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FINITE GROUP ACTIONS ON MODULI SPACES OF
VECTOR BUNDLES

Florent Schaffhauser

Abstract. — We study actions of finite groups on moduli spaces of stable holo-
morphic vector bundles and relate the fixed-point sets of those actions to represen-
tation varieties of orbifold fundamental groups.

Let X be a compact connected Riemann surface of genus g > 2. The
goal of the paper is to study certain finite group actions on moduli spaces
of stable vector bundles over X, equipped with their standard complex an-
alytic structure ([17, 18]), where by automorphism of such a moduli space,
we mean a transformation that is either holomorphic or anti-holomorphic.
In Section 1, we show how such actions arise naturally from groups of

holomorphic and anti-holomorphic transformations of X and we describe
these actions from three different points of view: algebro-geometric, gauge-
theoretic, and via the fundamental group of X. Then, in Section 2, we
dig deeper into the gauge-theoretic picture in order to interpret the fixed
points of the actions constructed earlier in terms of moduli of certain vector
bundles with extra structure. Finally, in Section 3, we relate those vector
bundles with extra structure to unitary representations of orbifold funda-
mental groups.
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1. Automorphisms of the moduli space

1.1. The algebro-geometric picture

Let X be a compact connected Riemann surface of genus g > 2. A holo-
morphic vector bundle E over X is called stable if, for all non-trivial holo-
morphic sub-bundle F ⊂ E , one has Deg(F∗ ⊗ E) > 0 (semistability is de-
fined using a large inequality instead). Rank r vector bundles are topologi-
cally classified by their degree d ∈ H2(X;π1(GL(r;C))) ' π1(GL(r;C)) '
Z and, by a theorem due to Mumford ([16]), the setMX(r, d), consisting
of isomorphism classes of stable holomorphic vector bundles and degree
d admits a natural structure of non-singular quasi-projective variety of
dimension r2(g − 1) + 1. An important property of stable holomorphic
vector bundles is that they are simple (they only admit those automor-
phisms that come from the centre of the structure group). As a matter of
fact, much of what we shall say in this paper extends to moduli spaces
of simple and stable principal holomorphic GC-bundles of fixed topolog-
ical type d ∈ H2(X;π1(GC)) ' π1(GC), for GC a (connected) reductive
complex Lie group. Such moduli spaces exist ([21]) and have dimension
dimGC (g − 1) + dimZ(GC), where Z(GC) is the centre of GC. This sug-
gests adopting the following notation for the remainder of this section:
GC := GL(r;C) andMX(GC, d) :=MX(r, d).
Our goal is now to define finite group actions onMX(GC, d). These could

in principle be induced by two different types of transformations:
(1) either holomorphic or anti-holomorphic transformations of the com-

plex Lie group GC;
(2) either holomorphic or anti-holomorphic transformations of the Rie-

mann surface X.
Indeed, if E is a bundle represented by a holomorphic 1-cocycle gij :

Ui ∩ Uj −→ GC, u ∈ Aut(GC) is a group automorphism and σ : X −→
X is an automorphism of X, we can form the 1-cocycle u ◦ gij ◦ σ−1 :
σ(Ui) ∩ σ(Uj) −→ GL(r;C). The issue is that we need to guarantee that
u ◦ gij ◦ σ−1 is still holomorphic, so we have to impose that u and σ be
both holomorphic or both anti-holomorphic. In the present paper, we will
achieve that for the following class of examples. Let Aut±(X) be the group
of either holomorphic or anti-holomorphic bijective transformations of X.
Then there is a short exact sequence

(1.1) 1 −→ Aut(X) −→ Aut±(X) −→ Z/2Z −→ 1
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FINITE GROUP ACTIONS ON MODULI SPACES 35

whose kernel consists of holomorphic automorphisms of X (a splitting
of (1.1) is equivalent to an anti-holomorphic involution of X; it may or
not exist). Since g > 2 by assumption, Aut±(X) is a finite group of order
no greater than 168(g − 1). Let Σ be a subgroup of Aut±(X) and denote
by ε : Σ −→ Z/2Z the group homomorphism induced by (1.1):

(1.2) ε(σ) =
{

+1 if σ : X −→ X is holomorphic,
−1 if σ : X −→ X is anti-holomorphic.

Let now θ : GC −→ GC be an anti-holomorphic, involutive group homo-
morphism. This induces an action of Σ on GC, defined by

(1.3) θσ :=
{

IdGC if ε(σ) = +1,
θ if ε(σ) = −1.

Thus, for all σ ∈ Σ and (gij)(i,j) a holomorphic 1-cocycle on X representing
a GC-bundle E , we can define σ(E) to be the GC-bundle defined by the
holomorphic 1-cocycle

(1.4) σ(gij) := θσ ◦ gij ◦ σ−1.

The real form θ of GC = GL(r;C) that will be most important to us is
θ : g −→ g, because then the standard action of GC = GL(r;C) on Cr is a
real action: gv = g v. Then we have:

(1.5) σ(gij) =
{
gij ◦ σ−1 if ε(σ) = +1,
gij ◦ σ−1 if ε(σ) = −1.

In particular, if (gij)(i,j) is a cocycle representing the vector bundle E , then
the vector bundle σ(E) defined by σ(gij) is isomorphic to (σ−1)∗E if σ is
holomorphic and to (σ−1)∗E is σ is anti-holomorphic, which readily implies
the next result.

Proposition 1.1. — Let E be a holomorphic vector bundle on X and
consider σ ∈ Σ ⊂ Aut±(X). Then the holomorphic vector bundle σ(E)
defined by the Σ-action (1.5) is stable if and only if E is stable Moreover,
there is an induced a Σ-action on each of the moduli spacesMX(r, d), for
all (r, d).

Proof. — For holomorphic vector bundles, both properties follow from
the fact that Deg(σ(E)) = Deg E when Σ acts as described in (1.5). �

Note that it is not true in general that there is an induced Σ-action on
every moduli spaceMX(GC, d). For instance, if θ(g) = (gt)−1 on GL(r;C),
then Deg(σ(E)) = −Deg E , so only the moduli space MX(GC, 0) will be
preserved by the induced Σ-action.
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36 FLORENT SCHAFFHAUSER

1.2. The gauge-theoretic picture

The Narasimhan–Seshadri theorem ([9, 18]) provides a diffeomorphism
between the moduli space MX(r, d) of stable holomorphic vector bun-
dles of rank r and degree d over X and the space, to be denoted by
F−1({dr })irr/GE , constisting of gauge equivalence classes of projectively
flat, irreducible unitary connections on a fixed Hermitian vector bundle E
over X, of rank r and degree d. Here, by GE , we denote the unitary gauge
group of the Hermitian vector bundle E and by F the map taking a uni-
tary connection A on E to its curvature form F (A), which is a differential
2-form on E with values in the bundle of anti-Hermitian endomorphisms
of E. If we use a compatible Riemannian metric of volume 2π on X and
replace anti-Hermitian endomorphisms by Hermitian ones (using multipli-
cation by

√
−1), we have indeed that projectively flat connections are those

connections that satisfy F (A) = d
r IdE , hence our notation above. A unitary

connection A on E is called irreducible if there is no non-trivial sub-bundle
F ⊂ E whose sections are preserved by the covariant derivative associated
to A. Equivalently, there is no direct sum decomposition E ' E1⊕E2 such
that A = A1 ⊕ A2. Or yet again, the stabiliser of A in GE is equal to the
centre Z(GE) ' Z(U(r)) ' S1 of the gauge group GE .

Let us now assume that the Σ-action on X lifts to E, i.e. that there
exists a family (τσ)σ∈Σ of (normalised) bundle isometries from E to itself
satisfying the conditions:

(1) For all σ ∈ Σ, we have a commutative diagram

E

��

τσ // E

��
X

σ // X

(2) If σ : X −→ X is holomorphic, the map τσ : E −→ E is fibrewise
C-linear. If σ :−→ X is anti-holomorphic, the map τσ : E −→ E is
fibrewise C-anti-linear.

(3) τ1Σ = IdE and, for all (σ1, σ2) ∈ Σ×Σ, τσ1σ2 = τσ1τσ2 . In particular,
for all σ, τσ is invertible and τ−1

σ = τσ−1 .

This is equivalent to asking that there exists a family (ϕσ)σ∈E of (nor-
malised) isomorphisms satisfying the conditions:
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(1) For all σ ∈ Σ, we have a commutative diagram

σ(E)
ϕσ //

!!

E

��
X

(2) The map ϕσ : σ(E) −→ E is fibrewise C-linear.
(3) ϕ1σ = IdE and, for all (σ1, σ2) ∈ Σ × Σ, ϕσ1σ2 = ϕσ1σ1(ϕσ2). In

particular, for all σ, ϕσ is an isomorphism and ϕ−1
σ = σ(ϕσ−1).

Given an element σ ∈ Σ and a unitary connection A on E, we denote
by σ(A) the induced connection on σ(E), where σ(E) is the Hermitian
vector bundle defined as in (1.4), except that we are now working in the
C∞ category. Using the isomorphism ϕσ : σ(E) −→ E, we can then define

(1.6) βσ(A) := (ϕ−1
σ )∗

(
σ(A)

)
.

Proposition 1.2. — The map σ 7−→ βσ induced by (1.6) defines a
Σ-action on the space AE of unitary connections on E.

Proof. — One has, for all (σ1, σ2) ∈ Σ× Σ,

βτσ1σ2
(A) = (ϕ−1

σ1σ2
)∗
(
(σ1σ2)(A)

)
=
(
σ1(ϕ−1

σ2
)ϕ−1
σ1

)∗(
σ1(σ2(A))

)
= (ϕ−1

σ1
)∗
(
σ1((ϕ−1

σ2
)∗σ2(A))

)
= (βτσ1

◦ βτσ2
)(A),

which proves the proposition. �

Since Z(GE) ' Z(U(r)) acts trivially on AE , we can actually relax
Condition (3) in the definitions of the families (τσ)σ∈Σ and (ϕσ)σ∈Σ and still
obtain Proposition 1.2. Indeed, if c : Σ×Σ −→ Z(U(r)) is any (normalised)
2-cocycle, one need only ask

(3′) τσ1τσ2 = c(σ1, σ2)τσ1σ2

or equivalently, ϕσ1σ1(ϕσ2) = c(σ1, σ2)ϕσ1σ2 , because then, in the proof of
Proposition 1.2, one obtains

βτσ1σ2
(A) =

(
c(σ1, σ2)

)∗(
βτσ1
◦ βτσ2

)
(A) = (βτσ1

◦ βτσ2
)(A),

since c(σ1, σ2) ∈ Z(U(r)) and Z(U(r)) acts trivially on AE . This motivates
the following definition.

Definition 1.3. — Given a 2-cocycle c : Σ × Σ −→ Z(U(r)), a c-
equivariant structure on the Hermitian vector bundle E is a family (τσ)σ∈Σ
of maps τσ : E −→ E satisfying Conditions (1), (2) and (3′) above.

VOLUME 34 (2016-2017)
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When c is the trivial cocycle, a c-equivariant structure will be called just
an equivariant structure (the resulting notion of equivariant bundle was
already studied in [1], for the case of holomorphic transformations on X).
The issue is then to check that the Σ-action on AE defined in (1.6), which
depends on the c-equivariant structure (τσ)σ∈Σ on E, induces a Σ-action
on F−1({dr })irr/GE . When d = 0, this is a consequence of the following
general framework for (Σ,GE)-compatible group actions on Hamiltonian
spaces:

(1) There is a Σ-action on GE , defined for σ ∈ Σ by

(1.7) ατσ(g) = τσgτ
−1
σ =

(
ϕ−1
σ

)∗(
σ(g)

)
,

which is compatible with the Σ-action on AE defined in (1.6) in the
sense that

(1.8) βτσ(g ·A) = ατσ(g) · βτσ(A).

Note that, in order to define the Σ-action on the gauge group GE by
ατσ by the expression (1.7), one implicitly uses the Σ-action on the
structure group GC defined in (1.3): the real form θ : GC −→ GC is
hidden in the notation σ(g) for the gauge transformation of σ(E)
induced by the gauge transformation g of E.

(2) The Σ-action on GE defined above induces a Σ-action on the dual
of the Lie algebra of GE , which is where the (GE-equivariant) mo-
mentum map F for the GE-action on AE takes its values ([3]). If we
still denote by ατσ this induced action, we have the following com-
patibility relation between the Σ-action on AE and the momentum
map F :

F
(
βτσ(A)

)
= ατσ

(
F (A)

)
.

Proposition 1.4. — The Σ-action on AE defined in (1.6) induces a
Σ-action on the Hamiltonian reduction F−1({0})irr/GE .

Proof. — By Condition (1), the stabiliser of βτσ(A) in AE is equal to
ατσ(StabGE (A)). Since Σ acts on GE by group automorphisms, it preserves
the centre of GE and, consequently, the space of irreducible connections.
By Condition (2), if A is a flat unitary connection, the curvature of βτσ(A)
is ατσ(F (A)), which is 0 because Σ acts linearly on the Lie algebra of GE .
In particular, the Σ-action preserves the space of flat connections in AE .
Condition (1) then ensures that the Σ-action on F−1({0})irr = F−1({0})∩
(AE)irr descends to F−1({0})irr/GE . �

To see that Proposition 1.4 remains true when d 6= 0, we need to use
special properties of the involution θ on GC: since we have chosen θ to be
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the split real form of GC = GL(r;C), the induced involution on the Lie
algebra of u(r) restricts to ξ 7−→ −ξ on the centre of u(r). Therefore, the
induced Σ-action on Lie(GE) fixes the element idr IdE and we can shift the
momentum map by such an element and reduce the d 6= 0 case to the d = 0
case. This shows, as in Proposition 1.1, the importance of working with the
split real form θ of GC in order to obtain a Σ-action on each of the moduli
spacesMX(GC, d), for all d ∈ π1(GC).
To conclude the present subsection, recall that unitary connections on E

are in bijective correspondence with holomorphic structures on that bun-
dle. More precisely, to each unitary connection A on E there is associated
a Dolbeault operator ∂A on E whose kernel defines a locally free sheaf of
rank r over the sheaf of holomorphic functions on X, which in turn defines
a holomorphic vector bundle E . It can then be checked (see for instance [23]
for the case where Σ ' Z/2Z acts on X via an anti-holomorphic involution
σ) that the holomorphic vector bundle σ(E) defined in (1.5) is the holo-
morphic vector bundle associated to the unitary connection βτσ(A) defined
in (1.6). Since σ(E) does not depend on the choice of a background Her-
mitian bundle E with a c-equivariant structure (τσ)σ∈Σ, the Σ-action on
F−1({0})irr/GE defined in Proposition 1.4 always corresponds, under the
Narasimhan–Seshadri diffeomorphism F−1({0})irr/GE ' MX(r, 0) to the
canonical Σ-action E 7−→ σ(E). In particular, the Σ-action induced on the
Hamitlonian quotient F−1({0})irr/GE is independent of the choice of the
c-equivariant structure (τσ)σ∈Σ and also of the choice of the cocycle c, as
we shall now prove directly.

Proposition 1.5. — We have the following results:

(1) Fix a 2-cocycle c ∈ Z2(Σ;Z(U(r))) and let (ϕσ)σ∈Σ and (ψσ)σ∈Σ
be any two c-equivariant structures on E, the two induced Σ-actions
on AE being respectively denoted by (βτσ)σ∈Σ and (γσ)σ∈Σ. Then
(βτσ)σ∈Σ and (γσ)σ∈Σ induce the same Σ-action on F−1({dr })/GE .

(2) Let c and c′ be two 2-cocycles Σ×Σ −→ Z(U(r)). Let (ϕσ)σ∈Σ be
a c-equivariant structure on E and let (ϕ′σ)σ∈Σ be a c′-equivariant
structure on E. The two induced Σ-actions on AE are respectively
denoted by (βτσ)σ∈Σ and (βτ,uσ )σ∈Σ. Then (βτσ)σ∈Σ and (βτ,uσ )σ∈Σ
induce the same Σ-action on F−1({dr })/GE .

Proof. — Recall that we have denoted by (ατσ)σ∈Σ the Σ-action on GE
induced by the choices of a cocycle c and a c-equivariant structure (ϕσ)σ∈Σ:
for all σ ∈ Σ and all g ∈ GE , ατσ(g) = ϕσσ(g)ϕ−1

σ . Recall also the compati-
bility relation (1.8) between ατσ and βτσ .

VOLUME 34 (2016-2017)
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(1). — Given σ ∈ Σ, let us consider the gauge transformation uσ :=
ψσϕ

−1
σ ∈ GE . Then one has, for all σ ∈ Σ and all A ∈ AE ,

γσ(A) = (ψ−1
σ )∗σ(A) = (ϕ−1

σ u−1
σ )∗σ(A)

= (u−1
σ )∗

(
(ϕ−1
σ )∗σ(A)

)
= uσ · βτσ(A),

so (βτσ)σ∈Σ and (γσ)σ∈Σ indeed induce the same Σ-action on F−1({dr })/GE .
(2). — The proof is the same as (1), setting now uσ := ϕ′σϕ

−1
σ ∈ GE . �

Note that a difference between (1) and (2) in the above proof is that
in (1) we have uσ1σ2 = uσ1α

τ
σ1

(uσ2) (as seen by a direct computation),
while in (2) we have uσ1σ2 = c(σ1, σ2)c′(σ1, σ2)−1uσ1α

τ
σ1

(uσ2). In partic-
ular, if the cocycles c and c′ are cohomologous, i.e. if there exists a (nor-
malised) map a : Σ −→ Z(U(r)) such that, for all (σ1, σ2) ∈ Σ × Σ,
c(σ1, σ2)c′(σ1, σ2)−1 = aσ1σ1(aσ2)a−1

σ1σ2
, then the family (hσ := aσuσ)σ∈Σ

satisfies hσ1σ2 = hσ1α
τ
σ1

(hσ2), meaning that in this case we can actually
modify the (gσ)σ∈Σ for the cocycle relation to hold, without modifying the
way these gauge transformations act on AE .

1.3. Representations of the fundamental group

Let x be a point in X and let π1(X;x) be the fundamental group of
X at that point. For stable holomorphic vector bundles of degree 0, the
diffeomorphismMX(r, 0) ' F−1({0})irr/GE also reads

MX(r, 0) ' Hom(π1(X;x); U(r))irr/U(r) .

Explicitly, given a representation % of π1(X;x) into the maximal compact
subgroup K := U(r) of GC = GL(r;C), there is a natural π1(X;x)-action
on the product bundle X̃x × Cr of the universal covering space X̃x of X
(canonically determined by the choice of the base point x) with the vector
space Cr: for all γ ∈ π1(X;x), all ξ ∈ X̃x and all v ∈ Cr,

γ · (ξ, v) := (γ · ξ, %(γ) · v),

where π1(X;x) acts on π1(X;x) in the canonical way and on Cr via the
representation %. If % : π1(X;x) −→ U(r) is irreducible (meaning that
there is no non-trivial sub-space W ⊂ Cr invariant under all transforma-
tions in Im %, or equivalently that % is not the direct sum of two unitary
representations, or yet again that the stabiliser of % in U(r) is reduced to
Z(U(r)) ' S1), then the induced rank r vector bundle

E% := (X̃x × Cr)/π1(X;x)
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over X is stable, of degree 0. Conversely, any such bundle comes in that
way from an irreducible unitary representation of π1(X;x) ([18]).

Recall from Section 1.1 that Σ ⊂ Aut±(X) is a finite group which also
acts on GC via the group homomorphism ε : Σ −→ Z/2Z constructed
in (1.2) and the anti-holomorphic involution θ of GC. Conjugating θ by an
inner automorphism of GC if necessary, we can assume that θ preserves the
maximal compact subgroup K of GC. Therefore, there is an induced group
homomorphism

Σ −→ Out(K)×Out(π1(X;x)),
where Out(H) := Aut(H)/ Int(H) denotes the outer automorphism group
of a given groupH. Note that, sinceX is compact connected of genus g > 2,
we can identify Out(π1(X;x)) with the mapping class group of X and
then the homomorphism Σ −→ Out(π1(X;x)) just takes a transformation
σ : X −→ X to its mapping class. Since moreover Out(K)×Out(π1(X;x))
acts on the representation space Hom(π1(X;x);K)irr/K via

([ψ], [f ]) · [%] := [ψ ◦ % ◦ f−1],

where we identify π1(X; f(x)) and π1(X;x) via the choice of a path from x

to f(x). Consequently, there is an induced Σ-action on the representation
space Hom(π1(X;x);K)irr/K, defined by

σ · [%] := [θσ ◦ % ◦ σ−1] =: [σ(%)].

In particular, the holomorphic vector bundle Eσ(%) is isomorphic to σ(E%).
To sum up, we have three ways of thinking about the moduli space
MX(r, 0):

(1) the space of isomorphism classes of stable holomorphic vector bun-
dles of rank r and degree 0 over X;

(2) the space of gauge orbits of irreducible unitary connections on a
fixed Hermitian vector bundle of rank r and degree 0 over X;

(3) the space of irreducible representations π1(X;x) −→ U(r).
Then, given a finite group Σ ⊂ Aut±(X) of either holomorphic or anti-
holomorphic transformations of X, there is an induced Σ-action on
MX(r, 0) that we can describe in each of the three pictures above (which
amounts to saying that the known diffeomorphisms between those three
spaces are Σ-equivariant). Perhaps noteworthy is the fact that it is slightly
more involved to define the induced Σ-action on the space F−1({0})irr/GE
than in the other two models ofMX(r, 0), because it involves a choice of an
extra structure, namely a c-equivariant structure on E (Definition 1.3) in
order to define the induced action on the moduli space, making it necessary
to check that this action is independent of that choice. This might be seen

VOLUME 34 (2016-2017)
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as a drawback at first but, as we shall see in the next two sections, it holds
the key to two important things:

(1) the modular interpretation of Σ-fixed points inMX(r, 0);
(2) the Narasimhan–Seshadri correspondence in this context.

A further application of the gauge-theoretic point of view would be the
study of the topology of that fixed-point set but we shall not pursue this
here.

2. Modular interpretation of the fixed-point set

2.1. Equivariant structures on holomorphic vector bundles

As mentioned at the end of Section 1.3, the gauge-theoretic perspective
on finite group actions on moduli spaces of stable holomorphic vector bun-
dles holds the key to the modular interpretation of the fixed points of such
an action. Indeed, we will now equip holomorphic vector bundles with gen-
eralised equivariant structures that mirror, in the holomorphic category,
the c-equivariant structures introduced in Definition 1.3.

Definition 2.1. — Let X be a Riemann surface equipped with a finite
group action of Σ ⊂ Aut±(X). Let E be a holomorphic vector bundle over
X and fix a group 2-cocycle c : Σ × Σ −→ C∗ ⊂ Aut(E). A c-equivariant
structure on E is a family (τσ)σ∈Σ of bundle maps from E to itself satisfying
the conditions:

(1) For all σ ∈ Σ, we have a commutative diagram

E

��

τσ // E

��
X

σ // X

(2) If σ : X −→ X is holomorphic, the map τσ : E −→ E is holomorphic
and fibrewise C-linear. If σ :−→ X is anti-holomorphic, the map
τσ : E −→ E is anti-holomorphic and fibrewise C-anti-linear.

(3) τ1Σ = IdE and, for all (σ1, σ2) ∈ Σ× Σ, τσ1τσ2 = c(σ1, σ2)τσ1σ2 .
A pair (E , (τσ)σ∈Σ) where E is a holomorphic vector bundle and (τσ)σ∈Σ
is a c-equivariant structure on E will be called a c-equivariant holomorphic
vector bundle. A homomorphism between two c-equivariant vector bundles
(E , (τσ)σ∈Σ) and (E ′, (τ ′σ)σ∈Σ) (for the same cocycle c) is a homomorphism
of holomorphic vector bundles f : E −→ E ′ over X such that, for all σ ∈ Σ,
f ◦ τσ = τ ′σ ◦ f .
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Recall that when c is the trivial cocycle, a c-equivariant structure is just
a lifting of the Σ-action on X to a Σ-action on E . Also, Definition 2.1
is equivalent to asking that there exist a family (ϕσ)σ∈E of (normalised)
isomorphisms satisfying the conditions:

(1) For all σ ∈ Σ, we have a commutative diagram

σ(E)
ϕσ //

!!

E

��
X

(2) The map ϕσ : σ(E) −→ E is holomorphic and fibrewise C-linear.
(3) ϕ1σ = IdE and, for all (σ1, σ2) ∈ Σ×Σ, ϕσ1σ1(ϕσ2) = c(σ1, σ2)ϕσ1σ2 .

When c is the trivial cocycle, this should really be thought of as a descent
datum: it is a necessary and sufficient condition for the holomorphic vector
bundle E to descend to a vector bundle in the appropriate category over
the orbifold [X/Σ].

Stability of a c-equivariant holomorphic vector bundle (E , τ := (τσ)σ∈Σ)
may be defined in the usual way, with respect to non-trivial τ -invariant
sub-bundles only. This is in general not equivalent to the underlying holo-
morphic vector bundle E being stable (see [20] for the case of a holomor-
phic involution and [23] for the case of an anti-holomorphic one). But this
is actually a good thing because it gives us enough stable objects for the
Seshadri theorem ([25]) to hold: any semi-stable object admits filtrations
by τ -invariants sub-objects whose successive quotients are stable (in the
weaker, τ -relative, sense, but in general not in the strong sense of the
underlying bundle being stable) and of equal slope. This is however not
something that we will pursue in this paper (see [23] for the special case
of anti-holomorphic involutions). Instead, as in [11], we shall focus on the
following family of objects.

Definition 2.2. — A c-equivariant holomorphic vector bundle (E ,
(τσ)σ∈Σ) is called geometrically stable if the underlying vector bundle E
is stable in the usual sense. It is called polystable if it is a direct sum
of geometrically stable c-equivariant holomorphic vector bundles of equal
slope.

The rest of Section 2 is devoted to proving the existence of geometrically
stable c-equivariant vector bundles and constructing connected (gauge-
theoretic) moduli spaces for such objects.
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2.2. Invariant connections

We saw in Section 1.2 that, given a c-equivariant Hermitian vector bundle
E over (X,Σ), there was a Σ-action on the space AE of unitary connections
on E, that was induced by the Σ-action on X (Proposition 1.2). That Σ-
action on AE was compatible with the Hamiltonian action of the gauge
group GE in the sense of Property (1.8) and with the momentum map
F of that action. Back in Section 1.2, this was only used to deduce that
there was an induced Σ-action on F−1({0})irr/GE , or more generally on
F−1({dr })/GE (Proposition 1.4). One can be slightly more general if one
allows holomorphic principal GC-bundles, for GC an arbitrary reductive
complex Lie group, into the picture. Indeed, let us denote by θ the split
real form of GC, by K a θ-invariant maximal compact subgroup of GC, and
by P a principal K-bundle. Recall that Σ acts on K via the homomorphism
ε : Σ −→ Z/2Z of (1.2) and the involution θ (as in (1.3)).

Definition 2.3. — Given a 2-cocycle c ∈ Z2(Σ;Z(K)), a c-equivariant
structure on P is a family τ := (τσ)σ∈Σ of (normalised) bundle maps from
P to itself satisfying the conditions:

(1) For all σ ∈ Σ, we have a commutative diagram

P

��

τσ // P

��
X

σ // X

(2) For all σ ∈ Σ, all p ∈ P and all k ∈ K, one has τσ(k · p) =
θσ(k) · τσ(p).

(3) τ1Σ = IdP and, for all (σ1, σ2) ∈ Σ× Σ, τσ1τσ2 = c(σ1, σ2)τσ1σ2 .
Equivalently, we can think of (τσ)σ∈Σ as a family (ϕσ : σ(P ) −→ P )σ∈Σ of
principal K-bundles isomorphisms satisfying ϕσ1σ1(ϕσ2) = c(σ1, σ2)ϕσ1σ2 .
When c ≡ 1, a c-equivariant structure τ will simply be called an equivariant
structure.
A homomorphism between two c-equivariant bundles (P, (τσ)σ∈Σ) and

(P ′, (τ ′σ)σ∈Σ) (for the same cocycle c) is a homomorphism of principal bun-
dles f : P −→ P ′ over X such that, for all σ ∈ Σ, f ◦ τσ = τ ′σ ◦ f .

For instance, the category of c-equivariant principal GC-bundles for the
group GC = GL(r;C), θ(g) = g, Σ ' Z/2Z acting on X via an anti-
holomorphic involution and c ≡ 1 is equivalent to the category of rank r
Real vector bundles in the sense of Atiyah ([2]), because of the compatibilty
relation gv = g v for the standard GL(r;C)-action on Cr.
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Under the assumption of Definition 2.3, there is an induced Σ-action
(βτσ)σ∈Σ on the space AP of K-connections on P , defined as in (1.6). There
is also a Σ-action (ατσ)σ∈Σ on the gauge group GP , which is compatible with
(βτσ)σ∈Σ in the sense of (1.8). The assumption that θ is induced on K by
the split real form of GC is then sufficient to guarantee that the Σ-action
on AP preserves the set of projectively flat connections (which was for
instance not always true for the real form θ(g) = (gt)−1of GC = GL(r;C),
as we saw in Section 1.1). In what follows, we consider an element ξ in the
centre of the Lie algebra of GP such that the set F−1({ξ}) of projectively
flat connections of curvature ξ is non-empty. That set carries an induced
Σ-action and, because of Relation (1.8), the fixed-point group G(Σ,τ)

P acts
on A(Σ,τ)

P , preserving F−1({ξ})Σ
irr. Note that the Σ-actions on GP and AP

depend on the choice of the c-equivariant structure τ on P , as reflected in
our notation. We can then form the quotient

F−1({ξ})(Σ,τ)
irr /G(Σ,τ)

P

and we have that the inclusion map F−1({ξ})(Σ,τ) ↪→ F−1({ξ}) induces a
map

(2.1) jτ : F−1({ξ})(Σ,τ)
irr /G(Σ,τ)

P −→
(
F−1({ξ})/GP

)Σ
,

taking the G(Σ,τ)
P -orbit of a Σ-invariant connection to its GP -orbit. As we

saw in Proposition 1.5, the target space of the map jτ is independent of the
choice of the 2-cocycle c ∈ Z2(Σ;Z(K)) and of the c-equivariant structure
(τσ)σ∈Σ on P . The source space, however, very much depends on those
choices and the rest of this section is devoted to the study of the map jτ ,
namely to understanding its fibres and its image (we will show that jτ is
neither injective nor surjective in general). In Section 2.3, we will provide
a modular interpretation of points in the quotient F−1({ξ})Σ

irr/G
(Σ,τ)
P .

The fibres of jτ are relatively easy to understand. Let A1 and A2 be two
Σ-fixed connections in F−1({ξ})irr such that A1 and A2 lie in the same
GP -orbit, i.e. jτ (G(Σ,τ)

P · A1) = jτ (G(Σ,τ)
P · A2). Then there is an element

g ∈ GP such that g ·A2 = A1. So, for all σ ∈ Σ,

g−1 ·A1 = A2 = βτσ(A2) = βτσ(g−1 ·A1) = ατσ(g−1) ·βτσ(A1) = ατσ(g−1) ·A1,

which implies that gατσ(g−1) ∈ StabGP (A1) = Z(GP ). The map σ 7−→
gατσ(g−1) thus defined is readily seen to be a (normalised) Z(GP )-valued
1-cocycle on Σ, whose cohomology class is independent of the choice of the
element g. Moreover, by definition, that cocycle splits over GC. Thus, we
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have defined a map

f : j−1
τ ({GP ·A1}) −→ ker

(
H1(Σ;Z(GP )) −→ H1(Σ;GP )

)
.

Proposition 2.4. — The non-empty fibres of jτ are in bijection with
the pointed set

ker
(
H1(Σ;Z(GP )) −→ H1(Σ;GP )

)
.

Proof. — It suffices to check that the map f defined above is bijective.
The surjectivity follows from the construction of the map f and the defi-
nition of

ker
(
H1(Σ;Z(GP )) −→ H1(Σ;GP )

)
.

As for the injectivity, if the Z(GP )-valued 1-cocycle gατσ(g−1) actually splits
over Z(GP ), i.e. if there exists an element a ∈ Z(GP ) such that, for all
σ ∈ Σ, gατσ(g−1) = aατσ(a−1), then ατσ(a−1g) = a−1g and (a−1g)−1 · A1 =
g−1 · (a−1 · A1) = g−1 · A1 = A2, since Z(GP ) acts trivially on AP . This
proves that A1 and A2 lie in the same G(Σ,τ)

P -orbit, hereby showing that f
is injective. �

We note that nothing in the above uses that StabGP (A) = Z(GP ) and
works in full generality: we have proved that the fibre of jτ above the point
jτ (G(Σ,τ)

P ·A) is in bijection with

ker
(
H1(Σ; StabGP (A)) −→ H1(Σ;GP )

)
.

Next, to study the image of jτ for all c ∈ Z2(Σ;Z(K)), let us introduce a
map

T :
(
F−1(ξ})irr/GP

)Σ −→ H2(Σ;Z(K)),
that we will call the type map. This will explicitly use the fact that
StabGP (A) = Z(GP ), if only for the target space of the type map to make
sense. In order to define the map T , we start with an actual equivari-
ant structure on P , i.e. we assume that there is given a family (τσ)σ∈Σ
satisfying τσ1σ2 = τσ1τσ2 on P . This enables us to identify Z(GP ) with
Z(K) Σ-equivariantly (with respect to the Σ-action (ατσ)σ∈Σ on GP and
the Σ-action (θσ)σ∈Σ on Z(K)). Then we let A0 be an irreducible, pro-
jectively flat connection on P , whose GP -orbit is Σ-fixed in the quotient
F−1({ξ})/GP . This means that, for all σ ∈ Σ, there exists uσ ∈ GP such
that uσ · βτσ(A0) = A0 (since βτ1Σ

= IdAP , we can take u1Σ = 1GP ). Hence,
on the one hand, βτσ1σ2

(A0) = u−1
σ1σ2
·A0 and, on the other hand,

βτσ1σ2
(A0) = βτσ1

(βτσ2
(A0)) = βτσ1

(u−1
σ2
·A0)

= ατσ1
(u−1
σ2

) · βτσ1
(A0) = ατσ1

(u−1
σ2

)u−1
σ1
·A0.
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So, for all (σ1, σ2) ∈ Σ × Σ, the element cu(σ1, σ2) := uσ1α
τ
σ1

(uσ2)u−1
σ1σ2

lies in StabGP (A0) = Z(GP ). The map c : Σ × Σ −→ Z(GP ) thus defined
is readily seen to be a (normalised) 2-cocycle, whose cohomology class in
H2(Σ;Z(GP )) only depends on the Σ-invariant orbit [A0] := GP · A0, not
the connection A0 or the elements (uσ)σ∈Σ. Since Z(GP ) is Σ-equivariantly
isomorphic to Z(K), we have H2(Σ;Z(GP )) ' H2(Σ;Z(K)) and the above
construction defines a map

(2.2) T : (F−1({ξ})irr/GP )Σ −→ H2(Σ;Z(K))
[A0] 7−→ [c]

where c(σ1, σ2) = uσ1α
τ
σ1

(uσ2)u−1
σ1σ2

is defined from any family (uσ)σ∈Σ
satisfying, for all σ ∈ Σ, βτσ(A0) = u−1

σ · A0. Note that, if the GP -orbit of
A0 contains a connection A′0 which is actually Σ-fixed, then T ([A0]) = [1]
in H2(Σ;Z(K)). Indeed, for all σ ∈ Σ, βτσ(A′0) = A′0, so we can take u′σ = 1
and we get that c(σ1, σ2) = 1. Therefore, when c ≡ 1 and an equivariant
structure τ = (τσ)σ∈Σ has been chosen on P , the map

jτ : F−1({ξ})Σ
irr/G

(Σ,τ)
P −→

(
F−1({ξ})/GP

)Σ
,

where the Σ-action on the left-hand side is induced by the equivariant
structure τ as in (1.6), satisfies

(2.3) Im jτ ⊂ T −1({[1]}).

Remark 2.5. — By construction, the type map

T : (F−1({ξ})/GP )Σ −→ H2(Σ;Z(GP ))

lifts to a map T ′ : (F−1({ξ})/GP )Σ −→ H1(Σ;GP /Z(GP )), i.e. factors
through the connecting homomorphism δ : H1(Σ;GP /Z(GP )) −→
H2(Σ;Z(GP )) induced by the short exact sequence of group homomor-
phisms

1 −→ Z(GP ) −→ GP −→ GP /Z(GP ) −→ 1.

Two natural questions then are:
• Is Im jτ equal to T −1({[1]})?
• What can one say about the other fibres of the type map T ?

The answer to both these questions is provided by the next construction.
Let λ ∈ H2(Σ;Z(K)) and assume that λ lies in the image of the map
T . This means that there exists a Σ-invariant GP -orbit [A0] and a family
(uσ)σ∈Σ of elements of GP such that, for all σ ∈ Σ, uσ · βτσ(A0) = A0 and,
moreover, the 2-cocycle on Σ defined by cu(σ1, σ2) := uσ1α

τ
σ1

(uσ2)u−1
σ1σ2
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has cohomology class λ. Let us then set, for all σ ∈ Σ, ϕ′σ := uσϕσ :
σ(P ) −→ P ,

βτ,uσ : AP −→ AP
A 7−→ uσβ

τ
σ(A) and ατ,uσ : GP −→ GP

g 7−→ uσα
τ
σ(g)u−1

σ

.

Then, for all (σ1, σ2) ∈ Σ× Σ,

ϕ′σ1
σ1(ϕ′σ2

) = uσ1ϕσ1σ1(uσ2ϕσ2)

= uσ1(ϕσ1σ1(uσ2)ϕ−1
σ1

)ϕσ1σ1(ϕσ2)
=
(
uσ1α

τ
σ1

(uσ2)
)(
ϕσ1σ1(ϕσ2)

)
=
(
cu(σ1, σ2)uσ1uσ2

)
ϕσ1σ2

= cu(σ1, σ2)ϕ′σ1σ2

i.e. the family (ϕ′σ)σ∈Σ defines a cu-equivariant structure on P (in the
sense of Definition 2.3). Moreover, we have new Σ-actions on AP and GP ,
respectively given by

(2.4) βτ,uσ (A) =
(
(ϕ′σ)−1)∗σ(A) =

(
(uσϕσ)−1)∗σ(A)

= (u−1
σ )∗(ϕ−1

σ )∗σ(A) = uσ · βτσ(A)

and

(2.5) ατ,uσ (A) = ϕ′σσ(g)(ϕ′σ)−1 = uσ
(
ϕσσ(g)ϕ−1

σ

)
u−1
σ

= uσα
τ
σ(g)u−1

σ = uστσgτ
−1
σ u−1

σ .

We then have, for the connection A0 we started with,

βτ,uσ (A0) = uσ · βτσ(A0) = uσ · (u−1
σ ·A0) = A0,

i.e. A0 is fixed for this new action, which we denote by

A0 ∈ A(Σ,τ,u)
P .

The inclusion F−1({ξ})(Σ,τ,u)
irr ↪→ F−1({ξ})irr induces a map

(2.6) jτ,u : F−1({ξ})(Σ,τ,u)
irr /G(Σ,τ,u)

P −→
(
F−1({ξ})irr/GP

)Σ
which generalises the map jτ introduced in (2.1) and where Σ now acts on
GP via the ατ,uσ above.
As we can see, the new Σ-actions on AP and GP , introduced respectively

in (2.4) and (2.5), are entirely determined by the choice of a family u =
(uσ)σ∈Σ such that cu(σ1, σ2) := uσ1α

τ
σ1

(uσ2)u−1
σ1σ2

is a Z(GP )-valued 2-
cocycle. These families already appeared to define the type map in (2.2),
so we give them a name.
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Definition 2.6 (Modifying family). — A modifying family of elements
in GP is a tuple u := (uσ)σ∈Σ of elements uσ ∈ GP indexed by σ ∈ Σ such
that

(1) u1Σ = 1GP ,
(2) For σ1, σ2 ∈ Σ, the elements cu(σ1, σ2) := uσ1Ψσ1(uσ2)u−1

σ1σ2
∈ GP

is Z(GP )-valued. In this case, cu is actually a 2-cocycle of Σ.
As a direct generalisation of (2.3), we have

Im jτ,u ⊂ T −1({[cu]})

for any modifying family with associated 2-cocycle cu. The subtle point
is that the converse inclusion is not true in general, because we may also
find, in that fibre, elements of Im jτ ′ , where τ ′ is another c-equivariant
structure on P , non-isomorphic to the previous one (this is what happens,
for instance, for Real vector bundles of different topological types in [23])
and we now analyse this phenomenon (the next paragraph runs parallel
to [13, Section 3.3], where the analogous situation in the context of quiver
representations is studied).
Let us start from a normalised 2-cocycle c : Σ × Σ −→ GP . Saying that

the cohomology class [c] lies in the image of the type map means that there
exists a modifying family u = (uσ)σ∈Σ whose associated 2-cocycle cu is
cohomologous to c. Let us then denote by Z1

u(Σ,GP ) the set of GP -valued
normalised 1-cocycles with respect to the modified Σ-action (2.5) on GP .
The following two lemmas have very simple proofs (see [13, Lemmas 3.18
and 3.19]).
Lemma 2.7. — Replacing uσ with aσuσ where aσ ∈ Z(GP ) if necessary,

we can assume that cu(σ1, σ2) = c(σ1, σ2).
Lemma 2.8. — There is a bijection u′ 7−→ bu′(σ) := u′σu

−1
σ , between the

set of all modifying families u′ such that cu′ = cu and the set Z1
u(Σ,GP ),

whose inverse is the map b 7−→ ubσ := b(σ)uσ. Moreover, two 1-cocycles bu′
and bu′′ are cohomologous in Z1

u(Σ;GP ) if and only if there exists g ∈ GP
such that, for all σ ∈ Σ, u′′σ = gu′σα

τ
σ(g−1).

Remark 2.9. — If b1 and b1 are cohomologous 1-cocycles in Z1
u(Σ;GP ),

the maps jτ,ub1 and jτ,ub2 defined as in (2.6) have the same images. In-
deed, any g satisfying ub2σ = gub1σ α

τ
σ(g−1) for all σ ∈ Σ provides a group

isomorphism
G(Σ,τ,ub2 )
P = gG(Σ,τ,ub1 )

P g−1 ' G(Σ,τ,ub1 )
P

and an equivariant bijection

F−1({ξ})(Σ,τ,ub2 )
irr = g · F−1({ξ})(Σ,τ,ub1 )

irr ' F−1({ξ})(Σ,τ,ub1 )
irr .
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We can now give a decomposition of the fibre of the type map

T :
(
F−1(ξ})irr/GP

)Σ −→ H2(Σ;Z(K))

over [cu], where the indexing set is the orbit spaceH1
u(Σ;GP )/H1(Σ;Z(GP )):

as Z(GP ) is central and Σ-invariant in GP , the map (a, b) 7−→ (ab)(σ) :=
(aσb(σ))σ∈Σ induces an action of the group H1

u(Σ,Z(GP )) on the set
H1
u(Σ,GP ), where by H1

u we mean the first cohomology set associated
to the Σ-action ατ,u on GP defined in (2.5); moreover, H1

u(Σ,Z(GP )) =
H1(Σ;Z(GP )) is actually independent of the choice of the family u =
(uσ)σ∈Σ, as Z(GP ) is the centre of GP . For [b] ∈ H1

u(Σ,GP ), we shall de-
note itsH1(Σ,Z(GP ))-orbit by [b]. As a side remark, this gives the following
abstract classification result for cu-equivariant structures on E.

Proposition 2.10. — Given a modifying family u = (uσ)σ∈Σ with as-
sociated 2-cocycle cu ∈ Z2(Σ;Z(K)) and an equivariant structure (τσ)σ∈Σ,
the set of isomorphism classes of cu-equivariant structures is in bijection
with the pointed set H1

u(Σ;GP ).

Proof. — First, recall from (1.7) that ατσ(g) = τσgτ
−1
σ . Moreover,

τσ1τσ2 = τσ1σ2 , since by assumption τ is an equivariant structure (for the
trivial cocycle). The bijection we are looking for is then induced by the
map

(2.7) Z1
u(Σ;GP ) −→ {cu−equivariant structures}

b 7−→ τ bσ := b(σ)uστσ = ubστσ
.

The family τ ′ thus defined is indeed a cu-equivariant structure, since

τ bσ1
τ bσ2

= u′σ1
τσ1u

′
σ2
τσ2

= u′σ1
ατσ1

(u′σ2
)τσ1τσ2

= cu(σ1, σ2)u′σ1σ2
τσ1σ2

= cu(σ1, σ2)τ bσ1σ2

and replacing b by the cohomologous 1-cocycle b′(σ) := ub(σ)uσατσ(u−1)g−1
σ

yields the conjugate cu-equivariant structure τ b
′

σ = uτ bσu
−1. �

We also note that replacing b by b′(σ) := aσb(σ) in (2.7), where a ∈
Z1(Σ;Z(GP )), yields τ b′σ = aστ

b
σ for all σ ∈ Σ. In other words, the map (2.7)

is H1(Σ;Z(GP ))-equivariant: this implies that the classification result of c-
equivariant structures given in Proposition 2.10 is independent of the choice
of the modifying family u with associated cocyle cu = c. The next theorem
is the main result of the paper. We refer to [13, Theorem 3.21] for a similar
statement in the context of quiver representations.
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Theorem 2.11. — Let u be a modifying family of elements in GP in
the sense of Definition 2.6 and let cu be the associated 2-cocycle. Let T be
the type map introduced in (2.2). Then there is a decomposition

T −1({[cu]}) =
⊔

[b]∈H1
u(Σ,GP )/H1(Σ,Z(GP ))

Im jτ,ub

where ub is the modifying family determined by u and a choice of 1-cocycle
b ∈ [b] and jτ,ub is the map defined in (2.6). As in Proposition 2.4, non-
empty fibres of jτ,u are in bijection with the pointed set

ker
(
H1(Σ;Z(K)) −→ H1

u(Σ;GP )
)
.

Proof. — For each [b] ∈ H1
u(Σ,GP ), we take a representative b of [b] and

consider the map jτ,ub defined in (2.6); the image of this map does not
depend on our choice of representative by Remark 2.9.
To show that these images cover T −1([cu]), take GP ·A ∈ T −1([cu]). By

definition of the type map, there exists a modifying family u′ = (u′σ)σ∈Σ

of elements in GP such that A ∈ F−1({ξ})(Σ,τ,u)
irr and [cu′ ] = [cu]. By

Lemma 2.7, we can assume that cu′ = cu and, by Lemma 2.8, there exists
b ∈ Z1

u(Σ,GP ) such that u′ = ub. Hence, GP ·A ∈ Im jτ,ub .
To prove that this union is disjoint, suppose that GP · A ∈ Im jτ,ub1 ∩

Im jτ,ub2 . Then there exist modifying families ui, for i = 1, 2, such that
(1) [bui ] = [bi] ∈ H1

u(Σ,GP ),
(2) A ∈ F−1({ξ})(Σ,τ,ui)

irr for i = 1, 2,
(3) cu1 = cu2 = cu.

The only one of these assertions that is not clear is the final one, which
follows from the fact that if cubi = cu, for i = 1, 2, and if [b] = [b′], then
cub = cub′ . From (2), we deduce that aσ := u2,σu

−1
1,σ ∈ StabGP (A) = Z(GP ),

from which we conclude that bu2,σ = aσbu1,σ for all σ, therefore that [bu1 ]
and [bu2 ] lie in the same H1(Σ,Z(GP ))-orbit in H1

u(Σ,GP ). This completes
the proof. �

Thus, we can completely describe the fixed-point set of the Σ-action on
the moduli spaceMX(r, d) of stable holomorphic vector bundles of rank r
and degree d by using the following strategy:

• We define a type map T : MX(r, d)Σ −→ H2(Σ;Z(K)) and we
decomposeMX(r, d)Σ into the union of fibres of T ;

• We show that any non-empty fibre T −1({[c]}) decomposes into a
disjoint union, indexed by the pointed setH1

u(Σ;GE)/H1(Σ;Z(GE)),
where E is the unitary gauge group of a smooth Hermitian vector
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bundle of rank r and degree d, equipped with a c-equivariant struc-
ture τ and u = (uσ)σ∈Σ satisfies uσ1α

τ
σ1

(uσ2)u−1
σ1σ2

= c(σ1, σ2).
• In the decomposition above, each of the pieces of T −1({[c]}) is the
image of a map

jτ,ub : F−1({dr })(Σ,τ,u)
irr /GΣ

E −→
(
F−1({dr })/GE

)Σ
whose non-empty fibres are all in bijection with the kernel of the
natural map

H1(Σ;Z(U(r))) −→ H1
u(Σ;GE),

whose source space is in fact independent of the bundle E.
We hope to have made a convincing case that methods of group coho-

mology can help clarify an otherwise intricate situation (to wit, the study
of the fixed-point set of a group action on a coarse moduli space of geomet-
ric objects), while at the same time providing sufficiently general results,
to be used in a variety of concrete geometric situations. For example here,
the cohomology groups appearing as indexing sets in Theorem 2.11 can be
computed using similar techniques in examples that look a priori different
(the parabolic vector bundles of [1] and the Real vector bundles of [23], to
mention a few). In [13, 12], we apply similar techniques to construct branes
in hyper-kähler quiver varieties and to study arithmetic aspects of quiver
representations over a non-algebraically closed field.

2.3. Moduli of equivariant bundles

In Section 2.2, we saw that, given a cocycle c ∈ Z2(Σ;Z(K)) and a
c-equivariant structure τ = (τσ)σ∈Σ on a principal K-bundle P (for K a
compact Lie group equipped with the involution coming from the split real
form of GC := KC), there was a map

jτ : F−1({ξ})Σ
irr/G

(Σ,τ)
P −→

(
F−1({ξ})irr/GP

)Σ
whose image was contained in the fibre T −1({[c]}) of the type map defined
in (2.2) and whose non-empty fibres were in bijection with the pointed set

ker
(
H1(Σ;Z(GP )) −→ H1(Σ;GP )

)
.

The goal of the present section is to provide a modular interpretation of
the quotients F−1({ξ})Σ

irr/G
(Σ,τ)
P , consisting of G(Σ,τ)

P -orbits of Σ-invariant,
projectively flat, irreducible K-connections on P . First we recall from [26]
that a K-connection on P may be seen as a holomorphic structure on the
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bundle PC := P ×K KC, obtained by extending the structure group of P
to the complexification KC = GC of K, and that isomorphism classes of
such structures are precisely the GC-orbits of such K-connections, where
GC := GP ×Ad KC is the complexified gauge group, i.e. the automorphism
group of PC, acting on K-connections through the previous identification
with holomorphic structures (hereby extending the natural action of GP on
the space AP of K-connections on P ). Then, for a K-connection A on P
to be Σ-invariant means that, with respect to the holomorphic structure
induced by A, the map

τCσ : PC −→ PC
[p, g] 7−→ [τσ(p), θσ(g)]

is holomorphic if σ : X −→ X is holomorphic and anti-holomorphic if σ is
anti-holomorphic on X. Thus, a Σ-invariant K-connection A on P defines
a c-equivariant structure in the holomorphic sense on the holomorphic GC-
bundle PC (simply modify Definition 2.3 by adding the requirement that
τCσ : PC −→ PC is holomorphic if σ : X −→ X is holomorphic and anti-
holomorphic if σ is anti-holomorphic). If A is moreover irreducible and
projectively flat, then the holomorphic bundle PC is simple and stable in
the sense of Ramanathan ([21, 22]). Therefore, we can interpret the quotient
F−1({ξ})Σ

irr/G
(Σ,τ)
P as a moduli space of principal holomorphic GC-bundles

equipped with an additional datum, namely a c-equivariant structure in
the holomorphic sense. Then F−1({ξ})Σ

irr/G
(Σ,τ)
P is the space of isomorphism

classes of geometrically stable, simple, c-equivariant holomorphic structures
on the smooth principal GC-bundle PC.
Since Σ is a finite group acting on the affine space AP by affine trans-

formations, the fixed-point set AΣ
P is non-empty and the issue is to know

whether it contains irreducible, projectively flat connections (in order for
the moduli space F−1({ξ})Σ

irr/G
(Σ,τ)
P to be non-empty). We shall now fo-

cus on the proof of that result in the vector bundle case (K = U(r) and
θ(g) = g on GC = GL(r;C)). To prepare for it, let us, for notational
convenience, denote by C the space AE of all unitary connections / holo-
morphic structures on the Hermitian vector bundle E and let us introduce
the spaces Css and Cs, consisting respectively of semi-stable and stable holo-
morphic structures on E. The Σ-action on C preserves Css and Cs and we
wish to show that CΣ

s is non-empty and connected because, using results
of [24] to establish the existence of a deformation retraction from CΣ

s onto
F−1({dr })

Σ
irr, this is equivalent to saying that F−1({dr })

Σ
irr is non-empty

and connected (the existence of the deformation retraction follows from
the invariance of the Yang–Mills flow under the action of Σ, as in [24,
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Section 3.3], and the convergence of that flow, [7, 19]). First, we observe
that, for r = 1, any holomorphic line bundle on E is stable so CΣ

s = CΣ,
which is a non-empty affine subspace of C. In particular, CΣ

s is connected
if r = 1. We henceforth assume that r > 2. Recall that the genus g of
X is assumed to greater or equal to 2 and that we have a group homo-
morphism ε : Σ −→ Z/2Z (defined in (1.2)), whose kernel we shall denote
by Σ+. Consider then the Harder–Narasimhan stratification of C ([11]): C
is the disjoint union of the strata Cµ where µ = ((ri, di))16i6` represents
the rank and degree of the successive quotients of the Harder–Narasimhan
filtration 0 = E0 ⊂ E1 ⊂ . . . ⊂ E` = E , which by construction is subject
to the condition d1

r1
> . . . > dl

rl
. The complex codimension dµ of Cµ in C is

finite and given by

dµ =
∑

16i<j6`
(dirj − djri + rirj(g − 1)).

An element σ ∈ Σ sends the Harder–Narasimhan filtration of E to the
Harder–Narasimhan filtration of σ(E) so the Σ-action on C preserves each
stratum Cµ and we have that:

(1) For each µ, CΣ+
/CΣ+

µ is a finite-dimensional complex vector space
and

codimCΣ+ CΣ+

µ = codimC Cµ = dµ.

(2) The group Σ/Σ+ acts on CΣ+

µ and, if that group is non-trivial, the
real codimension of CΣ

µ in CΣ is equal to dµ, the complex codimen-
sion of CΣ+

µ in CΣ+ .
Let us now show that CΣ+

ss is non-empty and connected. For all µ such that
CΣ+

µ 6= CΣ+

ss , CΣ+

µ is contained in the closure of CΣ+

µ′ for some µ′ of the form
((r1, d1), (r2, d2)) with d1

r1
> d2

r2
(and r1 + r2 = r). Since r > 2 and g > 2,

one has

dµ′ = d1r2 − d2r1 + r1r2(g − 1) > 1 + (r − 1)(g − 1) > 2,

So the complement of CΣ+

ss in CΣ+ is a countable union of closed subman-
ifolds of complex codimension greater or equal to 2, which proves that
CΣ+

ss is open and dense in CΣ+ . In particular, it is non-empty. By results
of Daskalopoulos and Uhlenbeck ([8]), the inclusion map j : CΣ+

ss ↪→ CΣ+

induces isomorphisms on homotopy groups πk(CΣ+

ss ) j∗−→ πk(CΣ+) for all
k 6 (r− 1)(g− 1) + 1. This implies in particular that CΣ+

ss is connected for
all r > 2 and all g > 2. Again by results of [8], CΣ+

s is open and dense in
CΣ+

ss (in particular, it is non-empty) and it is connected if (r−1)(g−1) > 2,
i.e. if r > 2 or g > 2.
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The same type of argument works for CΣ
ss = (CΣ+

ss )Σ/Σ+ and CΣ
s =

(CΣ+

s )Σ/Σ+ because, either Σ/Σ+ is trivial and there is nothing to prove, or
Σ/Σ+ ' Z/2Z and the complex codimension dµ′ in the proof above is now
a real codimension, so the inequality dµ′ > 2 is enough to guarantee that
CΣ
ss is open and dense (in particular, non-empty) in CΣ. Then the results of

Daskalopoulos and Uhlenbeck can be adapted to this real setting (see [5])
to show that CΣ

ss is connected if r > 2 and g > 2, and that CΣ
s is always

non-empty, as well as connected if r > 2 or g > 2. We have thus proved
the following result.

Theorem 2.12. — Recall that g > 2, r > 1 and d ∈ Z. Given a 2-
cocycle c ∈ Z2(Σ;Z(U(r))) and a c-equivariant Hermitian vector bundle
(E, τ) over (X,Σ), the moduli space MΣ

X(r, d, τ) := F−1({dr })
Σ
irr/GΣ

E is
non-empty and connected, except possibly if g = 2, r = 2 and d is even.

Proof. — The proof for r = 1, g > 2 or g = 2 and r > 2 was given
above. For g = 2, r = 2 and d odd, the result also holds because Cs = Css
in that case and we have seen that CΣ

ss is always non-empty and connected
if g > 2. �

We expectMΣ
X(2, 2d, τ) to also be non-empty and connected when X is

of genus 2 but the proof above is inconclusive in that case.

3. Representations of orbifold fundamental groups

3.1. Narasimhan–Seshadri correspondences

One may view the Narasimhan–Seshadri correspondence as follows. Let
H be the Poincaré upper half-plane and let Γ ⊂ PSL(2;R) = Aut(H) be
a discrete subgroup. If Γ acts freely and cocompactly on H, then there
is a homeomorphism between the space Hom(Γ; U(r))irr/U(r) of (equiv-
alence classes of) irreducible unitary representations of Γ and the moduli
spaceMX(r, 0) of stable holomorphic vector bundles of rank r and degree 0
over the compact Riemann surface X := H/Γ (in particular, π1(X) ' Γ).
More generally, Narasimhan and Seshadri proved the existence of a home-
omorphism betweenMX(r, d) and the space of unitary representations of
a certain central extension Γd of Γ by Z (the group Γd can be identified
with the fundamental group of the unit circle bundle of an arbitrary line
bundle of degree d over X, see [10]). Note that Γd no longer acts effec-
tively on H here, because the natural map Γd −→ Γ ⊂ Aut(H) has kernel
Z, by construction. Generalising in another direction, one may ask what
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happens when there is only a normal subgroup of finite index Γ′ ⊂ Γ such
that Γ′ acts freely. The compact Riemann surface Y := H/Γ then has
a natural orbifold structure, obtained from the action of the finite group
Σ := Γ/Γ′ on the Riemann surface X := H/Γ′, and in fact πorb

1 (Y ) ' Γ. We
will see shortly what becomes of the Narasimhan–Seshadri correspondence
when we assume moreover that the group Γ′ is still cocompact (such an
assumption being justified by a standard application of Selberg’s lemma:
Γ contains a torsion-free normal subgroup of finite index Γ′). Yet another
type of generalisation is obtained by considering discrete subgroups of the
full automorphism group Aut±(H) ' PGL(2;R) ' PSL(2;R) o Z/2Z
(where the action of Z/2Z on PSL(2;R) is given by conjugation by the
matrix

( −1 0
0 1
)
, corresponding to the anti-holomophic involution z 7−→ −z

of H).This means allowing Γ to contain anti-holomorphic transformations
of H. If we consider the group homomorphism η : Γ −→ {±1} ' Z/2Z
sending anti-holomorphic maps to (−1) and set Γ′ := ker η, then saying
that η is non-trivial amounts to saying that the compact Riemann surface
X := H/Γ′ has a natural anti-holomorphic involution, coming from the
induced (Γ/Γ′)-action on H/Γ′ (i.e., as an algebraic curve, X is defined
over the field of real numbers). The topological surface Y := H/Γ then has
a natural structure of Klein surface (dianalytic manifold of dimension 2)
and, again, we have an isomorphism πorb

1 (Y ) ' Γ. The difference with the
previous case can be explained as follows: in both cases we have a short
exact sequence

(3.1) 1 −→ π1(X) −→ πorb
1 (Y ) −→ Σ −→ 1

and a group homomorphism ε : Σ −→ Z/2Z induced by the group homo-
morphism Aut±(H) −→ {±1} taking anti-holomorphic transformations to
(−1), but in the first case (i.e. when Γ ⊂ Aut(H)) the homomorphism ε is
trivial, while it is non-trivial if Γ contains an antiholomorphic transforma-
tion.
In the remainder of the present section, we will explain what type of

Narasimhan–Seshadri correspondence we obtain in this orbifold setting.
Further generalisations are possible, for instance to orbifold fundamen-
tal groups of Real Seifert manifolds ([24]) or to discrete subgroups Γ ⊂
Aut±(H) which only have finite covolume (the case where Γ ⊂ Aut(H)
acts freely and is of finite covolume first appeared in the Mehta–Seshadri
theorem, see [15]; it has been vastly generalised in [6] and in [4]). Combin-
ing the previous two settings, we now consider a cocompact Fuchsian group
Γ ⊂ PGL(2;R) = Aut±(H). By Selberg’s lemma, Γ+ := Γ ∩ PSL(2;R)
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contains a torsion-free normal subgroup of finite index, say Γ′. We shall de-
note by η : Γ −→ Z/2Z the group homomorphism taking anti-holomorphic
transformations to (−1). We also fix once and for all a 2-cocycle e ∈
Z2(Z/2Z;Z(U(r))), where Z/2Z acts on Z(U(r)) ' S1 via the involution
z 7−→ z, induced by the involution θ : u 7−→ u on U(r). The associated
extension of Z/2Z by U(r) will be denoted by U(r) ×e Z/2Z. First, let
us discuss an appropriate class of representations for orbifold fundamental
groups of the type Γ above.

Definition 3.1. — An e-twisted unitary representation of Γ is a group
homomorphism % : Γ −→ U(r)×e Z/2Z such that the diagram

Γ
% //

η

!!

U(r)×e Z/2Z

xx
Z/2Z

commutes. The set of such representations will be denoted by
Homη(Γ; U(r)×eZ/2Z). Two representations %1, %2 are called equivalent if
there is an element u ∈ U(r) such that, for all γ ∈ Γ, %2(γ) = u%1(γ)u−1.

We note that, if η is the trivial homomorphism (i.e. Γ ⊂ PSL(2;R)),
then

Homη(Γ; U(r)×e Z/2Z) = Hom(Γ; U(r)).
We now want to interpret the representation space

Homη(Γ; U(r)×e Z/2Z)/U(r)

as a moduli space of holomorphic vector bundles on a certain Riemann
surface X. To that end, we observe the following: if we fix a cocompact
normal subgroup of finite index Γ′ ⊂ Γ+ = Γ∩PSL(2;R) that acts freely on
H and set Σ := Γ/Γ′, then we have a compact Riemann surface X := H/Γ′
equipped with an action of the finite group Σ ↪→ Aut±(X) and the group
homomorphism η : πorb

1 (X/Σ) ' Γ −→ Z/2Z canonically lifts to a group
homomorphism πorb

1 (X/Σ) −→ Σ, making the diagram

Σ

ε

��
πorb

1 (X/Σ)

99

η // Z/2Z

commute, where ε : Σ −→ Z/2Z is defined as in (1.2). The set
Homη(Γ; U(r) ×e Z/2Z) can therefore also be seen as the set
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Homε(Γ; U(r)×e Z/2Z) consisting of group homomorphisms

% : πorb
1 (X/Σ) −→ U(r)×e Z/2Z

such that the diagram

1 // π1(X) //

��

πorb
1 (X/Σ) //

%

��

Σ

ε

��

// 1

1 // U(r) // U(r)×e Z/2Z // Z/2Z // 1

commutes. In particular, the set Homε(πorb
1 (X/Σ); U(r)×e Z/2Z) that we

have just defined is actually independent of the choice of the presentation
(X,Σ) for the orbifold Y := H/Γ ' X/Σ (i.e. independent of the choice
of Γ′).
We will now show that, for all % ∈ Homε(πorb

1 (X/Σ); U(r)×e Z/2Z) the
polystable holomorphic vector bundle

E% := (H× Cr)/π1(X)

over X comes equipped with a natural (ε∗e)-equivariant structure in the
sense of Definition 2.1, where ε∗e ∈ Z2(Σ;Z(U(r))). In order to see this,
the basic construction goes as follows. We first choose a family (γσ)σ∈Σ of
elements of πorb

1 (X/Σ) such that, for all σ ∈ Σ, γσ maps to σ under the
canonical map πorb

1 (X/Γ) −→ Σ constructed above (note that, in general,
we do not have γσ1γσ2 = γσ1σ2 ; the short exact sequence (3.1) need not
admit splittings) and we consider the transformations

τ̃σ : H× Cr −→ H× Cr
(p, v) 7−→ (γσ · p, %(γσ) · v) .

Here, %(γσ) = (uσ, ε(σ)) ∈ U(r) ×c Z/2Z acts on v ∈ Cr via %(γσ) · v :=
uσθσ(v). Each τ̃σ then descends to a map τσ : E% −→ E% and the family
(τσ)σ∈Σ thus constructed satisfies the conditions of Definition 2.1 for the
cocycle c := ε∗e ∈ Z2(Σ;Z(U(r))). Moreover, the isomorphism class of the
(ε∗e)-equivariant bundle (E%, (τσ)σ∈Σ) obtained in that way is independent
of the choice of the family (γσ)σ∈Σ and the isomorphism class of the rep-
resentation % ∈ Homε(πorb

1 (X/Σ); U(r) ×e Z/2Z). We refer to Section 2.2
of [24] for further details of that construction, where it is presented in the
case where ε : Σ −→ Z/2Z is an isomorphism but with the same general
formalism. We have therefore defined a Narasimhan–Seshadri map, from
the representation space

Homε(Γ; U(r)×e Z/2Z)/U(r),
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to the space of isomorphism classes of polystable (ε∗e)-equivariant holo-
morphic vector bundles of rank r and degree 0. As a matter of fact, there is
such a Narasimhan–Seshadri map for every choice of a presentation (X,Σ)
for the orbifold Y = H/Γ. Our main result in this section is then the follow-
ing analogue of the Narasimhan–Seshadri theorem for orbifold fundamental
groups of the type Γ ⊂ PGL(2;R) that we have been considering.

Theorem 3.2. — Let Γ ⊂ PGL(2;R) be a cocompact Fuchsian group
and let Γ′ be a torsion-free normal subgroup of finite index of the group
Γ+ := Γ∩PSL(2;R). Denote by Σ the finite group Γ/Γ′, by ε : Σ −→ Z/2Z
the group homomorphism constructed in (1.2), and by X the compact
Riemann surface H/Γ′. Then, given a 2-cocycle e ∈ Z2(Z/2Z;Z(U(r))),
there is a homeomorphism between the representation space

Homε(Γ; U(r)×e Z/2Z)/U(r)

and the moduli space MΣ
X(r, 0, ε∗e), consisting of isomorphism classes of

polystable (ε∗e)-equivariant holomorphic vector bundles of rank r and de-
gree 0, that moduli space being equipped with the topology given by the
bijective correspondence

MΣ
X(r, 0, ε∗e) '

⊔
[τ ]

F−1({0})Σ/GΣ
E ,

where the union runs over all smooth isomorphism classes of (ε∗e)-equiv-
ariant Hermitian vector bundles (E, τ) of rank r and degree 0.

Apart from its somewhat intricate statement, this correspondence is per-
haps not very satisfying yet, for the following two reasons. First, topological
types of (ε∗e)-equivariant Hermitian vector bundles are not know in general
(see however Proposition 2.10 for an indication of what to compute in gen-
eral and [5] for an explicit description in the case where ε : Σ −→ Z/2Z is
an isomorphism). And second, there is no available algebraic construction
of the “moduli space”

MΣ
X(r, 0, ε∗e) =

⊔
[τ ]

MΣ
X(r, 0, τ)

that the author is aware of. In Section 2, we were at best able to relate,
via the maps jε∗e,τ , the smaller moduli spaces MΣ

X(r, 0, τ), consisting of
geometrically stable bundles only, to fixed points of the action of Σ on
the moduli variety MX(r, 0). Providing an algebraic construction, for Γ
satisfying the assumptions of Theorem 3.2, of moduli spaces of vector bun-
dles over the orbifold H/Γ (in an appropiate category) and relating them to
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orbifold representations of Γ in the sense of Definition 3.1 seems like a chal-
lenging problem, quite close in spirit to the original Narasimhan–Seshadri
and Mehta–Seshadri correspondences. Note that the main difference be-
tween the problem just stated and the papers [4, 6] is the fact that our
group Γ is authorised to contain anti-holomorphic transformations of the
Poincaré half-plane. We hope that, even after the problem above has been
solved, the gauge-theoretic perspective developed in the present paper will
be useful to study the topology (in particular, the number of connected
components) of the moduli space Homη(Γ; U(r)×e Z/2Z)/U(r), using an
arbitrary presentation (X,Σ) of the orbifold Y = H/Γ, which was for in-
stance the strategy adopted in [23] for the case where ε : Σ −→ Z/2Z is an
isomorphism. In fact, in the latter case, more topological information can
be obtained by following up on this circle of ideas, such as Betti numbers
with mod 2 coefficients of the quotients F−1({dr })

Σ/GΣ
E , as shown in [14].

3.2. Holonomy representations associated to invariant
connections

To prove Theorem 3.2, it suffices to construct an inverse to the
Narasimhan–Seshadri map constructed in Section 3.1. Such a map is pro-
vided, quite classically, by taking the holonomy of the relevant connections,
namely here the Σ-invariant connections considered in Section 2.2. The
main technical result is the following one, for the proof of which we refer
to Proposition 4.2 of [24].

Proposition 3.3. — Let (E, (τσ)σ∈Σ) be an (ε∗e)-equivariant Hermit-
ian vector bundle over (X,Σ) and let A be a Σ-invariant unitary connection
on E. Then, given any path γ ∈ X, the parallel transport operators TAγ
and TAσ◦γ satisfy TAσ◦γ = τσT

A
γ τ
−1
σ . That is to say, one has a commutative

diagram

Eσ(γ(0))
TAσ◦γ // Eσ(γ(1))

Eγ(0)

τσ

OO

TAγ // Eγ(1).

τσ

OO

If moreover A is a flat connection, then the parallel transport operators
on loops at a given base point x ∈ X induce a group homomorphism Hol :
π1(X;x) −→ U(r), and the point is now to show that the Σ-invariance of
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A implies that Hol extends to a group homomorphism H̃ol : πorb
1 (X/Σ) −→

U(r)×e Z/2Z that makes the following diagram commute

1 // π1(X) //

Hol
��

πorb
1 (X/Σ) //

H̃ol
��

Σ //

ε

��

1

1 // U(r) // U(r)×e Z/2Z // Z/2Z // 1

which follows from Proposition 3.3 (we refer to Theorem 4.4 of [24] for
details). This completes the proof of Theorem 3.2.

3.3. Equivariant representations

We conclude by explaining how to simplify the statement of Theorem 3.2
when the Riemann surface X contains a Σ-fixed point x. Then the group Σ
acts on π1(X;x) via γ 7−→ σ ◦ γ and we can consider the induced Σ-action
on Hom(π1(X;x); U(r)) given by βτσ(%) = θσ ◦ % ◦ σ−1. This is compat-
ible with the Σ-action (θσ)σ∈Σ on U(r), in the sense that βτσ(g%g−1) =
θσ(g)βτσ(%)θσ(g)−1, and we note that % is fixed by that Σ-action if and
only if % is Σ-equivariant. We are then in the same type of situation as in
Section 2.2: the group U(r)Σ acts on the set Hom(π1(X;x); U(r))Σ

irr and
there is a map

j : Hom(π1(X;x); U(r))Σ
irr/U(r)Σ −→ (Hom(π1(X;x); U(r))/U(r))Σ

whose image is contained in the fibre T −1({[1]}) of a type map

T : (Hom(π1(X;x); U(r))/U(r))Σ −→ H2(Σ;Z(U(r)))

which is defined as in Section 2.2. The point is to realise that the choice of
x ∈ XΣ defines an isomorphism πorb

1 (X/Σ) ' π1(X;x) o Σ for the action
of Σ on π1(X;x) described earlier. And then, Σ-equivariant representations
% : π1(X;x) −→ U(r) will extend to representations %̂ : π1(X;x) o Σ −→
U(r) o Z/2Z by setting %̂(γ, σ) := (%(γ), ε(σ)). The map

Hom(π1(X;x); U(r))Σ/U(r)Σ −→ Homε(π1(X;x) o Σ; U(r) o Σ)/U(r)
[%] 7−→ [%̂]

thus defined is always injective, because if %1, %2 : π1(X;x) −→ U(r) are
two Σ-equivariant representations such that %̂2 = (g, 1) · %̂1 for some g ∈
U(r), then, for all σ ∈ Σ,

(1, ε(σ)) = %̂2(1, σ) = (g, 1)·%̂1(1, σ) = (g, 1)(1, ε(σ))(g−1, 1) = (gθσ(g−1), 1)
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so gθσ(g−1) = 1, which means that g ∈ U(r)Σ, hence that %1 = %̂1|π1(X;x)
and %2 = %̂2|π1(X;x) are U(r)Σ-conjugate. Moreover, as shown in Proposi-
tion 2.9 of [24], the map [%] 7−→ [%̂] is surjective when H1(Σ; U(r)) = {[1]},
and when H1(Σ; U(r)) is not trivial, it is possible to modify the Σ-action
on Hom(π1(X;x); U(r)) and on U(r) by introducing a cocycle (aσ)σ∈Σ
representing a given cohomology class κ ∈ H1(Σ; U(r)), as in Section 2.2
of the present paper, to prove that all points in Homε(π1(X;x)oΣ; U(r)o
Σ)/U(r) come from Σ-equivariant representations, for different actions
of Σ.
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