter moving along the Cayley graph of H and modifying the colors
of the lamps along its path.
Now, suppose that the group H acts on a CAT(0) cube complex X, and

suppose without loss of generality that X contains a vertex x0 ∈ X with
trivial stabiliser. In the previous description, we will replace the Cayley
graph of H (ie., the graph on which the lamplighter moves) with the cube
complex X; the lamps will be the vertices of the orbit Ω = H ·x0 ⊂ X; and
the lamplighter (ie., the arrow) will be replaced with a non empty finite
convex subcomplex of X. Formally, the situation is the following:

Definition 3.6. — A wreath (C,ϕ) is the data of a non empty finite
convex subcomplex C ⊂ X and a function ϕ : Ω→ G with finite support,
ie., ϕ(p) = 1 for all but finitely many p ∈ Ω. The graph of wreaths W is
the graph whose vertices are the wreaths and whose edges link two wreaths
(C,ϕ) and (Q,ψ) either if ϕ = ψ and if there exists a unique hyperplane
intersecting exactly one of C and Q; or if C = Q and if ϕ and ψ differ on
a single point of C ∩ Ω = Q ∩ Ω.

When H has a Cayley graph which is a median graph, or equivalently
when H admits an action on a CAT(0) cube complex which is free and
transitive on the vertices, then we may identify the group H, the orbit
Ω and the cube complex X. This happens for instance when H is a free
abelian group or a non-abelian free group. A piece of the graph of wreaths
associated to Z3 o Z is illustrated by Figure 3.2.
A funny interpretation is the following. By replacing the arrow by a sub-

complex, the lamplighter becomes “quantum”. It has no precise position, it
is everywhere inside the subcomplex, which can be thought of as a “cloud”,
and it can modify the color of any lamp inside this cloud (but just one at

VOLUME 35 (2017-2019)
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Figure 3.2. A piece of the graph of wreaths associated to Z3 o Z.

each time). The cloud moves by adding or removing a hyperplane from the
corresponding subcomplex, the operation being allowed only if the resulting
subcomplex remains convex and non empty.

Theorem 3.7. — [11, Proposition 9.10] The graph of wreaths W is
quasi-median.

(We used the same idea in [13] to construct actions of wreath products on
median spaces, reproving that acting properly on a CAT(0) cube complex
and being a-T-menable are stable under wreath products.)

3.3. Diagram products

In [19], Guba and Sapir introduced diagram products from the class of
diagram groups [18], in a similar way that graph products can be derived
from right-angled Artin groups.

Definition 3.8. — Let P = 〈Σ | R〉 be a semigroup presentation. We
suppose that, for every relation u = v ∈ R, the relation v = u does not
belong to R; as a consequence, R does not contain relations of the form
u = u. Let S(P) denote the square complex

• whose vertices are the words written over the alphabet Σ;
• whose edges have the form (a, u→ v, b) for some relation u = v ∈ R,
linking the vertices aub and avb;

• whose squares have the form (a, u → v, b, p → q, c) for some rela-
tions u = v, p = q ∈ R, linking the vertices aubpc, avbpc, aubqc and
avbqc.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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Now, fix a collection of groups G indexed by the alphabet Σ, and let S(P,G)
be the complex of groups (we refer to [4, Chapter II.12] for more information
on (simple) complexes of groups) such that

• the underlying complex is S(P);
• the vertex-group associated to the word

s = s1 · · · sn is Gs = Gs1 × · · · ×Gsn
;

• the edge-group associated to the edge (a, u→ v, b) is Ga ×Gb;
• the square-groups are all trivial;
• the embedding of an edge-group into a vertex-group coincides the
canonical embedding of a factor into a direct product.

Fixing some baseword w ∈ Σ+, the diagram product D(P,G, w) is the
fundamental group of the complex of groups S(P,G, w) corresponding to
the connected component of S(P,G) containing the vertex w.

When all the groups of G are trivial, one recovers the definition of diagram
groups as fundamental groups of Squier complexes [18].

Example 3.9. — Let us mention a few concrete examples of diagram
products. We refer to [11, Section 10.6] for more details.

• If P = 〈a, b, p | a = ap, b = pb〉 and G = {Ga = Gb = {1},
Gp = G} for some group G, then the diagram product D(P,G, ab)
is isomorphic to the wreath product G o Z.

• If P = 〈a, b, p | a = ap, b = pb〉 and G = {Ga = G,Gb
= H,Gp = {1}} for some groups G and H, then the diagram prod-
uct D(P,G, ab) admits

G •H =
〈
G,H, t |

[
g, tnht−n

]
= 1, g ∈ G, h ∈ H,n > 0

〉
as a (relative) presentation. Interestingly, Z•Z is a finitely generated
but not finitely presented group which is isomorphic to the subgroup
〈a, c, bd〉 in the direct product of two free groups 〈a, b | 〉 × 〈c, d | 〉.

• Consider the semigroup presentation

P = 〈a, b, c, d | ab = ac, bd = cd〉

and the collection G = {Gb = Gc = {1}, Ga = G,Gd = H} for some
groups G,H. Then the diagram product D(P,G, abd) admits

G�H =
〈
G,H, t

∣∣[g, h] =
[
g, ht

]
= 1, g ∈ G, h ∈ H

〉
as a (relative) presentation.

VOLUME 35 (2017-2019)
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Thanks to the alternative description of diagram groups given in [11,
Section 10], we generalised the definition in [12] by looking at symmetric
diagram groups [18, 10]. It would be too long to define this generalisa-
tion here, but the point is that there exist a symmetric diagram product
Ds(P,G, w) and an annular diagram product Da(P,G, w), such that

D(P,G, w) ⊂ Da(P,G, w) ⊂ Ds(P,G, w).

To avoid ambiguity, the diagram product D(P,G, w) will be sometimes
referred to as the planar diagram product. Each of these products acts on
quasi-median graphs, denoted by X(P,G, w), Xa(P,G, w) and Xs(P,G, w)
respectively [11, 12]. For instance, the graph X(P,G, w), roughly speaking,
coincides with a connected component of the natural Cayley graph of the
fundamental groupoid corresponding to the complex of groups S(P,G, w).

3.4. Right-angled graphs of groups

In [11], we also studied right-angled graphs of groups, which are roughly
speaking specific gluings of graph products. It would be too long to de-
fine the class of right-angled graphs of groups acting topically-transitively
on quasi-median graphs which we studied in [11], so we refer to [11, Sec-
tion 11] for more details, and we focus on a specific subclass, namely Carte-
sian graphs of groups. A Cartesian graphs of groups is a graph of groups
such that groups are direct products, edges are factors of vertices, and
monomorphisms are canonical embeddings. We refer to [11, Section 11] for
more details on the quasi-median geometry of these groups.

Example 3.10. — Let us mention a few concrete examples of fundamental
groups of Cartesian graphs of groups. We refer to [11, Section 11.4] for more
details.

• Let A be a group and B1, B2 two copies of a group B. Consider
the HNN extension (A × (B1 ∗ B2)∗B associated to the monomor-
phisms B → B1 and B → B2. We recover the product A�B from
Example 3.9, which admits〈

A,B, t
∣∣[a, b] =

[
a, bt

]
= 1, a ∈ A, b ∈ B

〉
as a (relative) presentation.

• Let A1, A2 be two copies of a group A. Consider the HNN extension
(A1 × A2)∗A associated to the monomorphisms A → A1 and A →

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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A2. This is a Cartesian graph of groups, and its fundamental group,
which we denote by Ao, admits〈

A, t
∣∣[a, at] = 1, a ∈ A

〉
as a (relative) presentation. Notice that, if A is infinite cyclic, we
recover the group introduced in [5], which was the first example of
fundamental group of a 3-manifold which is not subgroup separable.

• Let A be a group and B1, B2 two copies of a group B. Consider the
HNN extension (B1×A×B2)∗B associated to the monomorphisms
B → B1 and B → B2. The group we obtain, which we denote by
A on B, admits〈

A,B, t
∣∣[a, b] =

[
a, bt

]
=
[
b, bt

]
= 1, a ∈ A, b ∈ B

〉
as a (relative) presentation.

4. Rotative actions on quasi-median graphs

The main difference between CAT(0) cube complexes and quasi-median
graphs is that hyperplanes may separate the graph into more than two
pieces. In fact, in the cases which interest us, the number of sectors delim-
ited by a given hyperplane turns out to be infinite. Therefore, an isometry
of infinite order stabilising a fixed hyperplane may only “rotate” this hy-
perplane without “translating” vertices. More formally:

Definition 4.1. — Let G be a group acting on a quasi-median graph
X and J a hyperplane of X. The rotative stabiliser of J is

stab	(J) =
⋂
{stab(C) |C clique of J} .

An interesting remark is that the rotative stabilisers of two transverse
hyperplanes commute, ie., any element of one stabiliser commutes with
any element of the other. Loosely speaking, the situation is similar to two
rotations in the space whose axes are orthogonal. On the other hand, it is
not difficult to show that the group of isometries generated by the rota-
tive stabilisers of two non transverse hyperplanes decomposes as the free
product of these two rotative stabilisers (provided that vertex-stabilisers
are trivial). Essentially, it is sufficient to play ping-pong with the sectors
delimited by the hyperplanes. Generalising the argument to an arbitrary
collection of hyperplanes leads to the following statement:

VOLUME 35 (2017-2019)
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Theorem 4.2. — [11, Theorem 8.43] Let G be a group acting on a
quasi-median graph X with trivial vertex-stabilisers. For every hyperplane
J , choose a residually finite subgroup HJ of its rotative stabiliser. If Γ is an
induced finite subgraph of the crossing graph of X, there exists a collection
G of finite-index subgroups of our HJ ’s such that the graph product ΓG
embeds into G.

In a quasi-median graphX, the crossing graph ofX is the graph, denoted
by ∆X, whose vertices are the hyperplanes of X and whose edges link
two transverse hyperplanes. An interesting particular case of the previous
statement is when the HJ ’s are all infinite cyclic.

Corollary 4.3. — Let G be a group acting on a quasi-median graph
X with trivial vertex-stabilisers and with infinite non torsion rotative sta-
bilisers. If Γ is a finite induced subgraph in the crossing graph of X, then
the right-angled Artin group A(Γ) embeds into G.

In general, describing the crossing graph of a quasi-median graph is dif-
ficult, but for graph products, one gets the following nice description. Let
Γ be a simplicial graph and G a collection of non trivial groups indexed
by V (Γ). The crossing graph of the quasi-median graph X(Γ,G) coincides
with the graph

• whose vertices are the conjugates of vertex-groups gGug−1;
• whose edges link two conjugates gGug−1 and hGvh−1 if they com-
mute, ie., any element of one conjugate commutes with any element
of the other.

Therefore, the crossing graph ∆X(Γ,G) naturally generalises the exten-
sion graph defined for right-angled Artin groups in [21], and Theorem 4.2
generalises [21, Theorem 2].

Pushing further the argument used to prove Theorem 4.2, it is possible
to find a structure theorem for groups acting on quasi-median graphs with
“sufficiently large” rotative stabilisers.

Definition 4.4. — Let G be a group acting on a quasi-median graph
X and J a collection of hyperplanes. The action G y X is J -rotative
if, for every J ∈ J , the rotative stabiliser stab	(J) acts transitively and
freely on the set of sectors delimited by J .

Before stating our theorem, we also need the following definition: given
a quasi-median graph X, a collection of hyperplanes J and a base vertex
x0 ∈ X, one says that a subcollection J0 ⊂ J is x0-peripheral if, for every
J ∈ J0, there does not exist a hyperplane of J separating J and x0.
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Theorem 4.5. — [11, Theorem 10.54] Let G be a group acting J -
rotatively on a quasi-median graph X. Fix a basepoint x0 ∈ X. If Y ⊂ X

denotes the intersection of the sectors containing x0 which are delimited
by a hyperplane of J , then

G = Rot(J ) o stab(Y ), where Rot(J ) = 〈stab	(J), J ∈ J 〉 .

Moreover, if J0 ⊂ J denotes the unique maximal x0-peripheral subcollec-
tion of J , then Rot(J ) decomposes as a graph product ∆G, where ∆ is the
graph whose vertices are the hyperplanes of J0 and whose edges link two
hyperplanes which are transverse, and where G = {stab	(J) | J ∈ J0}.

As an application, we showed in [11, Theorem 10.58] that (planar) dia-
gram products decompose as semidirect products between a graph prod-
uct and their underlying diagram groups. By taking collections of infinite
cyclic groups and trivial diagram groups, it implies that many right-angled
Artin groups turn out to be diagram groups as well [11, Corollary 10.60].
In [12], we generalised this argument and proved the following statement
(see also [20, Theorem 5.7] for planar diagram groups):

Theorem 4.6. — Let D be a planar (resp. annular, braided) diagram
group. There exist a subgroup R of some right-angled Artin group and a
subgroup S of Thompson’s group F (resp. T , V ), such that D decomposes
as the short exact sequence

1→ R→ D → S → 1.

As a consequence, any simple diagram group embeds into the corre-
sponding Thompson’s group. Our motivation in [12] was to construct new
subgroups of Thompson’s group V . For instance, we were able to prove
that Higman’s groups Vn, r, Houghton’s groups Hn and groups of quasi-
automorphisms QVn, r embed into V .

5. Topical-transitive actions on quasi-median graphs I

An interesting point is that, in most of the examples of groups acting on
quasi-median graphs that we know, combination theorems can be proved
with respect to clique-stabilisers. Let us illustrate such arguments with the
following statement.

Theorem 5.1. — Let Γ be a finite simplicial graph and G a collection
of groups indexed by the vertices of Γ. Suppose that every group of G acts
metrically properly on a CAT(0) cube complex. Then so does the graph
product ΓG.
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Sketch of proof. For every G ∈ G, fix a CAT(0) cube complex X(G) on
which it acts metrically properly; via the orbit map

O :
{
G → X(G)
g 7→ g · x0(G)

,

where x0(G) ∈ X(G) is a fixed vertex, one may naturally endow G with a
structure of wallspace, ie., set

W(G) =
{{
O−1(D),O−1(Dc)

}
, D halfspace of X

}
.

Now, fix a clique C of the quasi-median graph X(Γ,G) on which ΓG acts.
Recall thatX(Γ,G) is the Cayley graph of ΓG with respect to the generating
set

⋃
G∈G

G\{1}. As a consequence, the cliques of X(Γ,G) coincide with

cosets of vertex-groups. Therefore, there exist some g ∈ ΓG and some G ∈ G
such that C = gG. The walls defined on G naturally define walls on the
clique C (notice that this transfer does not depend on our choice of g,
which is used to identify C with G, since g is uniquely determined up to
right-multiplying by an element of G and that W(G) is G-invariant), and
we may extend them as walls on the whole quasi-median graph by setting

W(C) =
{{

proj−1
C (D),proj−1

C (Dc)
}
, D,DC ∈ W(C)

}
,

where W(C) denotes the collection of walls on C induced by the walls of
G. Thus, one gets a collection of walls⋃

C clique
W(C)

on X(Γ,G), which is ΓG-invariant by construction. However, in general
infinitely many walls separate two given vertices of our graph. Nevertheless,
it turns out that, if one removes duplicated walls (ie., walls inducing the
same partition of X(Γ,G)), then our collection of walls endows X(Γ,G)
with a structure of wallspace. The key observation is that the system of
wallspaces {W(C) | C clique} is coherent, meaning that, for every clique
C and C ′ dual to the same hyperplane, the equality

tC→C′W(C) =W(C ′)

holds, where tC→C′ denotes the restriction to C of the projection onto C ′
(this map may be thought of as a “parallel transport” along the hyperplane
dual to C and C ′). Indeed, because C and C ′ are dual to the same hyper-
plane of X(Γ,G), there exist g ∈ ΓG, G ∈ G and h ∈ CΓG(G) such that
C = gG and C ′ = ghG, so that

W(C ′) =W(ghG) = ghW(G) = gW(G)h =W(C)h = tC→C′W(C),
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since the right-multiplication by h turns out to coincide with the map
tgG→ghG. As a consequence, the collections of walls W(C) and W(C ′) co-
incide if C and C ′ are two cliques dual to the same hyperplane J . So it
makes sense to define W(J) as the collection W(C) for any clique C dual
to J , and we finally endow X(Γ,G) with the collection of walls

HW =
⋃

J hyperplane
W(J).

It can be proved that, if we write an element g ∈ ΓG as a word of minimal
length g1 · · · gn, where gi belongs to some Gi ∈ G for every 1 6 i 6 n, then

dHW(1, g) =
n∑
i=1

dW(Gi)(1, gi) =
n∑
i=1

dX(Gi)(x0(Gi), gi · x0(Gi)),

where dHW(·, ·) denotes the number of walls in W separating two vertices
of X(Γ,G), and, for every G ∈ G, dW(G)(·, ·) the number of walls of W(G)
separating two points of G and dX0(G) the distance in the CAT(0) cube
complex X0(G). From this formula, it follows that only finitely many walls
of HW separate two given vertices of X(Γ,G), so that (X(Γ,G),HW) de-
fines a wallspace; and that the action of ΓG on the CAT(0) cube complex
obtained by cubulating this wallspace is metrically proper. �

In the previous argument, two points are fundamental:
• For every clique C of our quasi-median graph, the action stab(C)
y C is free and transitive on the vertices. This allows us to identify
a clique with its stabiliser in order to transfer some structure from
stab(C) to C (in the previous proof, a collection of walls).

• There exists some compatibility between the action ΓG y X(Γ,G)
and the maps tC→C′ , which implies that the collection of structures
(in the previous proof, collections of walls) defined on each clique
is coherent.

In [11], we introduced topical-transitive actions to recover these properties
and to generalise the previous argument to other groups acting on quasi-
median graphs.

Definition 5.2. — Let G be a group acting on a quasi-median graph
X. The action is topical if, for every hyperplane J , every clique C dual to J
and every element g ∈ stab(J), there exists some ρC(g) ∈ stab(C) such that
g and ρC(g) induce the same permutation on the set of sectors delimited by
J . If moreover the action stab(C) y C is free and transitive on the vertices
for every clique C which either is infinite or satisfies stab(C) 6= fix(C), the
action Gy X is topical-transitive.
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Fix a group G acting topically-transitively on some quasi-median graph
X. For convenience, we suppose that the action stab(C) y C is free and
transitive on the vertices for every clique C of X (which happens, for in-
stance, if all the cliques of X are infinite). Fixing a collection of cliques C
such that every orbit of hyperplane intersects C along exactly one clique (C
can be thought of as a collection of cliques of reference), the key point is
that, for every clique C labelled by Q ∈ C (ie., some translate of C is dual
to the same hyperplane as Q), there exist a natural bijection φC : C → Q

and a natural isomorphism ϕC : stab(C)→ stab(Q), so that
• φC = φC′ ◦ tC→C′ for every clique C and C ′ dual to the same
hyperplane;

• φgC(gx) = ϕC(sC(g)) ·φC(x) for every clique C, every vertex x ∈ C
and every element g ∈ G.

The map sC : G → stab(C) is defined below, but the point to keep in
mind is that sC(g) = g for every g ∈ stab(C), so that φC turns out to be
a ϕC-equivariant bijection.
Before describing the maps φC and ϕC , let us show how to create in-

variant and coherent systems of structures, as in the argument above. We
illustrate the construction only for wallspaces, but the same idea can be
applied to measured wallspaces, topologies, σ-algebras, and to collections
of maps such as metrics, embeddings into Banach or Hilbert spaces, and
so on.

Proposition 5.3. — Let G be a group acting topically-transitively on
some quasi-median graph X. Suppose that every vertex of X belongs
to finitely many cliques and that vertex-stabilisers are finite. If clique-
stabilisers act metrically properly on CAT(0) cube complexes, then so
does G.

Sketch of proof. Fix a collection of cliques C intersecting each orbit of
hyperplanes along exactly one clique. For every Q ∈ C, let X(Q) be a
CAT(0) cube complex on which stab(Q) acts metrically properly. As above,
use an orbit map to endow stab(Q) with a stab(Q)-invariant structure of
wallspace W(Q). If C is an arbitrary clique of X, labelled by Q ∈ C (ie.,
C can be translated by an element of G in the hyperplane dual to Q), set

W(C) = φ−1
C W(Q).

Notice that, for every clique C and every element g ∈ G,

gW(C) = gφ−1
C W(Q) = φ−1

gC (ϕC(g) · W(Q)) = φ−1
gCW(Q) =W(gC).
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Therefore, our system of wallspaces is G-invariant. Moreover, if C and C ′
are two cliques dual to the same hyperplane, then

W(C ′) = φ−1
C′W(Q) = tC→C′ ◦ φ−1

C W(Q) = tC→C′W(C).

So our system of wallspaces is also coherent. As a consequence, it makes
sense to set, for every hyperplane J of X,

W(J) =
{{

proj−1
C (D),proj−1

C (Dc)
}
, {D,Dc} ∈ W(C)

}
for some clique C dual to J . We can show that

HW =
⋃

J hyperplane
W(J)

endows X with a G-invariant structure of wallspace, so that one finds an
action ofG on the associated CAT(0) cube complex. Under the assumptions
of our proposition, it can be proved that this action is metrically proper. �
Now, we focus on the maps φC and ϕC . Recall that the setting is the

following: a group G acts topically-transitively on a quasi-median graph
X, we fix a collection of cliques C intersecting each orbit of hyperplanes
along a single clique, and we suppose that every clique-stabiliser acts on its
clique freely and transitively on the vertices. We also fix a vertex x0 ∈ X,
and, for every clique C, we denote by x0(C) the projection of x0 onto C.
Definition 5.4. — Let C be a clique and g ∈ G. Denote by pC(g) the

unique element of g · stab(C) sending x0(C) to x0(gC) (such an element
existing since stab(C) y C is transitive on the vertices). Also, set sC(g)
= pC(g)−1g.
The picture to keep in mind is the following. We decompose g as a prefix

pC(g) and a suffix sC(g) such that sC(g) ∈ stab(C) “rotates” C and such
that pC(g) “translate” C to gC.
Definition 5.5. — Let C be a clique labelled by Q ∈ C. Fix an element

g ∈ G satisfying pC(g) = g and such that gC is dual to the same hyperplane
as Q. We define

φC :
{
C → Q

x 7→ tgC→Q(gx)
and ϕC :

{
stab(C) → stab(Q)
h 7→ ρQ(ghg−1)

Roughly speaking, φC translates C into the hyperplane dual to Q (by
left-multiplying by g) and next translates gC along this hyperplane to Q
(thanks to the map tgC→Q); and ϕC sends an element h ∈ stab(C) to the
unique element of stab(Q) which induces the same permutation on the set
of sectors delimited by J as ghg−1 ∈ stab(gC). It is worth noticing that
these maps do not depend on our choice of g [11, Claims 5.30 and 5.31].
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5.1. Applications

The argument described in the proof of Proposition 5.3 can be applied
to many different contexts. In [11], we state general combination theorems
about:

• relative hyperbolicity [11, Theorem 5.17];
• metrically proper and geometric actions on CAT(0) cube complexes
[11, Propositions 5.22 and 5.23];

• a-T-menability and a-Lp-menability [11, Propositions 5.25 and
5.26];

• (equivariant) `p-compressions [11, Proposition 5.37].
As examples of concrete applications:
• we showed that a graph product (along a finite simplicial graph)
of groups acting geometrically on CAT(0) cube complexes acts ge-
ometrically on a CAT(0) cube complex [11, Theorem 8.17];

• we determined precisely when a graph product is relatively hyper-
bolic [11, Theorem 8.35];

• we showed that acting metrically properly on some CAT(0) cube
complex is stable under wreath products [11, Theorem 9.28] (see
also [9, 13]);

• we computed equivariant `p-compressions of some wreath prod-
ucts [11, Theorem 9.37].

A particular case of the last point is the following statement (in which
α∗p(·) denotes the equivariant `p-compression):

Theorem 5.6. — [11, Theorem 9.54] Let H be a hyperbolic group act-
ing geometrically on some CAT(0) cube complex. For every finitely gener-
ated group G and every p > 1,

α∗p(G oH) > min
(

1
p
, α∗p(G)

)
,

with equality if H is non elementary and p ∈ [1, 2].

Given a Lipschitz map f : X → Y between two metric spaces, the
compression of f is

comp(f) =
sup

{
α ∈ [0, 1]

∣∣ ∃ C > 0,∀ x, y ∈ X, C · d(x, y)α 6 d (f(x), f(y))
}
.

By extension, the compression of X into Y is

αY (X) = sup {comp(f) | f : X → Y Lipschitz} .
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So, roughly speaking, the compression quantifies the minimal distortion
required to embed X into Y . If Y = Lp, we denote by αp(X) the corre-
sponding compression, called the `p-compression. There is an equivariant
analogue of the `p-compression. Namely, if G is a group, then the equivari-
ant `p-compression is

α∗p(G) = sup {comp(f) |Gy Lp, f : G→ Lp Lipschitz G-equivariant}

where actions are always by isometries.

6. Topical-transitive actions on quasi-median graphs II

Given a group acting topically-transitively on a quasi-median graph, the
strategy described in the previous section was to transfer structures from
clique-stabilisers to cliques, to extend the collection of “local” structures to
a “global” structure which is invariant under the group action, and finally
to exploit this action to deduce information on the group. However, many
interesting group properties cannot be expressed on the group itself. For
instance, being CAT(0), ie., acting geometrically on some CAT(0) space.
In [11, Sections 6 and 7], we showed how to modify the first step of our
strategy to avoid the difficulty. For instance, if we fix a group G acting
topically-transitively on some quasi-median graph X and if we suppose
that clique-stabilisers act on CAT(0) spaces, our strategy to construct a
CAT(0) space on which G acts is the following (once again, we suppose
for simplicity that each clique-stabiliser acts freely and transitively on the
vertices of its clique):

• Fix a collection of cliques C intersecting each orbit of hyperplanes
along a single clique, and, for every C ∈ C, fix a CAT(0) space Y (C)
on which stab(C) acts. Without loss of generality, we may suppose
that Y (C) contains a point y0(C) whose stabiliser is trivial. As
above, we also fix a basepoint x0 ∈ X, and, for every clique C, we
denote by x0(C) the projection of x0 onto C. Using the map{

C → Y (C)
g · x0(C) 7→ g · y0(C),

we identify each clique C ∈ C with a subspace of Y (C).
• Next, we “add the missing vertices” to the clique C to get a copy of
Y (C). This operation is called inflating the hyperplanes of X. The
point is that we get a new quasi-median graph Y , containing X

as an isometrically embedded subgraph, such that each clique C+,
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which is the unique clique of Y containing a given clique C ∈ C, has
its vertices in bijection with Y (C). Moreover, if C+ denotes the col-
lection of the C+’s, then the action Gy X extends to a C+-topical
action G y Y . (However, the action is no longer topical-transitive
since the actions stab(C) y Y (C) are generally not transitive.)

• So far the situation is the following. Our group G acts C+-topically
on the quasi-median graph Y , and each clique C ∈ C+ can be nat-
urally identified with the CAT(0) space Y (C). Thus, now we can
endow each clique C ∈ C+ with the CAT(0) metric of Y (C). The
next step would be to use the maps φC and ϕC to construct a co-
herent and G-invariant system of CAT(0) metrics, but as the action
is not topical-transitive these maps are no longer well-defined. How-
ever, it is possible to mimic the definitions of φC and ϕC in more
general contexts to construct maps with similar properties [11, Sec-
tions 5.1 and 5.2], so that we are able to extend our collection of
CAT(0) metrics to a coherent and G-invariant system of CAT(0)
metrics {(C, δC) | C clique}. (The point is that our new maps φC
and ϕC are not canonical: they depend on choices of some elements
ofG. However, according to [11, Theorem 5.1], the system of metrics
which is obtained does not depend on these choices.)

• Now, given our G-invariant and coherent system of metrics, we want
to construct a global CAT(0) metric on Y (or rather on the set of
vertices of Y ) which is invariant under the action of G. First, we
endow each prism P of Y , which is a product of cliques, with the
`2-product δP of the CAT(0) metrics defined on the corresponding
cliques. Next, given two vertices x, y ∈ Y , a chain Σ between x and
y is a sequence of vertices

x0 = x, x1, . . . , xn−1, xn = y

such that, for every 0 6 i 6 n−1, there exists a prism Pi containing
both xi and xi+1. Its length is

`(Σ) =
n−1∑
i=1

δPi
(xi, xi+1).

Finally, the global metric we define on (the vertices of) Y is

δ2 : (x, y) 7→ inf {`(Σ) |Σ chain between x and y} .

It can be proved that the space (Y, δ2) is indeed CAT(0) [11, Propo-
sition 3.11].

Of course, the previous strategy can be adapted to other kinds of spaces.
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6.1. Applications

General criteria proved in [11] include:
• finding properly discontinuous actions on CAT(0) cube complexes
[11, Proposition 7.4];

• finding virtually special and geometric actions on CAT(0) cube
complexes [11, Proposition 7.5];

• finding geometric actions on CAT(0) spaces [11, Theorem 7.7].
As corollaries, one can prove that:
• graph products (along finite graphs) of CAT(0) groups are CAT(0)
[11, Theorem 8.20];

• graph products (along finite graphs) of groups acting geometrically
and virtually specially on CAT(0) cube complexes are virtually spe-
cial [11, Theorem 8.17];

• acting properly on some CAT(0) cube complex is stable under
wreath products [11, Corollary 9.29] (see also [9, 13]).

7. Towards a geometric study of automorphisms of graph
products

Although there does not exist any general recipe to construct a geometric
model of an automorphism group from a geometric model of the group
itself, it turns out to be possible to study geometrically automorphisms of
graph products from the associated quasi-median graphs. We would like to
conclude this article by describing recent successes in this direction.
The key idea is to defined, purely algebraically, a graph on which the

automorphism group of a given graph product acts by isometries, and next
to state and prove a geometric interpretation of this graph in terms of
the corresponding quasi-median graph. The objective being to exploit the
powerful tools available to study quasi-median graphs in order to deduce
some valuable information on this geometric model of the automorphism
group. In [14], we proposed the following definition:

Definition 7.1. — Let Γ be a simplicial graph and G a collection of
groups indexed by V (Γ). The graph of products P (Γ,G) is the graph

• whose vertices are the maximal product subgroups of ΓG, ie., the
subgroups of ΓG which are maximal with respect to the inclusion
among all the subgroups which splits non-trivially as direct prod-
ucts;
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• and whose edges link two subgroups whenever their intersection is
non-trivial.

The automorphism group Aut(ΓG) acts naturally on the graph of products
via {

Aut(ΓG) → Isom(P (Γ,G))
ϕ 7→ (H 7→ ϕ(H))

The geometric counterpart of the graph of products is:

Definition 7.2. — Let Γ be a simplicial graph and G a collection of
groups indexed by V (Γ). The geometric product graph GP (Γ,G) is the
graph

• whose vertices are the maximal join subgraphs, ie., the subgraphs
g〈Λ〉 ⊂ X(Γ,G) where g ∈ ΓG is an element and Λ ⊂ Γ is a maximal
join (with respect to the inclusion);

• whose edges link two subgraphs whenever the projection of one onto
the other is not reduced to a single vertex, or equivalently, if there
exists a hyperplane intersecting them.

The connection between these two graphs is made by [14, Proposition
2.30], namely:

Proposition 7.3. — Let Γ be a simplicial graph and G a collection of
groups indexed by V (Γ). The map{

GP (Γ,G)(0) → P (Γ,G)(0)

S 7→ stab(S)

induces a graph isomorphism GP (Γ,G)→ P (Γ,G).

By exploiting the quasi-median geometry of X(Γ,G) and the previous
geometric interpretation of the graph of products P (Γ,G), we were able to
prove the following statement in [14, Theorem 2.38]:

Theorem 7.4. — Let Γ be a finite and connected simplicial graph, and
let G be a collection of groups indexed by V (Γ). Then P (Γ,G) is a graph
quasi-isometric to a tree on which Aut(ΓG) acts cocompactly. Moreover,
P (Γ,G) is unbounded if and only if Γ is not a join.

Unfortunately, the graph of products remains difficult to work, addi-
tional works will be needed to understand the dynamics of the action
Aut(ΓG) y P (Γ,G) in order to deduce valuable information on Aut(ΓG)
in full generality. Nevertheless, it is possible to use simplified geometric
models of the automorphism group in some specific cases. The first success
in this direction is the following statement proved in [15]:
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Theorem 7.5. — Let Γ be a simplicial graph and G a collection of
groups indexed by V (Γ). The group of conjugating automorphism of ΓG is
generated by local automorphisms and partial conjugations.

An automorphism of a graph product ΓG is conjugating if it sends a
vertex-group to a conjugate of a vertex-group (not necessarily the same).
We refer to [15] for precise definitions of local automorphisms and partial
conjugations. The point is that the theorem above provides a natural and
simple generating set of a specific subgroup of the automorphism group.
Although it might seem to be technical, this statement has several inter-
esting consequences. For instance, it follows that the subgroup generated
by partial conjugations has finite index in the entire automorphism group
when vertex-groups are all finite. Also, we proved a rigidity about graph
products defined over molecular graphs. We refer to [15] for more details.
Another success of this approach was achieved in [14]. There, the follow-

ing statement is proved:

Theorem 7.6. — Let Γ be a finite, connected and square-free simplicial
graph. The automorphism group Aut(AΓ) of the right-angled Artin group
AΓ is acylindrically hyperbolic if and only if Γ does not decompose as a
join and contains at least two vertices.
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