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Séminaire de théorie spectrale et géométrie
Grenoble
Volume 30 (2011-2012) 77-89

THE GEOMETRY OF DIFFERENTIAL HARNACK
ESTIMATES

Sebastian Helmensdorfer & Peter Topping

Abstract. — In this short note, we hope to give a rapid induction for non-
experts into the world of Differential Harnack inequalities, which have been so
influential in geometric analysis and probability theory over the past few decades.
At the coarsest level, these are often mysterious-looking inequalities that hold for
‘positive’ solutions of some parabolic PDE, and can be verified quickly by grinding
out a computation and applying a maximum principle. In this note we empha-
sise the geometry behind the Harnack inequalities, which typically turn out to
be assertions of the convexity of some natural object. As an application, we ex-
plain how Hamilton’s Differential Harnack inequality for mean curvature flow of a
n-dimensional submanifold of Rn+1 can be viewed as following directly from the
well-known preservation of convexity under mean curvature flow, but this time of
a (n + 1)-dimensional submanifold of Rn+2. We also briefly survey the earlier work
that led us to these observations.
Résumé. — Dans cette note, nous espérons introduire rapidement les non-

experts dans le monde des inégalités de Harnack différentielles, qui ont eu tant
d’influence en analyse géométrique et en théorie des probabilités durant les der-
nières décennies. Au niveau le plus grossier, ce sont des inégalités d’apparence
souvent mystérieuse, qui valent pour les solutions "positives" de certaines EDP
paraboliques, et peuvent se vérifier rapidement en appliquant le principe du maxi-
mum. Dans cette note nous insistons sur la géométrie sous-jacente aux inégalités de
Harnack, qui se révèlent souvent traduire la convexité d’un objet naturel. En guise
d’application, nous expliquons comment l’inégalité de Harnack différentielle due
à Hamilton pour le flot de la courbure moyenne d’une sous-variété de dimension
n de Rn+1, peut se voir comme une conséquence directe de la préservation bien
connue de la convexité par le flot de la courbure moyenne, mais cette fois d’une
sous-variété de dimension n + 1 de Rn+2. Nous passons également brièvement en
revue les travaux antérieurs qui nous ont amenés à ces observations.

Keywords: differential Harnack estimates, mean curvature flow, heat equation, log con-
vexity, canonical solitons, self-similar solutions.
Math. classification: 53C44, 35K05, 35K08, 35K10, 35K55.
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1. Introduction

Perhaps the simplest situation in which to explain Differential Harnack
Estimates is that of the ordinary, scalar, linear heat equation on Euclidean
space. Let u : Rn × (0, T ]→ (0,∞) be a positive bounded solution of

(1.1) ∂u

∂t
= 4u.

R. Hamilton’s matrix Harnack estimate [11], restricted to this special case,
says that the solution u satisfies the following differential inequality:

Theorem 1.1. — For each t ∈ (0, T ], any positive, bounded solution u
to the heat equation satisfies

(1.2) Hess (log u) + I

2t > 0

where I denotes the identity matrix.

Before we try to understand the geometry behind this inequality, let
us try to understand why it is so useful. Taking the trace of (1.2) yields
the following special case of the seminal inequalities of Li-Yau [16], which
predate the work of Hamilton:

4 (log u) + n

2t > 0,

and by rewriting the heat equation (1.1) as

∂

∂t
log u = 4 (log u) + |∇ (log u)|2 ,

we find:

Corollary 1.2. — For each t ∈ (0, T ], any positive, bounded solution
u to the heat equation satisfies

(1.3) ∂

∂t
log u− |∇ (log u)|2 + n

2t > 0.

In particular, this implies that ∂
∂t log u > − n

2t , i.e. that u cannot decrease
too fast. Note that we have managed to get rid of all spatial derivatives of
u. To extract the greatest possible amount of information from Corollary
1.2, pick two times 0 < t1 < t2 6 T , and consider a smooth path γ :
[t1, t2] → Rn from x1 ∈ Rn to x2 ∈ Rn. We may then compute, also using
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DIFFERENTIAL HARNACK ESTIMATES 79

Young’s inequality,

(1.4)

d

dt
log u(γ(t), t) = ∂ log u

∂t
+ 〈∇(log u), γ̇〉

>
(
|∇ (log u)|2 − n

2t

)
−
(
|∇ (log u)|2 + 1

4 |γ̇|
2
)

= − n2t −
1
4 |γ̇|

2,

and then integrate to find that

log u(x2, t2)− log u(x1, t1) > −n2 log
(
t2
t1

)
− 1

4

∫ t2

t1

|γ̇(t)|2dt.

Because there is no longer any mention of γ on the left-hand side, we may
now optimise this inequality by taking γ to be the minimising geodesic
from x1 to x2, i.e. a straight line, to obtain

log u(x2, t2)− log u(x1, t1) > −n2 log
(
t2
t1

)
− |x2 − x1|2

4(t2 − t1) ,

and we have proved a classical Harnack estimate:

Corollary 1.3. — For 0 < t1 < t2 6 T and x1, x2 ∈ Rn, any positive,
bounded solution u : Rn × (0, T ]→ (0,∞) to the heat equation satisfies:

u (x2, t2) > u (x1, t1)
(
t1
t2

)n
2

exp
(
−|x2 − x1|2

4(t2 − t1)

)
.

This beautiful estimate tells us that positive solutions cannot decrease
too quickly as time advances, even if we move a little in space. Moreover
it is sharp, as can be seen by considering the fundamental solution of the
heat equation

(1.5) ρ(x, t) = 1
(4πt)n/2

exp
(
−|x|

2

4t

)
.

In particular, this sharpness is manifested in the fact that ρ achieves equal-
ity in (1.2):

(1.6) Hess (log ρ) + I

2t ≡ 0.

If we now subtract (1.6) from (1.2), we obtain the following simple geo-
metric rephrasing of Theorem 1.1, which is entirely in the spirit of this
note.

Corollary 1.4. — For t ∈ (0, T ], the function log
(
u
ρ

)
is convex.
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80 SEBASTIAN HELMENSDORFER & PETER TOPPING

In fact, with this formulation one can reduce the proof of the full matrix
Harnack inequality in this case to the fact that the sum of log-convex
functions is again log-convex:

Proof. — (Corollary 1.4.) By translating time by an arbitrarily small
amount, we may assume that our solution is smooth on the whole of Rn ×
[0, T ], and u(·, 0) is a positive function. Fix t > 0, and write

u(x, t) =
∫
Rn

u(y, 0)ρ(x− y, t)dy,

or alternatively

F (x) := u(x, t)
ρ(x, t) =

∫
Rn

u(y, 0)G(x, y)dy,

where G(x, y) := ρ(x−y,t)
ρ(x,t) . We must therefore prove that F is log-convex,

i.e. that for all x, z ∈ Rn and α ∈ (0, 1), we have

F (αx+ (1− α)z) 6 F (x)αF (z)1−α.

But for all y ∈ Rn, the function G(·, y) is log-convex (even log-affine) and
thus
(1.7)
F (αx+ (1− α)z) =

∫
Rn

u(y, 0)G(αx+ (1− α)z, y)dy

6
∫
Rn

u(y, 0)G(x, y)αG(z, y)1−αdy

6

(∫
Rn

u(y, 0)G(x, y)dy
)α(∫

Rn

u(y, 0)G(z, y)dy
)1−α

= F (x)αF (z)1−α

by Hölder. �

2. The Differential Harnack estimate for mean curvature
flow

Now we consider solutions of another heat equation, namely of the mean
curvature flow (see [8]). Let (Mt)t∈[0,T ] ⊂ Rn+1, Mt = Ft (Mn) be a family
of smoothly immersed hypersurfaces, satisfying the nonlinear PDE

(2.1) ∂

∂t
Ft = ~H = −Hν
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where ~H is the mean curvature vector, ν is a choice of unit normal and H
the corresponding mean curvature of Mt. We are especially interested in
convex initial data M0. Convexity is preserved along the flow and compact
convex solutions shrink to a point at a finite time Tmax (see [14]).
We are also particularly interested in so-called self-expanders of the mean

curvature flow, which are hypersurfaces M1 of Euclidean space that solve
the self-expander equation

(2.2) H + 〈x, ν〉2 = 0

onM1, where again, ν is the unit normal such that ~H = −Hν. The family of
hypersurfaces Mt =

√
tM1, t > 0, then provides a self-expanding solution

of (2.1) up to tangential diffeomorphisms (see [8]).
Under the mean curvature flow, the mean curvature itself satisfies a

parabolic equation, and one might hope to prove a Harnack inequality for
H under some sort of positivity condition. R. Hamilton [13] showed that
the correct positivity hypothesis is to ask for the solutions to be convex,
and proved an estimate that we state here only for compact submanifolds.

Theorem 2.1 (Hamilton [13]). — Let (Mt)t∈[0,T ] be a compact solution
of (2.1) such that M0 is convex. Then all Mt are convex and satisfy for
t ∈ (0, T ]

(2.3) Z (V, V ) := ∂H

∂t
+ 2 〈∇H,V 〉+ h (V, V ) + H

2t > 0

for any tangent vector V , where ∇, h and 〈·, ·〉 denote the induced connec-
tion on Mn, the second fundamental form of Mt and the Euclidean inner
product respectively.

Again one can integrate this estimate along extremal curves to obtain a
Harnack inequality for the mean curvature in the classical sense (see also
[13]).

Corollary 2.2. — Under the assumptions of Theorem 2.1 we have for
0 < t1 < t2 6 T , x1 ∈Mt1 and x2 ∈Mt2 :

H (x2, t2) > H (x1, t1)
√
t1
t2
e−

∆
4

where
∆ = inf

γ

∫ t2

t1

|γ̇|2Mt
dt

and the infimum is taken over all C1-paths γ : [t1, t2]→ Rn, which remain
on the surface, i.e. γ(t) ∈ Mt, and with γ (t1) = x1 and γ (t2) = x2. Here

VOLUME 30 (2011-2012)



82 SEBASTIAN HELMENSDORFER & PETER TOPPING

|γ̇|Mt
denotes the length of the component of the velocity vector of γ that

is tangent to Mt.

Harnack inequalities for geometric flows have numerous applications, e.g.
Hamilton’s Harnack estimate for mean curvature flow can be applied to
classify convex eternal solutions of the mean curvature flow, if the mean
curvature assumes its space-time maximum, as translating solitons (see
[13]). The original proof of Theorem 2.1 directly uses a tensor maximum
principle type argument. As is the case for other equations, the first step
to obtain Theorem 2.1 is to find the right quantity from (2.3), and this was
originally done by looking for expressions that vanish on self-expanding
solutions of (2.1) and then trying to combine these in an appropriate way.
While this method has proved to be extremely effective, it does not give
much geometric insight into Harnack expressions. Such an insight can be
gained by considering appropriate space-time constructions for geometric
flows, as we now roughly describe.
The pioneering work in the direction of space-time constructions for the

Ricci flow (see [18]) and for the mean curvature flow was done by B. Chow
and S. Chu (see [5, 6]). They managed to show that Z (V, V ) − H

2t – an
expression that is constant along translating solitons – approximately cor-
responds to the second fundamental form of an extreme stretching by a
factor N in the time direction of the so-called space-time track of the mean
curvature flow. One can take the limit as N → ∞ of this second funda-
mental form, yielding exactly Z (V, V )− H

2t .
In the context of Ricci flow, B. Chow and D. Knopf developed this idea

further by considering a form of rescaled Ricci flow in order to obtain a pre-
cise correspondence between the relevant Harnack quantity and the curva-
ture of a degenerate space-time construction (see [7] for further details). E.
Cabezas-Rivas and P. Topping extended these ideas in [3] by constructing a
non-degenerate expanding space-time approximate Ricci soliton, the limit
of whose curvatures gave the existing, and new, Harnack quantities. Thus
Harnack inequalities correspond to the preservation of certain curvature
conditions (positive curvature operator, positive complex sectional curva-
ture etc.) under Ricci flow. In this note we will see the mean curvature flow
analogue of these ideas, where the correspondence between preservation of
‘positive curvature’ and Harnack inequalities turns out to be particularly
clean and precise.

B. Kotschwar [15] has recently considered variants of these ideas, re-
covering the Harnack quantities for a large class of curvature flows (the
Harnack estimates are due to B. Andrews and K. Smoczyk, see [1, 17]), as
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the limit as N → ∞ of the second fundamental form of certain stretched
variants of the space-time track. Moreover he gave an alternative proof of
Hamilton’s Harnack estimate for the mean curvature flow by showing con-
vexity of these space-time track variants. This was achieved by proving a
generalised tensor maximum principle, applied on slices of the degenerate
limit of the space-time track variants.
In the remainder of this paper, we give a rigorous, purely geometric proof

of Hamilton’s Harnack estimate (2.3) which does not rely on any form of
the maximum principle other than the classical preservation of convexity
in solutions of mean curvature flow. The mean curvature flow to which we
apply this convexity-preservation is not the original flow (Mt); instead we
take the flow starting at a cone over the original initial surface M0. In par-
ticular, we never have to apply any maximum principle to any degenerate
objects, and the whole proof is phrased purely in terms of convexity.
The remainder of the paper is organised as follows. In the next section

we describe how to flow graphical space-time cones over hypersurfaces by
their mean curvature. In Section 4 we state the relationship between so-
called canonical self-expanders and the Harnack quantity for the mean
curvature flow. Finally, in Section 5, we put things together and show how
preservation of convexity along the mean curvature flow directly yields the
Harnack inequality, Theorem 2.1.

3. Mean curvature flow of space-time cones

Let (Mt)t∈[0,Tmax) be a compact convex solution of (2.1). By translating
the flow within the ambient space, we may assume that M0 encloses the
origin in Rn+1. For N > 1, we define the cone CN to be the (n + 1)-
dimensional submanifold of Rn+2 given by

CN =
{
t (x,N) : x ∈M0 ↪→ Rn+1, t ∈ [0,∞)

}
.

We can view CN as the entire graph of a Lipschitz function fN : Rn+1 →
[0,∞). The cone CN becomes steeper as N becomes larger and the Lipschitz
constant of fN is bounded by C(M0)N .
K. Ecker and G. Huisken [9] developed a theory of mean curvature flow

of entire graphs, that applies to the cone CN . The essential properties of
CN here are that it is the graph of a Lipschitz function fN on the whole of
Rn+1, and that it is ‘straight at infinity’, which is guaranteed in particular
by the fact that

〈z, νCN 〉 = 0,

VOLUME 30 (2011-2012)



84 SEBASTIAN HELMENSDORFER & PETER TOPPING

for all z ∈ CN . The Ecker-Huisken theory then implies the existence of a
self-expander Σ̃N = graph(ṽN ), where ṽN : Rn+1 → [0,∞) has Lipschitz
constant no greater than that of fN (which in turn is bounded by C(M0)N ,
as we have observed) such that

√
t Σ̃N

defines (for t > 0) a mean curvature flow starting at CN that is smooth
away from the initial cone point. (In particular, Σ̃N is asymptotic to CN .)
See Figure 3.1.

Figure 3.1. The graphical self-expander Σ̃N

CN
M0

Σ̃N

We can also say something useful about the infimum of ṽN ; more precisely
we can argue that

(3.1) min ṽN 6 C(M0, n)N.

To see this, let d(M0) > 0 be defined to be half the radius of the largest
sphere centred at (0, 1) ∈ Rn+1 × R that does not intersect the region{

t (x, y) : x ∈M0 ↪→ Rn+1, t ∈ [0,∞), y < 1
}

below the cone C1. Then for all N > 1, we see that the (n + 1)-sphere
centred at (0, N) ∈ Rn+1 × R of radius d(M0) will not intersect the cone
CN , or equivalently, that for all h > 0, the sphere centred at (0, h) ∈
Rn+1 × R of radius h

N d(M0) will not intersect the cone CN . If we then
evolve these spheres by mean curvature flow at the same time as we evolve
CN , the spheres will exist for a time Th := h2d2

2(n+1)N2 , (see, e.g. [8]) and the
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comparison principle (see, e.g. [8]) tells us that the evolution of CN cannot
make it past the evolution of the spheres and go above the point (0, h) for
all t ∈ [0, Th]. In particular, we find that at time t = 1, the evolution of CN
cannot have gone above the point (0,

√
2(n+ 1)Nd ), which is a statement

a little stronger than (3.1).
In conclusion, we have established:

Lemma 3.1. — For any N > 1 there exists a smooth graphical self-
expander Σ̃N = graph(ṽN ) with the same Lipschitz constant as CN , in
particular

sup
Rn+1

|DṽN | 6 C(M0)N,

and with controlled infimum

(3.2) 0 6 min
Rn+1

ṽN 6 C(M0, n)N,

such that
√
t Σ̃N defines (for t > 0) a graphical mean curvature flow starting

at CN that is smooth throughout the flow, except at the cone point at time
0. In particular, Σ̃N is asymptotic to CN .

Since Σ̃N = graph(ṽN ) becomes steeper and steeper as N → ∞, we
squash it down by defining

(3.3) vN := 1
N
ṽN .

Now we can take the limit of the functions vN as N gets large, and level-set
flow theory gives us a precise notion of what the limit is:

Proposition 3.2. — There exists a sequence Nn → ∞ such that
(vNn

)n∈N converges locally in C0 to a continuous limit v∞. The graph
of v∞ is the asymptotically conical space-time track defined to be

(3.4)
{
t−

1
2 (x, 1) : x ∈Mt, t ∈ (0, Tmax]

}
.

Proof. — Lemma 3.1 provides a suitable derivative bound for ṽN in order
to have a uniform bound on |DvN |, independently of N . Together with the
infimum bound (3.2) from Lemma 3.1, this implies that there is a sequence
Nn → ∞ such that (vNn

)n∈N converges in C0
loc

(
Rn+1) to a continuous

limit v∞.
Lemma 3.1 tells us that

√
t Σ̃N is a mean curvature flow that is the

graph of a function that we will call ṼN : Rn+1 × (0,∞) → [0,∞), with
ṼN (·, 1) = ṽN , or more generally ṼN (x, t) =

√
t ṽN (x/

√
t). We make the

analogous extensions of vN and v∞ to VN and V∞ respectively.

VOLUME 30 (2011-2012)
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The equation of graphical mean curvature flow (see for example [8]) with
respect to a time coordinate s ∈ (0,∞), is

∂

∂s
ṼNn =

√
1 +

∣∣DṼNn

∣∣2 div

 DṼNn√
1 +

∣∣DṼNn

∣∣2
 ,

so we see that VNn solves

∂

∂s
VNn

=

√
1
N2
n

+ |DVNn
|2 div

 DVNn√
1
N2

n
+ |DVNn |

2

 .

We can now apply an approximation lemma (see [10, proof of Theorem
4.2]) in order to show that the limit V∞ corresponds to a weak solution of
the level-set flow equation (see [10, 4])

∂

∂s
V∞ =

(
I − DV∞ ⊗DV∞

|DV∞|2

)
: D2V∞.

Thus V∞ is a weak solution of the level-set flow equation with the cone
C1 as an initial condition. Therefore for each height α > 0, the smooth
α-level sets of V∞(·, s) agree with the classical smooth evolution of the
compact α-level set of C1 with respect to the time parameter s (see [10,
Theorem 6.1]). But a level set αM0 of C1 at height α > 0 gives rise to the
parabolically rescaled evolution αMα−2s, and by setting s = 1, we see that
the α-level set of v∞ will be αMα−2 , which is also the α-level set of the
asymptotically conical space-time track (3.4). Hence the graph of v∞ must
be the asymptotically conical space-time track as desired. �

4. Canonical self-expanders and the Harnack quantity

For a solution (Mt)t∈[0,T ] of (2.1) there is an associated space-time cons-
truction by B. Kotschwar (see [15]), which we call a canonical self-expander
by analogy with the Ricci flow case (see [3]). The canonical self-expander
ΓN can be defined for a parameter N > 0 as

(4.1) ΓN =
{
t−

1
2 (x,N) : x ∈Mt, t ∈ (0, T ]

}
and is thus a stretching by a factor N in one direction of (part of) the
asymptotically conical space-time track. Suppose now that the hypersur-
faces (Mt)t∈[0,T ] have uniformly bounded curvature. Then ΓN is an approx-
imate self-expander of (2.1), i.e.

(4.2) HΓN +
〈
z, νΓN

〉
2 ≈ 0
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for z ∈ ΓN (see [15, 4.1]). By this we mean thatHΓN + 〈z,ν
ΓN 〉
2 = EN , where

N |EN | is bounded locally uniformly, independently of N (we continue to
use this notation).
Furthermore ΓN is asymptotic to CN and we have (see Kotschwar [15]):

Theorem 4.1. — The second fundamental form of ΓN , which we call
hΓN , satisfies

(4.3) hΓN

(
V + ∂

∂t
, V + ∂

∂t

)
= Z (V, V )

σN
√
t
≈ Z (V, V )√

t

for any tangent vector V ∈ TMn, where the constant σN > 0 satisfies
σN → 1 as N →∞.

5. A geometric proof of Hamilton’s Harnack estimate

We can now deduce Theorem 2.1 directly from a chain of convexity state-
ments as follows:

Proof. — The starting assumption is that

F M0 is convex,

which immediately implies that

F The cone CN over M0 is convex.

Since convexity is preserved under mean curvature flow (see in particular
[2, Theorem 10.2]) we find that

F Σ̃N = graph(ṽN ) is convex,

and since convexity is preserved under squashing in one direction, we de-
duce that

F graph(vN ) = graph( 1
N ṽN ) is convex.

Now, C0
loc-limits of convex functions are convex, and v∞ is the C0

loc limit
of the convex functions vNn

. Therefore

F v∞ is convex,

or equivalently, by Proposition 3.2,

VOLUME 30 (2011-2012)



88 SEBASTIAN HELMENSDORFER & PETER TOPPING

F The asymptotically conical space-time track (3.4) is convex,
and by preservation of convexity under stretching in one direction, this
implies that
F The canonical self-expander ΓN is convex.

By (4.3) we can then deduce the Harnack inequality
F Z (V, V ) > 0,

as desired. �
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