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Séminaire de théorie spectrale et géométrie
Grenoble
Volume 31 (2012-2014) 71-89

THE SEMI-CLASSICAL ERGODIC THEOREM FOR
DISCONTINUOUS METRICS

Yves Colin de Verdière

Abstract. — In this paper, we present an extension of the classical Quantum
ergodicity Theorem, due to Shnirelman, to the case of Laplacians with discontinous
metrics along interfaces. The “geodesic flow” is then no more a flow, but a Markov
process due to the fact that rays can by reflected or refracted at the interfaces. We
give also an example build by gluing together two flat Euclidean disks.

Introduction

Recently, Dmitry Jakobson, Yuri Safarov and Alexander Strohmaier, in
the paper [9], proved a Quantum Ergodicity Theorem (denoted QE in what
follows) for piecewise smooth Riemannian manifolds. In this lecture, I will
present the result as well as the main ideas of the proof. I will also provide
a simple example where the result applies. The message here is that, due to
the possibilities of reflexion or refraction of waves along the hypersurface
of discontinuity of the metric, the geodesic flow is no more deterministic,
but can be viewed as random process. Ergodicity makes sense for such
a Markov process. The main result can be summarized as follows: if the
geodesic flow is ergodic and if there are few recombining geodesics, then
we have QE.
Let us first recall the standard Quantum Ergodicity Theorem, due es-

sentially to A. Shnirelman (see [11, 16, 13]):

Theorem. — Let (X, g) be a smooth closed Riemannian manifold and
assume that the geodesic flow of (X, g) is ergodic. Let us denote by
(φj)j=1,··· an orthonormal eigen-basis of L2(X, |dx|g) with ∆gφj = λjφj .
Then there exists a density one sub-sequence (λjk)k=1,··· of the sequence of
eigenvalues so that, for any pseudo-differential operator A of degree 0 on



72 YVES COLIN DE VERDIÈRE

X, we have
lim
k→∞

〈Aφjk |φjk〉 =
∫
S?X

σ(A)dL

where σ(A) : T ?X → R is the principal symbol of A and dL is the normal-
ized Liouville measure on the unit cotangent bundle S?X.

The previous result applies in particular to manifolds of < 0 sectional
curvature. A more intuitive corollary is

Corollary. — If D ⊂ X is a domain with piecewise smooth boundary,

lim
k→∞

∫
D

|φjk |2|dx|g = |D|
|X|

where |D| denotes the g−volume of D.

This result has been extended to manifolds with boundary in [8, 17] and
also to sub-Riemannian Laplacians of contact type in dimension 3 in [15].
The extension to piecewise smooth metrics proposed in [9] is more subtle,
because on such manifolds the geodesic flow is not a classical flow associated
to a vector field: a ray arriving on an interface splits into a reflected and
a refracted ray. To such a situation there is a naturally attached Markov
process, also called the geodesic flow, describing the propagation of the
energy of high frequency waves. The ergodicity of the geodesic flow as a
Markov process is a natural assumption for an extension of the QE The-
orem. However, a piece is missing, because the propagation of the energy
is well defined only if there is no interferences between different geodesics
which coïncide outside a finite time interval. So that another assumption is
needed: such pairs of “recombining geodesics” are of measure 0. Hopefully
this assumption is generically satisfied. However, as we will see, it is not
satisfied in the very close context of Quantum Graphs. In this case, it is
known that QE does not hold: see [4] for star graphs and [14] for the general
case.

1. Laplace-Beltrami operators for discontinuous metrics

Definition 1.1. — If X is a smooth closed manifold of dimension d, a
measurable Riemannian metric g onX is uniform if, for a smooth Riemann-
ian metric g0 on X, there exist two constants C1 and C2, with 0 < C1 < C2,
so that 0 < C1g0 6 g 6 C2g0.

The Laplace operator ∆g on (X, g) is the self-adjoint operator on
L2(X, |dx|g) defined as the Friedrichs extension of the closed quadratic
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form Q(f) =
∫
X
‖df‖2g|dx|g whose domain is the Sobolev space H1(X),

which is independent of g as soon as g is uniform.

Question 1.2. — Is the Weyl asymptotic formula valid for such
a metric?

Definition 1.3. — Let us give a smooth closed manifoldX. A piecewise
smooth Riemannian metric g on X is a (uniform) Riemannian metric which
is smooth outside a closed smooth hyper-surface Xsing of X and so that the
metric g extends smoothly from both sides of the open set Xreg := X\Xsing
to the metric completion of Xreg. The metric g is in general discontinuous
on Xsing.

The previous definition can be extended to cases where X is a simplicial
complex which is not a manifold, for example X can be a graph viewed as
a 1D singular manifold, such a graph is sometimes called a Quantum graph
or a metric graph.

If (X, g) is a piecewise smooth Riemannian metric, the Laplace-Beltrami
operator ∆g can be defined as in the Definition 1.1.

Proposition 1.4. — The domain of ∆g is the space of functions f onX
which are in the Sobolev spaces H1(X) and H2(Xreg) and whose weighted
sum of the two normal derivatives at any point of the smooth part of Xsing
vanishes where the weights at the point x of Xsing are the densities of the
Riemannian volume of the limit metrics on the corresponding sides.

We call these conditions on the behavior of f across Xsing the continuity
conditions.

2. Propagation of waves across Xsing

In order to see the effect of the continuity conditions on the wave prop-
agation, we take a simple example with constant coefficients. This will
give the rules for the propagation of the high frequency waves along the
geodesics.
Let us consider on R2 = Rx×Ry the metric g given by g = n2

+(dx2 +dy2)
on y > 0 and g = n2

−(dx2 + dy2) on y < 0. An incoming plane wave with
speed 1 in y > 0 is defined by uin(x, y) = exp(i(xξ − yη)) with η > 0 and
with ξ2 + η2 = n2

+.
In order to satisfy the continuity condition we have to add to u+ a

reflected wave ur on y > 0 and a refracted wave uρ on y < 0 of the

VOLUME 31 (2012-2014)



74 YVES COLIN DE VERDIÈRE

Figure 2.1. an incident geodesic with the reflected and the refracted rays.

following forms:

ur = tre
i(xξ+yη), uρ = tρe

i(xξ−yη′)

with η′ > 0 and ξ2 + η′2 = n2
−. We have total reflexion if |ξ| > n−. In

this case the refracted wave is exponentially decaying. The angles ι± of the
rays with the normals to the y−axis satisfy sin ι± = ξ/n± which gives the
Snell law

n+ sin ι+ = n− sin ι− .
The coefficients tr and tρ have to satisfy: 1 + tr = tρ (continuity of u along
y = 0) and n+η(1 − tr) = n−tρη

′ (vanishing of the sum of the weighted
normal derivatives). This allows to compute tr and tρ:

tr = 1− α
1 + α

, tρ = 2
1 + α

with α = n−η
′

n+η−
.

The conservation of the energy density can be checked as follows: take a
compact domain D ⊂ Y+ and let Dr and Dρ be the domains obtained from
D following the rays associated to the incident plane wave during a large
enough time. Then∫

D

|duin|2|dxg+ | =
∫
Dr

|dur|2|dxg+ |+
∫
Dρ

|duρ|2|dxg− | .

Summarizing, we have:
• The refracted wave is exponentially decaying if |ξ| > n−.
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• The angles of the incident and refracted rays with the normals sat-
isfy the Snell law.

• The conservation of energy expresses as

t2r + αt2ρ = 1 .

We define pr = t2r and pρ = αt2ρ = 1− pr.
The propagation of waves is given formally by the “unitary wave group”

U(t) := exp(−it
√

∆). The propagation of high frequency waves along
geodesics arriving transversely to Xsing is described as a sum of two Fourier
Integral Operator’s: U(t) = Ur(t) + Uρ(t). The associated canonical trans-
formations Φr(t) and Φρ(t) are the reflected and the refracted geodesic
flows. The symbols satisfy the usual transport equations in Xreg and are
multiplied by tr (resp. tρ) for the reflected (resp. refracted wave). The
proof follows Chazarain’s method [5]. We can apply Egorov Theorem with
A being a pseudo-differential operator of principal symbol a: the opera-
tors Ur(−t)AUr(t) (resp. Uρ(−t)AUρ(t)) are pseudo-differential operators
of principal symbols pra (Φr(t)) (resp. pρa (Φρ(t))).

3. The geodesic flow as a Markov process

We will make the following Assumptions:
(1) The set of geodesics which are not defined for all times has mea-

sure 0.
(2) The set of geodesics which are tangent for some time to the hyper-

surface of discontinuities of the metric has measure 0.
The Assumptions (2) is always true. The Assumption (1) is probably

true in the generic case; the bad geodesics hit the Xsing infinitely many
times in a finite time interval!
If a geodesic starting in Xreg hits Xsing transversely, it can be reflected

or refracted, or totally reflected. We associate probabilities to both events
as follows:

Definition 3.1. — The probability of being reflected is given by
pr = |tr|2, with tr defined in Section 2, and the probability of being re-
fracted is given by pρ = 1− pr.

Remark 3.2. — Note that pr and pρ are functions on the unit ball bun-
dles Y± of T ?Xsing. Moreover, pr (resp. pρ) can be extended by 0 on Y−\Y+
(resp. on Y+ \ Y−) and these extensions are continuous.

VOLUME 31 (2012-2014)
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This way the geodesic flow is a well defined Markov process on the unit
cotangent bundle denoted by Z. We will associate to the geodesic flow
a semi-group of positive operators on L∞(Z) defined as follows: to any
geodesic γ : [0, t] → X crossing Xsing at a finite number of points, we
associate a positive weight w(γ) which is the product of the probability
transitions at the crossing points. If t > 0 is fixed, almost all geodesics
cross Xsing at a finite number of points on the interval [0, t], and we define

Gtf(z) =
∑

γ∈Ω, γ(0)=z

w
(
γ|[0,t]

)
f(γ(t)) .

We have Gt+s = Gt ◦Gs and Gt1 = 1.

Definition 3.3. — If ω is the symplectic form on T ?X, the Liouville
measure on the unit cotangent bundle is the measure

∣∣∧dω/dg?∣∣, normalized
so that it is a probability measure denoted dL.

Proposition 3.4. — The Liouville measure on the unit cotangent bun-
dle is invariant by the geodesic flow: it means that

∫
Z
GtfdL =

∫
fdL. In

particular, Gt extends to a positive operator on L1(Z, dL) of norm 1.

Definition 3.5. — The geodesic flow is ergodic if and only if the only
measurable functions which are invariant by the semi-group (Gt)t>0 are
the functions which are constant outside a measure 0 set.

As a Corollary of ergodicity, we get the

Proposition 3.6. — If the geodesic flow is ergodic and f ∈ L1(Z, dL),
we have, for almost all z ∈ Z,

lim
T→+∞

1
T

∫ T

0
Gtf(z)dt =

∫
S?X

fdL .

This is proved using the point-wise ergodic Theorem given in [7], Theo-
rem 5, page 690 or in [10], Theorem 3.7, page 217:

Theorem 3.7. — If (Gt)t>0 is a strongly measurable semi-group on
L1(µ) whose norms on L1(µ) and L∞(µ) are bounded by 1, then, for f ∈ L1,
the averages

1
T

∫ T

0
Gtf(z)dt

converge for almost all z as T → +∞. The limit function z → f̄(z) is
invariant by Gt for all t.

This last property will be crucial for the QE Theorem.
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4. How to prove ergodicity?

4.1. Invariant sets

Definition 4.1. — A measurable subset A of Z is said to be invariant
by the geodesic flow if, for almost all z ∈ Z and for all t > 0, GtχA(z) =
χA(z).

Lemma 4.2. — Let f : Z → R be an L∞ function which is invariant by
Gt, t > 0. Then f is measurable with respect to the σ−algebra generated
by invariant sets.

This is an easy consequence of Lemma 3.3, page 126 in [10]. From this,
we get:

Theorem 4.3. — The geodesic flow is ergodic if and only if any set
invariant by the geodesic flow is of Liouville measure 0 or 1.

Using invariance for small values of t, one gets:

Theorem 4.4. — If A is an invariant set by the geodesic flow, then the
set Ā of points which are on some smooth geodesic arc in Xreg crossing A
satisfies |Ā \A| = 0.

4.2. Poincaré maps

Let us assume for simplicity that Xsing cuts X into two open disjoint
parts X \ Xsing = X+ ∪ X−. Let us denote by Y± the unit ball bundles
for g?± in T ?Xsing. Let z = (x, η) ∈ Y+. There is a unique geodesic γ in
X+ so that γ(0) = (x, ξ) with g?+(ξ) = 1 and ξ|TxXsing = η. Let t > 0
be the first return time of γ on Xsing and (x′, ξ′) = γ(t). Then we define
P+(z) = (x′, ξ′|Tx′Xsing

). We define in a similar way P−. It follows from the
Poincaré recurrence Theorem that the map P+ (resp. P−) is defined for
almost every point of Y+ (resp. Y−). Let us consider the traces A± of a set
A on Y±. Then, if A is invariant by the geodesic flow, A+∪A− is equivalent
to a set invariant by P+ and P− modulo sets of measure 0. We get:

Theorem 4.5. — If Xsing is non empty, the geodesic flow is ergodic if
and only if almost all geodesics cross Xsing AND if any set C ⊂ Y+ ∪ Y−
invariant by P+ and P− is of measure 0 or has a complement of measure 0.

VOLUME 31 (2012-2014)
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5. The main result: semi-classical ergodicity for
ray-splitting billiards

Let us start with the

Definition 5.1. — Two geodesics γ : R → X are called recombining
geodesics if they coïncide outside a compact interval of R.

We will use the genericity Assumptions described in Section 3 and the
following one

(3) The set of Cauchy data of recombining classical trajectories has
measure 0.

Remark 5.2. — Assumption (3) is probably generically true. It is how-
ever not true for graphs not homeomorphic to a circle or an interval. See
Section 8 for an example where genericity is proved.

The Assumptions (1) to (3) are probably generically true. Assumptions
(1) and (2) are already present in the QE Theorem for manifolds with
boundary. Assumption (3) is the more important: it is needed in order to
be able to follow the propagation of the energy of waves by transport along
the geodesic flow like in the Egorov Theorem.

Theorem 5.3. — Under the Assumptions (1) to (3) and assuming that
the geodesic flow is ergodic, there exists a sub-sequence S of density 1 of the
set of eigenvalues so that for any pseudo-differential operator A of degree
0, compactly supported away from the hyper-surface of discontinuities of g
and of principal symbol σ(A), we have

lim
j→∞, λj∈S

〈Aφj |φj〉 =
∫
S?X

σ(A)dL .

Remark 5.4. — Assumption (3) is never satified for Quantum graphs
not homeomorphic to the circle or the interval: there is no contradiction
between the previous Theorem and the non validity of QE for almost all
quantum graphs proved in [14].

6. The g-trace

The proof uses a regularized trace associated to the metric g, which we
call the g-trace.

Let (X, g) be a closed Riemannian manifold with g a uniform metric.
Let us denote by λ1 6 λ2 6 · · · 6 λj 6 · · · the eigenvalues of the Laplace
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operator ∆g with an associated orthonormal basis of L2(X, |dx|g) of eigen-
functions (φj)j=1,···.

Definition 6.1. — Let A : L2(X, |dx|g) → L2(X, |dx|g) be a bounded
operator. We say that A admits a g-trace if the limit

Trg(A) = lim
N→∞

1
N

N∑
j=1
〈Aφj |φj〉 .

The limit Trg(A) is called the g-trace of A.

As noticed in [9], the g−trace of a compact operator vanishes. This im-
plies that if A is a Fourier integral operator the g−trace of A depends only
of the principal symbol of A. The precise formula is given in the

Theorem 6.2. — If g is a smooth Riemannian metric on X and if A is
a Fourier integral operator of degree 0 on X associated to an homogeneous
canonical diffeomorphism χ : T ?X \ 0 → T ?X \ 0, then the g-trace of A
exists and is given by

Trg(A) =
∫

Fix(χ)∩S?X
σ(A)dL ,

where Fix(χ) is the set of fixed points of χ, dL is the normalized Liouville
measure on the unit cotangent bundle S?X of X and σ(A) : T ?X \ 0→ C
is the principal symbol of A defined in the proof.
In particular, this formula applies if A is a pseudo-differential operator;

then Fix(χ) = T ?X \ 0 and σ(A) is the usual principal symbol of A.

The authors of [9] called this result a local Weyl formula, because, I guess,
by applying it to the operators of multiplication by a smooth function one
gets that, if D is a smooth compact domain of X,

lim
λ→+∞

∑
λj6λ

∫
D
|φj |2|dx|g

#{j | λj 6 λ}
= |D|
|X|

.

Corollary 6.3. — The same result applies to a singular metric g if A
vanishes near the singular locus of g.

Proof of Theorem 6.2. — The scheme of the proof is as follows: In part
A, we prove the Theorem 6.2 with a absolutely continuous measure dL̃; in
part B, we prove the Theorem 6.2 for pseudo-differential operators with the
identification dL̃ = dL; in part C, we prove, that the formula for pseudo-
differential operators gives also the general formula.

VOLUME 31 (2012-2014)
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Part A of the proof: For |t| small enough, the Schwartz kernel of U(t)A
is given by

[U(t)A](x, y) =
∫
Rd
eiφ(t,x,y,θ)a(t, x, y, θ)|dθ|

where the phase function φ is generating function of Φt◦χ in the Hörmander
sense where Φt is the geodesic flow, a is a smooth symbol of degree 0. We
want to evaluate, similarly to what is done in [6], the sum

Σ(µ) =
∞∑
j=1

ρ(µ− µj)〈Aφj |φj〉

with µj =
√
λj and ρ is a positive Schwartz function whose Fourier trans-

form
ρ̂(t) =

∫
e−itµρ(µ)dµ

is positive, compactly supported near 0 and ρ̂(0) = 1. We can rewrite

Σ(µ) = 1
2π

∫
ei(tµ+φ(t,x,x,θ))ρ̂(t)a(t, x, x, θ)|dθdxdt| .

We now make the change of variable θ = µrω with r > 0 and ‖ω‖ = 1 and
get

Σ(µ) = µd

2π

∫
ei(µ(t+rφ(t,x,x,ω))ρ̂(t)a(t, x, x, θ)rd−1|drdtdωdx| .

Let us show that we can apply the non degenerate stationary phase ex-
pansion to the integral w.r. to (r, t): the critical points are given by 1 +
rφt(t, x, x, ω) = 0, φ(t, x, x, ω) = 0 and the determinant of the correspond-
ing Hessian is −φ2

t . The phase function φ satisfies the eiconal equation
φt + H(x, φx) = 0 with H =

√
g?. Hence the Hessian is non degenerate.

This way we get

(6.1) Σ(µ) = µd−1
∫
C

ei(µ(t+rφ(t,x,x,ω))ρ̂(t) a(t, x, x, ω)
|φt(t, x, x, ω)|r

d−1|dωdx| ,

where the integral is on the critical manifold C in (t, r). Let us look at the
critical points in the new integral: their set is the set of (t, x, x, ω) in
Cφ so that the corresponding point is a fixed point of χ. We get
(1) Σ(µ) = o

(
µd−1) if the set of fixed points of χ is of measure 0,

(2)

Σ(µ) = µd−1
∫

Fix(χ)∩{H(x,ξ)=1}
σ(A)(x, ξ)dL̃+ o

(
µd−1)

with dL̃ a suitable smooth measure to be determined now together
with the meaning of the principal symbol σ(A) of A.
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Now a classical Tauberian Theorem, given in Appendix A, allows
to conclude part A.

Part B of the proof: If f : Rd \ 0 → R is a smooth function which is
homogeneous of degree −d, the differential form ω = f(ξ)

(∑d
j=1 ξj d̂ξj

)
is

closed on Rd \ 0 by Euler’s formula. We use this with f(ξ) = a(ξ)/H(x, ξ)d
and get by the Stokes formula:∫

Sd−1

a(ξ)
H(x, ξ)d dσ(ξ) =

∫
H(x,ξ)=1

a(ξ)α

with α=H−d
(∑

ξj d̂ξj

)
. OnH=1, we have also α=dξ1∧· · · dξd/dξH(x, ξ)

by Euler formula.
If A is a pseudo-differential operator, the operator U(t)A is a Fourier

integral operator associated to the geodesic flow Φt. Following Hörmander,
we can take ω(x, y, ξ) − tH(x, ξ) as a generating function where ω is a
suitable generating function for the Identity map. We get

[U(t)A](x, y) = 1
(2π)d

∫
Rd
ei(ω(x,y,ξ)−tH(x,ξ))A(t, x, y, ξ)a(y, ξ)|dξ|

(modulo compact operators), where A(0, x, x, ξ) ≡ 1 and a is the principal
symbol of A. The critical set C of Part A is given by 1−rH(x, ξ) = 1; t = 0.
From this, we get, by Equation (6.1),

Σ(µ) = µd−1

(2π)d−1

∫
Rdx×S

d−1
ω

1
H(x, ξ)d a(x, ω)|dxdω|+ o

(
µd−1) .

In order to get the g−trace of A, we apply the Tauberian Theorem given
in Appendix A.
Part C of the proof: in the fixed point set, there is a full measure set

where the canonical transformation is tangent to the identity: this allows
to reduce to the case of pseudo-differential operators. �

7. Sketch of the proof of Theorem 5.3

The main idea is that the unitary group U(t) = exp(it
√

∆) (the wave
flow) is a sum of FIO’s. This is not exactly true due to the singularities
of the metric and we omit the technical part of the work which consists
in showing that these singularities problems are removable. Let us assume
now that U(t) = V1(t) +V2(t) where the Vj ’s are Fourier integral operators
associated to classical flows ψj,t.

VOLUME 31 (2012-2014)
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Let us take a pseudo-differential operator A of degree 0 with real princi-
pal symbol a so that the integral

∫
S?X

adL vanishes. The operators Aj(t) =
Vj(−t)AVj(t) are pseudo-differential operators and admits principal sym-
bols aj(t)(z) = wt,j(z)a(ψj,t(z)) with 0 6 wt,j 6 1 and wt,1 + wt,2 6 1.
The simplified classical ergodicity assumptions are now:

(1) For all t’s, the measures of the set of fixed points of ψ1,t ◦ ψ2,−t
vanish.

(2) If we define the operator Wt on functions on S?X by

Wta(z) = wt,1(z)a(ψ1,t(z)) + wt,2(z)a(ψ2,t(z)) ,

then, for almost all z ∈ S?X and hence in L1(S?X, dL), we have

lim
T→∞

1
T

∫ T

0
Wtadt =

∫
S?X

adL .

We want to show that

lim
N→∞

1
N

N∑
j=1
|〈Aφj |φj〉| = 0 .

For a bounded operator B, we denote by ΛN (B) := 1
N

∑N
j=1〈Bφj |φj〉. We

have, using the Cauchy-Schwarz inequality:

1
N

N∑
j=1
|〈Qφj |φj〉| 6 ΛN (Q?Q) .

Denoting At = U(−t)AU(t) and AT = 1
T

∫ T
0 Atdt, we get, using the fact

that U(t) is unitary,

1
N

N∑
j=1
|〈Aφj |φj〉| 6 ΛN ((AT )?AT ) .

Moreover, from

‖ATφj‖2 = 1
T 2

∫
[0,T ]2

〈A?As−tφj |φj〉dsdt ,

we get

(7.1) ΛN ((A?)TAT ) = 1
T 2

∫
[0,T ]2

ΛN (A?As−t)dsdt .

Using ergodicity and given ε > 0, we can choose T > 0 so that

‖ 1
T 2

∫
[0,T ]2

Wt−sadsdt‖L1(dL) 6 ε .
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From the decomposition

Aτ = V1(−t)AV1(t) + V2(−t)AV2(t) + V1(−t)AV2(t) + V2(−t)AV1(t) ,

and, using the Assumption (3), we get:

lim
N→∞

ΛN (A?Aτ ) =
∫
S?X

aWτadL .

Applying Lebesgue dominated convergence Theorem to Equation (7.1), we
get limN→∞ ΛN ((A?)TAT ) 6 ε.

8. An example: Gluing together two flat disks

s

1

u = χ′(s−)−1

0

u

Figure 8.1. Poincaré section

Let us consider two unit Euclidian disks D+ and D− and a diffeomor-
phism χ : ∂D− → ∂D+ so that χ′′(s) 6= 1 except for a finite number of
values of s. Gluing together D+ and D− along their boundaries using χ
gives a topological manifold homeomorphic to S2 with a metric gχ which
is flat outside the equator and discontinuous on the equator except at a
finite number of points.
Let us first describe the Poincaré section: as in Section 4.2, we define

Y± ⊂ T ?Z with Z = R/2πZ is the boundary of the disk D+ parametrized
by the arc length s. Then Y+ = {(s, u)|s ∈ Z, |u| < 1} with the symplectic
structure ω = du∧ds. Using the map χ and his extension Ξ to the cotangent
bundle of D−, we get Y− = Ξ(Z×]− 1,+1[) or more explicitly

Y− = {(s, u)|s ∈ Z, |u| < ψ(s)}

with ψ(s) = 1/χ′(χ−1(s)).
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The Poincaré maps P± : Y± → Y± are integrable, they preserve the
foliations F± of Y± defined by

• F+ = {L+
α | |α| < 1} with L+

α := Z × {α} on which P+ acts as a
rotation of angle ρ+(α) = 2 arccos(α) satisfying ρ′+ < 0

• F− = {L−β | |β| < 1} with L−β := {(s, βψ(s))} on which P− acts as
a rotation of angle ρ−(β) where ρ′− < 0.

We have ψ′(s) = η(s)χ′′(χ−1(s))) where η does not vanish. This implies
that the foliations F+ and F− are transverse in Y+ ∩ Y− outside a finite
number of segments Ij := {sj}×] − min(1, ψ(s)),min(1, ψ(s))[ with 0 6
s1 < s2 < · · · < sN < 2π.
Our main result is:

Theorem 8.1. — The geodesic flow on the 2-sphere (S2, gχ) has two
ergodic components corresponding in the Poincaré sections to u > 0 and
to u < 0.

Proof. — Following the result of Section 4.2, we have to consider a subset
A0 of Y = (Y+∪Y−)∩{u > 0} which is invariant by P+ and by P−, meaning
that P+(A0 ∩ Y+) ≡ A0 ∩ Y+ and P−(A0 ∩ Y−) ≡ A0 ∩ Y− where B ≡ C

means that the symmetric difference (B\C)∪(C\B) has measure 0. We can
replace A0 by the intersection A of the images of A by all words in P+ and
P−. Then A ≡ A0 and is invariant by P+ and P−. We want to prove that A
or Y \A has measure 0. Let Ai be the intersection of A with the leaves Lα+
on which the rotation ρ+(α)/2π is irrational. Then Ai ≡ A and Ai ∩ Lα+
is measurable and invariant by the rotation ρ+(α). Hence the measure of
Ai ∩Lα+ is 0 or 2π by the ergodicity of the irrational rotations of the circle.
From this we get that A∩Y+ is equivalent to a set foliated by F+. Similarly
A ∩ Y− is equivalent to a set foliated by F−. Let us consider now the set
Aj := A ∩ Dj with Dj := {(s, u)| sj < s < sj+1, 0 < u < max(1, ψ(s)).
In Dj , both foliations are transverse. This implies that Aj or Dj \Aj is of
measure 0: using smooth coordinates (x, y) in Dj so that the two foliations
correspond respectively to x = const and y = const, the indicator function
of A is equivalent to a function depending on x only and to a function
depending of y only, hence is equivalent to a constant 0 or 1. If Aj is of
measure 0, then A ∩ Y+ is of measure 0 as being foliated by F+, similarly
for A ∩ Y−. The conclusion follows: all Aj are of measure 0 or all Dj \ Aj
are of measure 0. �

If we want to apply Theorem 5.3, we have to take into account the fact
that there are two ergodic components, they are equivalent by the invo-
lution J : (x, ξ) → (x,−ξ) which on the quantum level is the complex
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conjugation φ → φ̄. The semi-classical measures associated to real eigen-
functions is invariant by J .

What about the main Assumption (4)? We claim that this assumption
holds for a generic diffeomorphism χ: we have the

Lemma 8.2. — Let us consider a word Pαχ = P a1
− P

a2
+ · · ·P

a2l
+ with aj ∈

Z \ 0. For N > 3 and D ⊂ Y+ a closed domain with a smooth boundary, so
that D ⊂ Y+, let AND be the manifold of all diffeomorphisms of class CN of
S1 so that Pαχ is defined in some open set V containing D. Let us denote
by π the projection of Y+ onto S1, by W the diagonal of S1 × S1 and, for
χ ∈ AND , by ρ(χ) the C2 map from D into S1 × S1 defined by

ρ(χ)(z) =
(
π(z), π

(
Pαχ (z)

))
.

Then the set of χ’s belonging to AND so that ρ(χ) t W is open and dense
in AN .

Proof. — By induction on |α|, we can assume that we are looking only at
the case where the projections on S1 of the points of the z−orbit (z, P+z =
z1, · · · , z|ga|−1) are pairwise distincts.

The openess is clear.
The density follows from the transversality Theorem as stated for exam-

ple in [1] and [2], page 48 (see Appendix C). We will apply Theorem C.1
with r = 2, X = D, Y = S1 × S1 and W the diagonal of Y .
The transversal intersection of ρ(χ) with W implies that the set of z

for which π(z) = π
(
Pαχ (z)

)
is a submanifold of dimension 1 of Y+. Let us

consider the evaluation map ev(χ, z) = (π(z), π
(
Pαχ (z)

)
. The differential

L of ev at a point (χ0, z0) can be written as L(δχ, δz) = (0, L1δχ) +
(δs, L2δz). In order to prove the transversality it is enough to prove that
L1 is surjective. Let us restrict ourselves to variations of χ in some small
neighborhood of s1 = χ−1(s0) where z0 = (s0, u0). Then we have L2(δχ) =
δχ(s1). �

Hence we get the

Proposition 8.3. — For any N > 3 , the set of CN diffeomorphisms
χ’s, whose set of periodic points under iterations of P+, P− and their in-
verses is of measure 0, is generic.

This implies that Assumption (4) is satisfied for a generic χ. Hence

Theorem 8.4. — For a generic χ, any basis of real eigenfunctions of
∆χ is QE.
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Remark 8.5. — Unique Quantum Ergodicity is not satisfied because
there are infinitely many radial eigenfunctions corresponding to the Neu-
mann and the Dirichlet problem for radial functions in the unit Euclidian
disk.

9. Further questions

The important work [9] of Dmitry Jakobson, Yuri Safarov and Alexander
Strohmaier inspires us several problems:

• Can we extend the result to more general wave equations, like for
example the elastic wave equation where we have to take into ac-
count the polarization of waves and the mode conversions between
S- and P-waves?

• What is the deviation from the QE Theorem if the assumption (3)
on recombining geodesics is not fulfilled? The example of Quantum
graphs (see my paper [14])could be a starting point.

• In the case of very irregular media, physicists, in particular geo-
physicists, use an equation called the radiative transfer equation
(RTE) which describes the propagation of the energy of waves in
the phase space (see [3] and references therein). It is known that the
solutions of the RTE, after averaging over the directions, behave for
large times like the solution of a diffusion equation on the configu-
ration space, and are hence associated to some Brownian motions.
This is a kind of limit of our problem as the surface Xsing becomes
more and more complicated. Can we say something more precise?

Appendix A. A Tauberian theorem

The following Tauberian Theorem is used in the proof of Theorem 6.2.

Theorem A.1. — Let µj be an increasing sequence of real numbers
satisfying a Weyl law

#{µj 6 µ} ∼Wµd

with W > 0 and let ρ be a smooth non-negative Schwartz function so that∫
R ρ(s)ds = 1. Let us give a bounded sequence (aj)j=1,··· and assume that

∞∑
j=1

ajρ(µ− µj) = Aµd−1 + o
(
µd−1)
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Then we have ∑
λj6µ

aj = A

dW
µd + o

(
µd
)

This Theorem follows for example from a simple adaptation of [6, §2].

Appendix B. A stationary phase Lemma

Lemma B.1. — Let us define, for τ ∈ R, I(τ) =
∫
RN e

iτS(x)a(x)|dx|
where S : RN → R is C1 and a : RN → C is C1 and compactly supported,
then

lim
τ→∞

I(τ) =
∫
{x|dS(x)=0}

eiτS(x)a(x)|dx| .

Proof. — Let ε > 0 be given; since dS is continuous, there exists α > 0
so that |{0 < ‖dS‖ 6 α} ∩ Supp(a)| 6 ε. We choose φ ∈ C1

0 (RN , [0, 1]) so
that φ ≡ 1 on {x| ‖dS(x)‖ > α} ∩ Supp(a) and φ ≡ 0 on {x|dS(x) = 0}.
We have

I(τ) =
∫
{x|dS(x)=0}

eiτS(x)a(x)|dx|+ · · ·

· · ·+
∫
{x|0<‖dS(x)‖6α}

eiτS(x)a(x)(1− φ(x))|dx|

+
∫
RN

eiτS(x)a(x)φ(x)|dx|

The second integral is bounded by ε sup |a|. The third one has limit 0
as τ → ∞: we integrate by parts using the facts that the vector field
V = gradS/‖dS‖2 is continuous on the set dS 6= 0 and that V (exp(iτS) =
iτexp(iτS). Hence the third integral is O(1/τ). �

Appendix C. the Abraham-Thom transversality Theorem

Let us give the statement of the transversality Theorem, due to René
Thom, as given in [12, 1, 2]; we denote by f t Z the fact that the map
f : X → Y is transverse to the sub-manifold Z of Y , i.e. for each x ∈ X so
that z = f(x) ∈ Z, we have GzY = f ′(x) (GxX) +GzZ.

Theorem C.1. — Let r > 1 and A, X and Y be Cr manifolds. We
assume that A is a Banach manifold while dimX and dimY are finite. The
manifold X is assumed to be compact with a smooth boundary. Consider
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a Cr map ρ : A → Cr(X,Y ) and W ⊂ Y a compact sub-manifold. The
evaluation map ev : A × X → Y is defined by ev(a, x) = ρ(a)(x) and
we denote by AW the set of the a’s in A so that ρ(a) t W . Then if
r > max(0,dimX − codimW ), and ev t W , then AW is open and dense
in A.
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