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A SHORT ELEMENTARY PROOF OF REVERSED
BRUNN-MINKOWSKI INEQUALITY FOR COCONVEX
BODIES

Francgois Fillastre

ABSTRACT. — The theory of coconvex bodies was formalized by A. Khovanskil
and V. Timorin in [4]. It has fascinating relations with the classical theory of convex
bodies, as well as applications to Lorentzian geometry. In a recent preprint [5],
R. Schneider proved a result that implies a reversed Brunn—Minkowski inequality
for coconvex bodies, with description of equality case. In this note we show that
this latter result is an immediate consequence of a more general result, namely that
the volume of coconvex bodies is strictly convex. This result itself follows from a
classical elementary result about the concavity of the volume of convex bodies
inscribed in the same cylinder.

Let C be a closed convex cone in R™, with non empty interior, and not
containing an entire line. A C-coconvex body K is a non-empty closed
bounded proper subset of C' such that C'\ K is convex. The set of C-
coconvex bodies is stable under positive homotheties. It is also stable for
the @ operation, defined as K1 @ Ko = C'\ (C'\ K1 + C \ K3), where +
is the Minkowski sum. The following reversed Brunn—-Minkowski theorem
is proved in [5] (see [4] for a partial result). We denote by V;, the volume
in R™.

THEOREM 1. — Let K, K5 be C-coconvex bodies, and A € (0,1). Then
V(1= MKy @ MK2)Y™ < (1= NV (Kq) Y™ 4+ AV, (Ko) ™
and equality holds if and only if K1 = aKs for some a > 0.

Remark 2. — What is actually proved in [5] in the analogous of The-
orem 1 for C-coconvex sets instead of C-coconvex bodies: the set is not
required to be bounded but only to have finite Lebesgue measure. So the
result of [5] requires a more involved proof than the one presented here.
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Actually, we will see that the following result holds.

THEOREM 3. — The volume is strictly convex on the set of C-coconvex
bodies. More precisely, if K1, K, are C-coconvex bodies, and A € (0,1),
then

Va((1 = XN K; @ AK2) < (1 = AV (K7) + AV, (K3).
Moreover, equality holds if and only if K1 = K.
The following elementary lemma, together with the fact that V,, is pos-

itively homogeneous of degree n (i.e. V,,(tA) = t"V,,(A4) for ¢ > 0), shows
that Theorem 3 implies Theorem 1.

LEMMA 4. — Let f be a positive convex function, positively homoge-
neous of degree n. Then f1/" is convex.

Suppose moreover that f is strictly convex. If there exists A € (0, 1) such
that

P = Na+ay)) = (L= X)) + A (),

then there exists a > 0 with x = ay.

Proof. — For X € [0,1] and any z,y, we have

P =N e 4 At ) < 1,

fl@)tm = fy)/n
and the result follows by taking, for any A € (0, 1),
A=) (=N F@) ™ 4+ A f()). O

Let us prove Theorem 3.

Let H be an affine hyperplane of R™ with the following properties: it
has an orthogonal direction in the interior of C, K;, K5 and the origin are
contained in the same half-space H* bounded by H, and H NC = B is
compact. For A € [0,1], let K = (1 — A\)K; @ AK3, which is also contained
in HT, and let capy (K)) = H* N (C\ K,), see Figure 1.

Also, the quantity V;,(Ky) + Vi, (capy (K)y)) does not depend on A, as it
is equal to V,,(C'N HT). Hence Theorem 3 is equivalent to

Va(capy (Kx)) = (1 = A)Va(capy (K1) + AVa(capy (K32))

for A € (0, 1), with equality if and only if K7 = K>.

This last result itself follows from the following elementary result. Here
“elementary” means that the most involved technique in its proof is Fubini
theorem (see Chapter 50 in [1] or Lemma 3.30 in [2]).
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Figure 1. Notations

LEMMA 5. — Let Ag and Ay be two convex bodies in R™ contained in
HT™, such that their orthogonal projection onto H is B. Then, for A € [0,1],
Vn((l — )\)AQ + )\Al) > (1 - )\)Vn(Ao) + )\Vn(Al)

Equality holds if and only if either Ay = Ay +U or Ay = Ay + U, where U
is some segment whose direction is orthogonal to H.

In our case, if K is a C-coconvex body, then K @ U is a C-coconvex body
if and only if U = {0}.

Remark 6. — In the classical convex bodies case, the Brunn-Minkowski
inequality (saying that the nth-root of the volume of convex bodies is con-
cave) follows from the more general result that the volume of convex bodies
is log-concave. This is the genuine analogue of our situation, due to the fol-
lowing implications:

f concave = f log-concave
f log convex = f convex.
If moreover f is positively homogenous of degree n, we have:
f log-concave = f/™ concave
f convex = f/™ convex.

Remark 7. — Actually we didn’t use the fact that the convex set C is a
cone, as the only thing that really matters is the stability of C-coconvex
bodies under convex combinations. See e.g. [2] for an application to this
more general situation. If C' is a cone, the C-coconvex bodies are further-
more stable under positive homotheties and @, that allows to develop a
mixed-volume theory for C-coconvex sets, see [3, 4, 5.
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