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Séminaire de théorie spectrale et géométrie
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Volume 31 (2012-2014) 197-220

CURVATURE CONES AND THE RICCI FLOW.

Thomas Richard

Abstract. — This survey reviews some facts about nonnegativity conditions
on the curvature tensor of a Riemannian manifold which are preserved by the
action of the Ricci flow. The text focuses on two main points.

First we describe the known examples of preserved curvature conditions and how
they have been used to derive geometric results, in particular sphere theorems.

We then describe some recent results which give restrictions on general preserved
conditions.

The paper ends with some open questions on these matters.

The Ricci flow is the following evolution equation:

(0.1)
{
∂g
∂t = −2 Ricg(t)
g(t) = g0

where (g(t))t∈[0,T ) is a one-parameter family of smooth Riemannian metrics
on a fixed manifold M , and g0 is a given smooth Riemannian metric on
M . It was introduced by R. Hamilton in 1982 ([11]), where it was used to
study the topology of compact 3-manifolds with positive Ricci curvature.
Analytically, the Ricci flow is a degenerate parabolic system. Existence and
uniqueness for the Cauchy problem (0.1) have been established by Hamilton
in the case where M is compact and g0 is smooth.
For a general introduction to the Ricci flow, see the books [7], [25], [8].

Since Hamilton’s work, the Ricci flow has been used to solve various geo-
metric problems. We refer to the previously cited books for examples. Here
we will just briefly mention two of the biggest geometric achievements of
Ricci flow:

• The proof of Thurston’s Geometrization conjecture for 3-manifolds
by G. Perelman, ([20],[21],[22]), for an exposition of Perelman’s
proof see ([18], [2], [14]).

Acknowledgements: The author thanks Harish Seshadri for his advised comments on a
preliminary version of this text.
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• The proof of the differentiable sphere theorem, by Brendle and
Schoen ([5]), see also the books ([4],[1]).

The objects we will be dealing with in this survey have little to do with
Perelman’s work, but were pivotal in the proof of the differentiable sphere
theorem.
A priori estimates are among the most basic tools in the study of PDEs,

one can divide them into two classes: integral estimates and pointwise esti-
mates. Pointwise estimates often come from suitable maximum principles
and are thus more often encountered in the realm of parabolic or elliptic
equations. The Ricci flow being a geometric parabolic PDE, it is tempting
to look for geometrically meaningful pointwise estimates for Ricci flows.

If one looks at Hamilton’s foundational work, one sees that after having
proven short time existence and derived some variation formulas for the
Ricci flow, Hamilton proves the following result:

Proposition 0.1. — Let (M3, g0) be a compact 3-manifold with non-
negative Ricci curvature, then the solution g(t) to (0.1) with initial condi-
tion g0 satisfies Ricg(t) > 0 for all t > 0.

This is the kind of geometric pointwise estimate we will be concerned
with. More precisely, we will try to gather what is known about various
nonnegativity properties of the curvature of Riemannian manifold (M, g0)
which remain valid for solutions g(t) of the Ricci flow starting at g0.

Let us now describe the contents of this paper. Section 1 sets the scene
by introducing an abstract framework which allows us to consider non-
negativity conditions on the curvature as convex cones inside some vector
space satisfying some invariance properties: the so-called curvature cones.
We then describe how Hamilton’s maximum principle characterizes which
curvature cones lead to a nonnegativity condition on the curvature which is
preserved under the action of the Ricci flow. In section 2 we review the var-
ious known examples of Ricci flow invariant curvature conditions, and see
how they have been used to prove various sphere theorems. Section 3 deals
with known restrictions on those Ricci flow invariant curvature conditions.
In section 4 we gather some open questions on these matters.

Let us end this introduction with a disclaimer: this survey doesn’t claim
any originality in the treatment of the subject and draws heavily on the
available litterature. Its main purpose is to gather results which were only
available in separate articles before.
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1. Curvature cones

1.1. Definition and first properties

Let us consider a Riemannian manifold (M, g). We recall that its Rie-
mann curvature tensor R is the (3, 1) tensor defined by

R(X,Y )Z =
(
∇Y∇X −∇X∇Y −∇[Y,X]

)
Z

where ∇ is the Levi-Civitta connection canonically built from the metric g
and X,Y, Z are vector fields on M . (Beware here that there is no universal
convention for the sign of R.)
R enjoys the following symmetries:
• R(x, y)z = −R(y, x)z,
• R(x, y)z +R(y, z)x+R(z, x)y = 0,
• g(R(x, y)z, t) = −g(R(x, y)t, z).

Using the symmetries of R, on can build at each p ∈ M a symmetric
endomorphism R of Λ2TpM by

g(R(x ∧ y), z ∧ t) = g(R(x, y)z, t)

for x, y, z, t ∈ TpM . R is called the curvature operator of (M, g).

Remark 1.1. — Here, as in the rest of the paper, the inner product g on
Λ2TpM is the one which comes from the metric g by the following formula:

g(x ∧ y, z ∧ t) = g(x, z)g(y, t)− g(x, t)g(y, z)

(extended to non simple elements of Λ2TpM by bilinearity).
We will use the same construction to endow Λ2Rn with an inner product

〈 , 〉 coming from the standard inner product 〈 , 〉 on Rn.

Definition 1.2. — The space of algebraic curvature operators S2
BΛ2Rn

is the space of symmetric endomorphisms R of Λ2Rn which satisfy the first
Bianchi identity:

∀x, y, z, t ∈ Rn 〈R(x ∧ y), z ∧ t〉+〈R(z ∧ x), y ∧ t〉+〈R(y ∧ z), x ∧ t〉 = 0.

Remark that S2
BΛ2Rn has a natural inner product given by:

〈R,L〉 = trace(R LT ).

The space of algebraic curvature operators is the space of operators which
satisfy the same symmetries as the curvature operators of Riemannian man-
ifolds. As in the case of Riemannian manifolds, it is interesting to consider
the Ricci morphism: ρ : S2

BΛ2Rn → S2Rn which associates to an algebraic
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200 THOMAS RICHARD

curvature operator R its Ricci tensor which is a symmetric operator on Rn
defined by:

〈ρ(R)x, y〉 =
n∑
i=1
〈R(x ∧ ei), y ∧ ei〉

where (ei)16i6n is an orthonormal basis of Rn. R is said to be Einstein if
ρ(R) is a multiple of the identity operator id : Rn → Rn. Similarly, the
scalar curvature of an algebraic curvature operator is just twice its trace.
The action of O(n,R) on Rn induces the following action of O(n,R) on

S2
BΛ2Rn:

(1.1) 〈g.R(x ∧ y), z ∧ t〉 = 〈R(gx ∧ gy), gz ∧ gt〉 .

The representation of O(n,R) given by its action on S2
BΛ2Rn is decom-

posed into irreducible representations in the following way:

(1.2) S2
BΛ2Rn = R I⊕(S2

0Rn ∧ id)⊕W

where the space of Weyl curvature operators W is the kernel of the Ricci
endomorphism ρ : S2

BΛ2Rn → S2Rn and S2
0Rn∧id is the image of the space

of traceless endomorphims of Rn under the application A0 7→ A0 ∧ id. The
wedge product of two symmetric operators A,B : Rn → Rn is defined by

(A ∧B)(x ∧ y) = 1
2 (Ax ∧By +Bx ∧Ay) .

This corresponds to half the Kulkarni-Nomizu product of A andB viewed
as quadratic forms. In dimension 2, only the first summand of (1.2) exists.
In dimension 3 the W factor is 0. Starting in dimension 4, all three com-
ponents exist.
When needed, we will write R = RI + R0 + RW the decomposition of a

curvature operator along the three irreducible components of (1.2).

Definition 1.3. — A curvature cone is a closed convex cone C ⊂
S2
BΛ2Rn which is invariant under the action of O(n,R) given by (1.1).

Definition 1.4. — A curvature cone is said to be nonnegative if it
contains the identity operator I : Λ2Rn → Λ2Rn in its interior.

This definition can be tracked back to the article [9] of M. Gromov.
One should notice that we require the cone to be invariant under the full
orthogonal group O(n,R), rather than under the special orthogonal group
SO(n,R). This makes a difference only in dimension 4, where the action of
SO(4,R) on the space of Weyl tensors is not irreducible. The behavior of
these “oriented" curvature cones will be briefly addressed in Section 3.2.

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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Each nonnegative curvature cone C can be used to define a nonnegativity
condition on the curvature of Riemannian manifolds. The curvature opera-
tor R of a Riemannian manifold (M, g) is a section of the bundle S2

BΛ2TM

which is built from TM the same way S2
BΛ2Rn is built from Rn. For each

x ∈ M , one can choose an orthonormal basis of TxM to build an isomor-
phism between S2

BΛ2TxM and S2
BΛ2Rn. Thanks to the O(n,R)-invariance

of C, this allows us to embed C in S2
BΛ2TxM in a way which is independent

of the basis of TxM we started with.

Definition 1.5. — Let C be a nonnegative curvature cone.
A Riemannian manifold (M, g) has C-nonnegative curvature if for any

x ∈ M the curvature operator of (M, g) at x belongs to the previously
discussed embedding of C in S2

BΛ2TxM .
Similarly, (M, g) has positive C-curvature if its curvature operator at

each point is in the interior of C.

Let us give a couple of examples of curvature cones:
• R I, S2

0Rn ∧ id and W are curvature cones, which are not nonnega-
tive.

• {R | trace R > 0} is a nonnegative curvature curvature cone. The
corresponding nonnegativity condition is “nonnegative scalar cur-
vature”.

• Similarly the conditions “nonnegative Ricci curvature”, “nonneg-
ative sectionnal curvature” and “nonnegative curvature operator”
define nonnegative curvature cones.

With these examples in mind we can go back to the definition and try
to explain its significance.

• The fact that C is O(n,R)-invariant is mandatory to be able make
sense of the “C nonnegative curvature” condition.

• Requiring that C is a cone ensures that the associated geometric
condition is invariant under scalings, which is expected from a non-
negativity condition on the curvature.

• Asking for I to be in the interior of C is equivalent to requiring
that the round sphere has positive C-curvature. It also ensure that
the “positive C-curvature” condition is stable with respect to C2

perturbations on the space of Riemannian metrics.
• It is not so clear why one should ask for convexity of C, however
it is satisfied by all classical curvature conditions and turns out to
be a crucial hypothesis when dealing with Hamilton’s maximum
principle (see next section).

VOLUME 31 (2012-2014)



202 THOMAS RICHARD

We have the following elementary observation, whose elementary proof
is not written anywhere as far as the author knows:

Proposition 1.6. — If C is a nonnegative curvature cone which is not
the full space S2

BΛ2Rn, then C ⊂ {R | trace R > 0}.

Proof. — Let us assume that C contains a curvature operator R with
negative trace. Consider the average R̃ =

∫
O(n) g · R dg of the O(n)-orbit

of R with respect to the Haar measure dg on O(n).
The irreducibility of W and S2

0Rn ∧ id imply that the projection of R̃
on these subspaces vanishes, thus R̃ = λ I where λ < 0 since trace R̃ =
trace R < 0. Hence C contains the whole line R I and since I is in the
interior of C, this implies that C = S2

BΛ2Rn. �

1.2. Cones which behave well under the Ricci flow

We now consider the interplay between these curvature cones and the
Ricci flow. If (M, g(t)) is a Ricci flow, Hamilton has proved in [12] that
the curvature operator Rg(t) of (M, g(t)) satisfies the following evolution
equation:

∂ Rg(t)

∂t
= ∆g(t) Rg(t) +2Q(Rg(t))

where Q is the O(n,R) quadratic vector field on S2
BΛ2Rn defined by:

Q(R) = R2 + R# .

Here, R2 is just the square of R seen as an endomorphism of Λ2Rn. R# is
defined in the following way:〈

R# η, η
〉

= −1
2 trace(adω ◦R ◦ adω ◦R)

where adω : Λ2Rn → Λ2Rn is the endomorphism η 7→ [ω, η]. In the previous
formula, the Lie bracket [ , ] on Λ2Rn comes from its identification with
so(n,R) given by:

x ∧ y 7→ (u 7→ 〈x, u〉 y − 〈y, u〉x).

This expression for R# can be found in [3].
We will sometimes use the bilinear map B associated to the quadratic

map Q, it is defined in the usual way:

B(R1,R2) = 1
2
(
Q(R1 + R2)−Q(R1)−Q(R2)

)
.

We are now ready to define a Ricci flow invariant curvature cone:
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Definition 1.7. — A curvature cone C is said to be Ricci flow invariant
if for any R in the boundary ∂C of C, Q(R) ∈ TRC, the tangent cone at R
to C.

Remark 1.8. — In other words, a cone is Ricci flow invariant if at every
R ∈ ∂C, Q(R) points towards the inside of C.
This condition is equivalent to the fact that the solutions to the ODE

d
dt R = Q(R) which start inside C stay in C for positive times.

Hamilton’s maximum principle (see [12]) implies:

Theorem 1.9. — Let C be a Ricci flow invariant curvature cone.
If (M, g(t))t∈[0,T ) is a Ricci flow on a compact manifold such that (M, g(0))
has C-nonnegative curvature, then for t ∈ [0, T ), (M, g(t)) has C-non-
negative curvature.

Remark 1.10. — It could happen that a nonnegativity condition is pre-
served under the Ricci flow while the associated cone is not Ricci flow in-
variant according to our definition, however such examples are not known
to exist, as far as the knowledge of the author goes.

2. Examples of Ricci flow invariant curvature cones

2.1. First examples

We will first give two prototypes of Ricci flow invariant cones. The dis-
covery of the Ricci flow invariance of these cones is due to Hamilton.

Proposition 2.1. — CScal = {R | trace R > 0} is a Ricci flow invariant
nonnegative curvature cone.

Proof. — The boundary of CScal is the hyperplane ∂CScal = {R | trace R =
0}. The tangent cone at any R ∈ ∂CScal is actually (since CScal is a half
space) CScal itself.
Thus we only need to show that for any R whose trace vanishes,

traceQ(R) > 0. This is easily seen to be true thanks to the following
formula (which is actually valid for any R):

traceQ(R) = 2|ρ(R)|2 > 0.

(Recall that ρ : S2
BΛ2Rn → S2Rn is the map which sends a curvature

operator to its Ricci endomorphism.) �

VOLUME 31 (2012-2014)
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Proposition 2.2. — CPCO = {R |∀ω ∈ Λ2R2, 〈R ω, ω〉 > 0} is a Ricci
flow invariant nonnegative curvature cone.

Proof. — A nonnegative curvature operator R belongs to the boundary
of CPCO if and only if Ker(R) 6= {0}. In this case:

TRCPCO = {L |∀ω ∈ Ker(R), 〈Lω, ω〉 > 0}.

Thus we only need to show that for any ω ∈ Ker(R), 〈Q(R)ω, ω〉 > 0.
Recall that Q(R) = R2 + R#. By the symmetry of R,

〈
R2 ω, ω

〉
= 0, thus

we only need to deal with
〈

R# ω, ω
〉
. In order to do this we choose an

orthonormal basis ηi of Λ2Rn consisting of eigenvectors R with associated
eigenvalues λi > 0. We compute:〈

R# ω, ω
〉

= −1
2 trace(adω ◦R ◦ adω ◦R)

= −1
2
∑
i

〈[ω,R[ω,R ηi]] , ηi〉

= 1
2
∑
i

〈R[ω,R ηi], [ω, ηi]〉

= 1
2
∑
i

λi 〈R[ω, ηi], [ω, ηi]〉

> 0

since R is nonnegative. �

Let us now briefly discuss the status of the most important curvature
cones in Riemannian geometry: the cone of operators with nonnegative
sectional curvature and the cone of curvature operators with nonnegative
Ricci curvature. They are Ricci flow invariant in dimension 3. However
starting with dimension 4 these cone are not Ricci flow invariant.

For the cone CRic of curvature operators with nonnegative Ricci cur-
vature, an even stronger result is actually available: there exists compact
Kaehler surfaces (M4, g0) with nonnegative Ricci curvature whose Ricci
flow (g(t))t>0 has negative Ricci curvature in some directions. This has
been proven by Maximo in [16].
For the cone Csec of curvature operators with nonnegative sectional cur-

vature, it is quite easy to find an explicit point in the boundary of Csec
where Q doesn’t point inside Csec.
Let R be the curvature operator of CPn (n > 2) normalized to have

sectional curvature between 1 and 4. Then R̃ = R− I ∈ ∂Csec. Let Π
be a plane in Cn whose sectional curvature is 1. Let (e1, e2) be a (real)

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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basis of Π (note that Ce1 and Ce2 must be orthogonal in order to ensure
that the sectional curvature of Π for R is 1). The sectional of Π for R̃
is 0. Thus, if Q(R̃) was to point inside Csec, the sectional curvature of
Π for Q(R̃) would be nonnegative. But a quick computation shows that
Q(R̃) = 2(n + 1) R−(2n + 5) I. Hence the sectional curvature of Π with
respect to Q(R̃) is actually −3. This shows that Csec is not Ricci flow
invariant starting in dimension 4.
Thus starting in dimension 4, we need to consider more exotic curvature

cones. We will here define the most important of these Ricci flow invariant
curvature cones.
We start with the cone of 2-nonnegative curvature operators:

Definition 2.3. — C2PCO is the cone of 2-nonnegative curvature oper-
ators, more precisely it consists of all curvature operators whose two lowest
eigenvalues have positive sum.

The other cones are derived from the “positive isotropic curvature” (PIC)
condition, introduced by Micallef and Moore in [17] as an obstruction to the
existence of area minimizing two spheres in compact Riemannian manifolds.
We extend any curvature operator R to Λ2Cn in a complex linear way.

We also extend the inner products on Rn and Λ2Rn in a complex bilinear
way to Cn and Λ2Cn. The resulting complex symmetric bilinear forms will
still be denoted by 〈 , 〉. Note that these symmetric complex bilinear forms
admit isotropic vectors. A subspace V ⊂ Cn is said to be totally isotropic
if every very vector v ∈ V is isotropic (satisfies 〈v, v〉 = 0).
The complex sectional curvature of a complex plane Π in Cn is defined by:

KC(Π) = 〈R(u ∧ v), ū ∧ v̄〉

where (u, v) is a basis of Π which is orthonormal basis with respect to the
hermitian inner product on Cn induced by 〈 , 〉 and complex conjugation.

Definition 2.4. — A curvature operator R is said to have nonnega-
tive isotropic curvature (in short: is PIC) if KC(Π) > 0 for every totally
isotropic complex plane Π. The cone of PIC operators is denoted by CIC .

Remark 2.5. — The following characterization of PIC curvature oper-
ators is useful: R is PIC if and only if for every orthonormal 4-frame
(e1, e2, e3, e4):

R1313 + R1414 + R2323 + R2424−2 R1234 > 0

where Rijkl stands for 〈R(ei ∧ ej), ek ∧ el〉.

VOLUME 31 (2012-2014)
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Definition 2.6. — A curvature operator R : Λ2Rn → Λ2Rn is PIC1
if its natural extension R̃ : Λ2Rn+1 → Λ2Rn+1 is PIC. The cone of PIC1
operators is denoted by CIC1.

Definition 2.7. — A curvature operator R : Λ2Rn → Λ2Rn is PIC2
if its natural extension R̃ : Λ2Rn+2 → Λ2Rn+2 is PIC. The cone of PIC2
operators is denoted by CIC2.

One obviously has that CIC2 ⊂ CIC1 ⊂ CIC .

Theorem 2.8. — The nonnegative curvature cones C2PCO, CIC , CIC1
and CIC2 are Ricci flow invariant.

The invariance of C2PCO is due to Chen ([6]). The invariance of CIC is
due to Brendle and Schoen ([5]) and, independently, Nguyen ([19]). The
invariance of CIC1 and CIC2 follows immediately from the invariance of
CIC and the fact that the ODE R′ = Q(R) respects product structures. It
was first pointed out in [5].
We will see in the next section a unified proof of the invariance of these

four cones, due to Wilking.

2.2. Wilking’s construction

We now describe a construction due to Wilking which recovers most of
the Ricci flow invariant curvature conditions in one relatively easy proof.
This construction was published in [26].

Before stating the criterion, recall that Λ2Rn is naturally isomorphic
to so(n,R). And not the action of SO(n,R) on Λ2Rn is actually just the
adjoint action of SO(n,R) on its Lie algebra so(n,R), thus we will denote
the action an element g ∈ SO(n,R) on ω ∈ so(n,R) ' Λ2Rn by Adg ω,
moreover we will denote the Lie bracket [ω, η] = adω η.
We will also consider the action of the complex Lie group SO(n,C) on

so(n,C) ' Λ2Cn.

Definition 2.9. — Let S be a subset of the complex Lie algebra
so(n,C) ' Λ2Cn which is invariant under the action of SO(n,C). The
nonnegative curvature cone

C(S) =
{

R ∈ S2
BΛ2Rn

∣∣ 〈R(ω), ω̄〉 > 0 for all ω ∈ S
}

is called the Wilking Cone associated with S.

Theorem 2.10 ([26]). — Any Wilking cone C(S) is Ricci flow invariant.
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R nonnegative R PIC2

R 2-nonnegative R PIC1

Sectional cur-
vature ≥ 0

Ricci
curvature ≥ 0

R PIC
Scalar

curvature ≥ 0

Conditions in rectangular

boxes are not preserved except

in dimension 3. Condition in

rounded boxes or circles are

preserved in any dimension.

Moreover, conditions in circle

satisfy a sphere theorem

for compact manifolds with

positive C-curvature.

Figure 2.1. Behavior of classical curvature conditions under Ricci flow.

Sketch of proof: Let R ∈ ∂C(S), and let ω be any element of S such that
〈R ω, ω̄〉 = 0. We need to show that 〈Q(R)ω, ω̄〉 > 0. We obviously have
that

〈
R2 ω, ω̄

〉
=
〈
R ω,R ω

〉
> 0.

We now show that
〈

R# ω, ω̄
〉
> 0. Let η be any element of so(n,C), and

consider the function:

t 7→
〈
R Adetη ω,Adetη ω

〉
.

It is nonnegative and attain its minimum at t = 0. Differentiating twice
and evaluating at t = 0, we get that:

〈R(adη adη ω, ω̄〉+ 2 〈R adη ω, adη̄ ω̄〉+ 〈R ω, adη̄ adη̄ ω̄〉 > 0.

VOLUME 31 (2012-2014)
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Replacing η by iη and summing we get that:

〈R adη ω, adη̄ ω̄〉 > 0.

Hence:
〈R adω η, adω̄ η̄〉 > 0.

This shows two things. First the Hermitian operator − adω̄ ◦R ◦ adω and its
conjugate L = − adω ◦R ◦ adω̄ are nonnegative. Second, R is nonnegative
as an Hermitian operator on the image of adω (which contains the image
of L).
These two things together imply that:〈

R# ω, ω̄
〉

= −1
2 trace(L R) = −1

2 trace(R L) > 0.

�

Let us see now how this can be used to recover the Ricci flow invariance
of various curvature cones (see [26] for more details):

• Choosing S to be the whole so(n,C), we recover the invariance of
CPCO.

• If we let S = {ω ∈ so(n,C) | ω2 = 0}, we get the invariance of
C2PCO.

• With S = {ω ∈ so(n,C) | ω2 = 0, rankω = 2}, we have the
invariance of CIC .

• Letting S = {ω ∈ so(n,C) | ω3 = 0, rankω = 2}, we directly get
the invariance of CIC1.

• Finally, with S = {ω ∈ so(n,C) | rankω = 2}, we obtain the
invariance of CIC2.

2.3. One parameter families and differentiable sphere theorems

Following the seminal work of Hamilton, one of the great successes of
Ricci flow has been the proof of “differentiable sphere theorems” under var-
ious positive curvature assumptions. All these theorems are of the following
form: “Let (M, g0) be a compact manifold with positive C-curvature, then
M admits a constant sectional curvature metric and is thus diffeomorphic
to a spherical space form”.
The proof of this kind of theorem using Ricci flow has a mandatory step,

the construction of a so called pinching set:

Definition 2.11. — A closed convex O(n)-invariant F ⊂ S2
BΛ2Rn is a

called a pinching set if:

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)
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R+ I

C F

K

Figure 2.2. A pinching set F containing a compact K inside a cone C
with the pinching property.

• It is Ricci flow invariant.
• As λ goes to 0, λF converges(1) to R+ I.

Remark 2.12. — A pinching set has to be a subset of the half space
{R | trace R > 0}.

Definition 2.13. — A curvature cone C is said to have the pinching
property if for any compact K contained in the interior of C, there is a
pinching set F containing K.

The interest of these definitions lies in the following proposition:

Proposition 2.14 ([12],[3]). — Let C be curvature cone with the pinch-
ing property, then any compact manifold with positive C-curvature admits
a metric with constant positive sectionnal curvature.

Sketch of proof: Let (M, g0) be a compact manifold with positive C-
curvature. By compactness ofM , there exist a compact K contained in the
interior of C such that Rg0(x) ∈ K for all x ∈M .
Since g0 has positive scalar curvature, the Ricci flow g(t) starting at g0

is defined only on some interval [0, T ) where T < ∞ and the curvature of
g(t) blows up as t→ T . We consider a sequence of times ti < T converging

(1)By this we mean that for every compact K ⊂ S2
BΛ2Rn, (λF ) ∩K converges in the

Hausdorff topology to (R+) I∩K.
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to T , and points xi ∈M where the maximum of the norm of the curvature
tensor is attained. We let Ci =

∣∣Rg(ti) (xi)
∣∣ and consider the sequence of

parabolic blow ups centered at xi:

gi(t) = Cigi

(
ti + t

Ci

)
.

Perelman’s no local collapsing theorem ensures that this sequence of Ricci
flow converges, up to a subsequence, to some limiting Ricci flow (M∞, g∞(t))
defined on some time interval containing 0.
Let F be a pinching set containing K, since F is Ricci flow invariant, the

curvature operator of of g(t) satisfies Rg(t)(x) ∈ F for every x ∈ M and
t ∈ [0, T ), thus the curvature operator of gi(t) satisfies:

Rgi(t) = 1
Ci

R
g
(
ti+

t
Ki

) ∈ 1
Ci
F.

Letting i go to infinity, we get that Rg∞(t) ∈ R+ I. Hence by Schur Lemma,
(M∞, g∞(t)) has constant positive sectional curvature, end is thus compact.
The compactness of M∞ implies that M is diffeomorphic to M∞. �

Remark 2.15. — One should note that this proposition alone doesn’t
show that the Ricci flow converges (after a suitable normalisation) to a
metric of constant curvature, this can actually be achieved but requires
more work see for instance the book [4] by Brendle.

The problem is thus reduced to the construction of suitable pinching
sets. A powerful method to achieve this is to build “pinching families”
of curvature cones, which are 1-parameter families (Cs)s∈[0,1) of curvature
cones which start at the curvature condition under consideration and pinch
towards the curvature cone R+ I, which corresponds to constant positive
sectional curvature.

Definition 2.16. — A one parameter family (Cs)s∈[0,1) of nonnegative
curvature cones is called a pinching family if:

• s 7→ Cs is continuous.
• as s→ 1, Cs converges to R+ I.
• for each s > 0, every R ∈ Cs\{0} has positive trace.
• every Cs is Ricci flow invariant. Moreover for any s > 0 and any
non zero R ∈ ∂Cs, Q(R) belongs to the interior of TRCs. (2)

The idea can be tracked back to Hamilton’s first paper on the Ricci
flow of 3-manifolds [11], although it was not really stressed. However, the

(2)One could say that Q points strictly towards the inside of Cs.
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R+ I

C0

Figure 2.3. A pinching family

definition we give comes from the work of Boehm and Wilking [3]. In this
important paper, Boehm and Wilking also show the following proposition,
which says that the existence of a pinching family is actually enough to
ensure the existence of a pinching set:

Theorem 2.17. — Let (Cs)s∈[0,1) be a pinching family. Then C0 has the
pinching property.

Remark 2.18. — From a PDE point of view, the strength of this result
can be seen in the following way: it allows to build from a family of scale
invariant estimates (the pinching family) a self improving non scale invari-
ant estimate (the pinching set). Usually, non scale invariant estimates are
harder to obtain.

Let us now give some examples of pinching families, the first example is
specific to dimension 3, and is implicit in Hamilton’s original work:

Proposition 2.19 ([11]). — The curvature cones

Cs =
{

R ∈ S2
BΛ2R3

∣∣∣∣ ρ(R) > 2s
3 (trace R) id > 0

}
for s ∈ [0, 1) form a pinching family such that C0 = {R |ρ(R) > 0}.

This gives a possible proof of Hamilton’s result: any compact 3-manifold
with positive Ricci curvature admits a metric with constant sectional cur-
vature.
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Most of the differentiable sphere theorems obtained through Ricci flow
can be reduced to the construction of suitable pinching families. (See for
instance [13], [15], [3], [5].)

The older previously cited works ([13], [15]) build their pinching fam-
ilies through ad-hoc constructions. A significant step forward was made
by Boehm and Wilking in [3]: they used O(n)-equivariant transformations
formations

`a,b(R) = RI +aR0 +bRW
to build pinching families from previously known Ricci flow invariant cur-
vature cones.
More precisely, they considered, for a fixed Ricci flow invariant curvature

cone Ĉ, the cones:

Cs =
{

R
∣∣∣`a(s),b(s) (R) ∈ Ĉ and ρ(R) > c(s)(trace R) id > 0

}
and showed that, for suitable choices of a(s), b(s) and c(s), for Ĉ = C2PCO,
the cones Cs form a pinching family.
This construction has been re-used by Brendle and Schoen in their proof

of the differentiable sphere theorem for 1
4 -pinched manifold to build a pinch-

ing family starting at the cone CIC2, see [5].
Let us end this section by mentioning Brendle’s sphere theorem, in the

language we have developed it can phrased as: the nonnegative curvature
cone CIC1 has the pinching property. However Brendle’s proof is different
from the strategy of proof we have outlined here: it doesn’t show the exis-
tence of a pinching family starting at CIC1, but directly show the existence
of a pinching set. See [5] or [4] for details.

3. Restrictions on Ricci flow invariant curvature cones

The previous sections have stressed the importance of Ricci invariant
curvature cones, and showed which kind of examples are available. Also,
it should be noted that it is often computationally hard to prove that a
curvature cone is invariant.

It is thus important to find necessary conditions satisfied by every Ricci
flow invariant curvature cones, so that as many as possible curvature cones
one can think of can be discarded in advance without any computation.

This idea has not been investigated until recently, and only a handful of
results are available now. We present them here.
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3.1. Dimension independent restrictions

The first restrictions that were obtained dealt only with Wilking cones.
These can be found in [10] by Gururaja, Maity and Seshadri.

Theorem 3.1. — Let C ⊂ S2
BΛ2Rn be a Wilking cone with n > 5, then

C is contained in the cone CIC of manifolds with nonnegative isotropic
curvature.

The proof takes advantage of the Wilking cone property by using some
advanced results on the orbits of the adjoint action of Lie groups. In the
same paper, the Wilking cones which have the pinching property were also
characterized:

Theorem 3.2. — Let C ⊂ S2
BΛ2Rn be a Wilking cone with n > 5,

assume that C has the pinching property, then C is contained in the cone
CIC1.

The next results do not require the Wilking assumptions. They come
from the article[23], by H. Seshadri and the author.

Theorem 3.3. — Let C ⊂ S2
BΛ2Rn, n > 4, be a Ricci flow invariant

curvature cone, assume C contains W, the space of Ricci flat curvature
operators, then C is either the cone CScal or the whole space S2

BΛ2Rn.

Remark 3.4. — For representation theoretic reasons, any curvature cone
which contains a non-vanishing tensor W ∈ W automatically contains the
whole space W. This will be useful in the applications.

Remark 3.5. — Recall that nonnegative Ricci curvature is not preserved
under Ricci flow in dimension 4 and above (see Section 2.1). It is thus
quite natural to ask wether some weaker condition which is implied by
nonnegative Ricci curvature is preserved, as the results proven using this
condition would apply to the important class of manifolds with nonnegative
Ricci curvature. The above result shows the only condition one can get
following this idea is the “nonnegative scalar curvature” condition.

Sketch of proof:We argue by contradiction. Let C be a Ricci flow invariant
curvature cone which satisfies the hypothesis of the theorem but isn’t one
of the cones CScal or S2

BΛ2Rn. Examining the decomposition of S2
BΛ2Rn

as a representation of O(n) into irreducible components, we see that these
hypotheses imply that C doesn’t contain any non zero tensor in S2

0Rn (see
Figure 3.1).
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R I

S2
0Rn ∧ id

W

R I

S2
0Rn ∧ id

•R

•
R0

R+tW

∂C

Q(R,W)

Figure 3.1. A cone which contains W must contain S2
0Rn ∧ id.

The proof is based on the following observation: let R be a curvature
operator in ∂C, and W be a curvature operator in W, then R +tW ∈ ∂C
and the Ricci flow invariance gives that:

Q(R +tW) ∈ TR +tWC = TRC.

We now compute:

Q(R +tW) = Q(R) + 2tQ(R,W) + t2Q(W) ∈ TRC.

We remark that Q(W) ∈ W ⊂ TRC. Since W is a vector space, −Q(W) ∈
TRC. We conclude that Q(R) + 2tQ(R,W) belongs to TRC as a conical
combination of two elements of TRC. Dividing by 2t and letting t go to
infinity, we get that Q(R,W) ∈ TRC.

To end the proof we produce explicit operators R0 ∈ S2
0Rn ∧ id, W ∈ W

such that :
• There exists a > 0 such that R = I +aR0 belongs to C but R =

I +(a+ ε) R0 is outside of C for every ε > 0.
• Q(R,W) = R0.

This implies that Q(R,W) which should be in TRC, points outside C, this
contradicts the Ricci flow invariance of C. See Figure 3.1. �
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The following corollary can also be found in [23]:

Corollary 3.6. — Let C ⊂ S2
BΛ2Rn, n > 4, be a Ricci flow invariant

curvature cone, assume C contains in its interior the curvature operator
of a compact Einstein symmetric space with non constant nonnegative
sectionnal curvature (such as CPn or Sn × Sn), then C is either the cone
CScal or the whole space S2

BΛ2Rn.

Remark 3.7. — This theorem explains the following observation,
whereas the complex projective space CPn is the second example one usu-
ally gives when asked for a manifolds of positive curvature, when one con-
siders Ricci flow invariant curvature conditions, it only has nonnegative
curvature at best. The above theorem shows that “nonnegative scalar cur-
vature” is the only Ricci flow invariant curvature condition for which CPn

is positively curved.

Remark 3.8. — As in every even dimension 2n, with n > 2, CPn is
an Einstein symmetric space with non constant positive sectional curva-
ture, the above theorem shows that in even dimensions there is no Ricci
flow invariant curvature cone which contains the cone of operators with
nonnegative sectional curvature.

Sketch of proof: Let R be the curvature operator of an Einstein sym-
metric space, a simple computation shows that Q(R) = λR (using for
instance [4], Proposition 2.11). Since R is Einstein, we can decompose it as
R = RI + RW . One then observes that solutions to R′ = Q(R) whose initial
condition is of the form αRI +βRW remain of this form. The components
α and β evolve according to the differential equations:

(3.1)
{
α′ = λα2

β′ = λβ2.

This system can be explicitly integrated and one sees from this that that
all solutions escape to infinity and fall into three classes (see Figure 3.2):

• The diagonal is the trajectory of a solution.
• When the initial condition lies below the diagonal, the trajectory is
part of an hyperbola which is asymptotic to a horizontal line.

• When the initial condition lies above the diagonal, the trajectory is
part of an hyperbola which is asymptotic to a vertical line.

Now if we assume that R is in the interior of C, then C must contain
some trajectory whose initial condition is below the diagonal, since this
trajectory will be asymptotic to an horizontal line, the fact that C is closed
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and convex implies that C must contain the “x-axis”. Hence C contains RW
which is not zero because we assumed that R is the curvature operator of
an Einstein symmetric space with non constant sectional curvature. Thus
C contains W and we can apply the previous theorem to conclude that C
is one of the cones CScal or the whole space S2

BΛ2Rn. �

RI

RW

•R

Figure 3.2. Trajectories of R′ = Q(R) in the (RI,RW) plane, where
R is the curvature operator of an Einstein symmetric space with non
constant sectional curvature. (Equation (3.1).)

3.2. The case of dimension 4

Besides these dimension independent restrictions, we can prove much
stronger results in dimension 4.

When we consider S2
BΛ2R4 as a representation of O(4,R) we have the

usual decomposition of S2
BΛ2R4 into irreducible representations:

S2
BΛ2R4 = R I⊕(S2

0R4 ∧ id)⊕W.

However, when one considers only the action of SO(4,R) on S2
BΛ2R4, the

componentW is no longer irreducible and splits asW =W+⊕W−, the self
dual and anti self dual Weyl tensors. This fact is specific to dimension 4 and
can be linked to the fact that the Lie algebra so(n,R) is irreducible except
when n = 4 where we have the splitting: so(4,R) ' so(3,R)⊕ so(3,R).

This reducibility makes it interesting to weaken the requirements made
for curvature cones:
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Definition 3.9. — An oriented curvature cone is a closed convex cone
C ⊂ S2

BΛ2R4 which is invariant under the action of SO(4,R).

Remark 3.10. — We define a nonnegative oriented curvature cone and
Ricci flow invariant oriented curvature cone in the same way as their un-
oriented counterparts. The main difference we will encounter is that C-
nonnegative curvature will now only make sense for oriented Riemannian
4-manifolds.

Let us give an example of a nonnegative oriented curvature cone which
is not a curvature cone:

Definition 3.11. — A curvature operator R ∈ S2
BΛ2R4 is to be posi-

tively half-PIC (in short PIC+) if and only if for every positively oriented
orthonormal 4-frame (e1, e2, e3, e4):

(3.2) R1313 + R1414 + R2323 + R2424−2 R1234 > 0.

The oriented curvature cone of all such curvature operators will be denoted
by CIC+ .
Similarly, the cone CIC− of negatively half-PIC curvature operators is

defined by requiring inequality (3.2) to hold for every negatively oriented
4-frame.

Remark 3.12. — The cones CIC+ and CIC− lie between the cones CScal
and CIC , and are Wilking cones. It can also be proven that they are Ricci
flow invariant.

Example 3.13. — Besides PIC 4-manifolds such as S4 and S3 ×R, an-
other example of 4-manifold with strictly CIC+ -positive curvature is given
by CP2, the complex projective plane with the Fubini-Study metric and
reversed orientation.

In [24], H. Seshadri and the author used the results from [23] to prove that
the cones CIC+ and CIC− enjoy some kind of maximality among oriented
Ricci flow invariant nonnegative curvature cones in dimension 4.

Theorem 3.14. — Let C ⊂ S2
BΛ2R4 be an oriented curvature cone.

• If C ( CScal, then C is contained in either CIC+ or CIC− .
• If C is an (unoriented) curvature cone and C ( CScal, then C is
contained in CIC .

VOLUME 31 (2012-2014)



218 THOMAS RICHARD

4. Open questions

We end this survey by some open questions about Ricci flow invariant
curvature cones.

We have proved in Section 3.1 that, in dimension 4 and above, no Ricci
flow invariant cone can contain every curvature operator with nonnegative
Ricci curvature, except the cone CScal. We also saw that, in even dimension
greater than 4, no Ricci flow invariant cone can contain every curvature
operator with nonnegative sectional curvature, except the cone CScal. It is
thus natural to ask:

Question 4.1. — In odd dimension 5 and above, does there exist Ricci
flow invariant cones which contain every curvature operator with nonneg-
ative sectional curvature ?

In a similar but slightly more ambitious trend, one might want to find the
biggest non trivial Ricci flow invariant cone. We already have a candidate
for this:

Question 4.2. — What are the biggest Ricci flow invariant curvature
cones ? Is there any curvature cone, other that CScal which is not contained
the cone CIC ?

The last section answers this question affirmatively in dimension 4 (if
one ignores oriented curvature cones). We also saw in the beginning of
Section 3.1 that the answer is yes when the investigation is restricted to
Wilking cones.

Answering the following questions would make the matter of finding
sphere theorems using Ricci flow closed:

Question 4.3. — Does there exist a Ricci flow invariant curvature cone
with the pinching property which is not contained in CIC1 ? Is there a
maximal Ricci flow invariant curvature cone with the pinching property ?

We have seen in Section 3.1 that CIC1 is maximal among Wilking cones
with the pinching property.
A Ricci flow with surgeries has been constructed for general closed 3-

manifolds by Perelman and for closed PIC 4-manifolds by Hamilton. It
is still unknown wether or not a Ricci flow with surgeries can be built for
PIC manifolds of arbitrary dimensions. Next question is a possible step
towards this goal:

Question 4.4. — Can one pinch the cone CIC towards a smaller cone?
For instance, can one find a continuous family of cones (Cs)s∈[0,1] such that:
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• C0 = CIC ,
• for each s ∈ (0, 1), Q points strictly inwards Cs,
• C1 is a “geometrically constraining” cone, such as CPCO or CIC1.

The existence of such a “generalized pinching family” should imply that
blow up of singularities of PIC Ricci flows should have C1-nonnegative
curvature, which would make their study easier. This would play a role
similar to the role of the Hamilton-Ivey estimate in dimension 3.
It would also be interesting to see how these results can be adapted

to the Kaehler-Ricci flow. Note first that Wilking’s construction works in
the Kaehler case with only minor modifications (this is treated in [26]).
However, for results in the spirit of Section 3, it seems that a better un-
derstanding of how Q interacts with the representation theory of Kaehler
curvature operators is needed.
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