Institut Fourier — Université de Grenoble I

Actes du séminaire de

Théorie spectrale et géométrie

François FILLASTRE

A short elementary proof of reversed Brunn-Minkowski inequality for coconvex bodies

Volume 34 (2016-2017), p. 93-96.

http://tsg.cedram.org/item?id=TSG_2016-2017__34__93_0

© Institut Fourier, 2016-2017, tous droits réservés.

L'accès aux articles du Séminaire de théorie spectrale et géométrie (http://tsg.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://tsg.cedram.org/legal/).

cedram

Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques

http://www.cedram.org/

A SHORT ELEMENTARY PROOF OF REVERSED BRUNN–MINKOWSKI INEQUALITY FOR COCONVEX BODIES

François Fillastre

ABSTRACT. — The theory of coconvex bodies was formalized by A. Khovanskiĭ and V. Timorin in [4]. It has fascinating relations with the classical theory of convex bodies, as well as applications to Lorentzian geometry. In a recent preprint [5], R. Schneider proved a result that implies a reversed Brunn–Minkowski inequality for coconvex bodies, with description of equality case. In this note we show that this latter result is an immediate consequence of a more general result, namely that the volume of coconvex bodies is strictly convex. This result itself follows from a classical elementary result about the concavity of the volume of convex bodies inscribed in the same cylinder.

Let C be a closed convex cone in \mathbb{R}^n , with non empty interior, and not containing an entire line. A C-coconvex body K is a non-empty closed bounded proper subset of C such that $C \setminus K$ is convex. The set of C-coconvex bodies is stable under positive homotheties. It is also stable for the \oplus operation, defined as $K_1 \oplus K_2 = C \setminus (C \setminus K_1 + C \setminus K_2)$, where + is the Minkowski sum. The following reversed Brunn–Minkowski theorem is proved in [5] (see [4] for a partial result). We denote by V_n the volume in \mathbb{R}^n .

THEOREM 1. — Let K_1, K_2 be C-coconvex bodies, and $\lambda \in (0,1)$. Then $V_n((1-\lambda)K_1 \oplus \lambda K_2)^{1/n} \leqslant (1-\lambda)V_n(K_1)^{1/n} + \lambda V_n(K_2)^{1/n} ,$

and equality holds if and only if $K_1 = \alpha K_2$ for some $\alpha > 0$.

Remark 2. — What is actually proved in [5] in the analogous of Theorem 1 for *C-coconvex sets* instead of *C-coconvex* bodies: the set is not required to be bounded but only to have finite Lebesgue measure. So the result of [5] requires a more involved proof than the one presented here.

 $\label{lem:convex} Keywords: \mbox{ coconvex sets, covolume, Brunn-Minkowski.} \\ Acknowledgements: \mbox{ The author thanks Ivan Izmestiev and Rolf Schneider.}$

Actually, we will see that the following result holds.

THEOREM 3. — The volume is strictly convex on the set of C-coconvex bodies. More precisely, if K_1, K_2 are C-coconvex bodies, and $\lambda \in (0,1)$, then

$$V_n((1-\lambda)K_1 \oplus \lambda K_2) \leqslant (1-\lambda)V_n(K_1) + \lambda V_n(K_2).$$

Moreover, equality holds if and only if $K_1 = K_2$.

The following elementary lemma, together with the fact that V_n is positively homogeneous of degree n (i.e. $V_n(tA) = t^n V_n(A)$ for t > 0), shows that Theorem 3 implies Theorem 1.

LEMMA 4. — Let f be a positive convex function, positively homogeneous of degree n. Then $f^{1/n}$ is convex.

Suppose moreover that f is strictly convex. If there exists $\lambda \in (0,1)$ such that

$$f^{1/n}((1-\lambda)x + \lambda y)) = (1-\lambda)f^{1/n}(x) + \lambda f^{1/n}(y),$$

then there exists $\alpha > 0$ with $x = \alpha y$.

Proof. — For $\bar{\lambda} \in [0,1]$ and any x,y, we have

$$f((1-\bar{\lambda})\frac{x}{f(x)^{1/n}} + \bar{\lambda}\frac{y}{f(y)^{1/n}}) \le 1,$$

and the result follows by taking, for any $\lambda \in (0,1)$,

$$\bar{\lambda} = \lambda f(y)^{1/n} / ((1 - \lambda)f(x)^{1/n} + \lambda f(y)^{1/n}).$$

Let us prove Theorem 3.

Let H be an affine hyperplane of \mathbb{R}^n with the following properties: it has an orthogonal direction in the interior of C, K_1 , K_2 and the origin are contained in the same half-space H^+ bounded by H, and $H \cap C = B$ is compact. For $\lambda \in [0,1]$, let $K_{\lambda} = (1-\lambda)K_1 \oplus \lambda K_2$, which is also contained in H^+ , and let $\operatorname{cap}_H(K_{\lambda}) = H^+ \cap (C \setminus K_{\lambda})$, see Figure 1.

Also, the quantity $V_n(K_\lambda) + V_n(\operatorname{cap}_H(K_\lambda))$ does not depend on λ , as it is equal to $V_n(C \cap H^+)$. Hence Theorem 3 is equivalent to

$$V_n(\operatorname{cap}_H(K_\lambda)) \geqslant (1 - \lambda)V_n(\operatorname{cap}_H(K_1)) + \lambda V_n(\operatorname{cap}_H(K_2))$$

for $\lambda \in (0,1)$, with equality if and only if $K_1 = K_2$.

This last result itself follows from the following elementary result. Here "elementary" means that the most involved technique in its proof is Fubini theorem (see Chapter 50 in [1] or Lemma 3.30 in [2]).

Figure 1. Notations

LEMMA 5. — Let A_0 and A_1 be two convex bodies in \mathbb{R}^n contained in H^+ , such that their orthogonal projection onto H is B. Then, for $\lambda \in [0,1]$,

$$V_n((1-\lambda)A_0 + \lambda A_1) \ge (1-\lambda)V_n(A_0) + \lambda V_n(A_1).$$

Equality holds if and only if either $A_0 = A_1 + U$ or $A_1 = A_0 + U$, where U is some segment whose direction is orthogonal to H.

In our case, if K is a C-coconvex body, then $K \oplus U$ is a C-coconvex body if and only if $U = \{0\}$.

Remark 6. — In the classical convex bodies case, the Brunn–Minkowski inequality (saying that the nth-root of the volume of convex bodies is concave) follows from the more general result that the volume of convex bodies is log-concave. This is the genuine analogue of our situation, due to the following implications:

$$f \text{ concave} \Longrightarrow f \text{ log-concave}$$

 $f \text{ log convex} \Longrightarrow f \text{ convex}.$

If moreover f is positively homogenous of degree n, we have:

$$f \text{ log-concave} \Longrightarrow f^{1/n} \text{ concave}$$

 $f \text{ convex} \Longrightarrow f^{1/n} \text{ convex}.$

Remark 7. — Actually we didn't use the fact that the convex set C is a cone, as the only thing that really matters is the stability of C-coconvex bodies under convex combinations. See e.g. [2] for an application to this more general situation. If C is a cone, the C-coconvex bodies are furthermore stable under positive homotheties and \oplus , that allows to develop a mixed-volume theory for C-coconvex sets, see [3, 4, 5].

BIBLIOGRAPHY

[1] T. Bonnesen & W. Fenchel, *Theory of convex bodies*, BCS Associates, 1987, Translated from the German and edited by L. Boron, C. Christenson and B. Smith, x+172 pages.

- [2] F. Bonsante & F. Fillastre, "The equivariant Minkowski problem in Minkowski space", Ann. Inst. Fourier 67 (2017), no. 3, p. 1035-1113.
- [3] F. FILLASTRE, "Fuchsian convex bodies: basics of Brunn-Minkowski theory", Geom. Funct. Anal. 23 (2013), no. 1, p. 295-333.
- [4] A. Khovanskii & V. Timorin, "On the theory of coconvex bodies", Discrete Comput. Geom. 52 (2014), no. 4, p. 806-823.
- [5] R. Schneider, "A Brunn-Minkowski theory for coconvex sets of finite volume", Adv. Math. 332 (2018), p. 199-234.

François FILLASTRE Université de Cergy-Pontoise UMR CNRS 8088 95000 Cergy-Pontoise (France) francois.fillastre@u-cergy.fr