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Séminaire de théorie spectrale et géométrie
Grenoble
Volume 29 (2010-2011) 73-95

THE TEICHMÜLLER GEODESIC FLOW AND THE
GEOMETRY OF THE HODGE BUNDLE

Carlos Matheus

Abstract. — The Teichmüller geodesic flow is the flow obtained by quasicon-
formal deformation of Riemann surface structures. The goal of this lecture is to
show the strong connection between the geometry of the Hodge bundle (a vector
bundle over the moduli space of Riemann surfaces) and the dynamics of the Teich-
müller geodesic flow. In particular, we shall provide geometric criterions (based on
the variational formulas derived by G. Forni) to detect some special orbits (“totally
degenerate”) of the Teichmüller geodesic flow. These results have been obtained
jointly with J.-C. Yoccoz [MY] and G. Forni, A. Zorich [FMZ1], [FMZ2].
Résumé. — Le flot géodésique de Teichmüller est le flot obtenu par déformation

quasiconforme des structures de surface de Riemann. Le but de cet exposé est mon-
trer la fort connexion entre la géométrie du fibré de Hodge (un fibré vectoriel au-
dessus de l’espace de modules de surfaces de Riemann) et la dynamique du flot géo-
désique de Teichmüller. En particulier, on fournira des critères géométriques (basé
sur les formules variationnelles derivés par G. Forni) pour detecté certaines orbites
speciales (“totalement dégénérées”) du flot géodésique de Teichmüller. Ces resul-
tats sont en colaboration avec J.-C. Yoccoz [MY] et G. Forni, A. Zorich [FMZ1],
[FMZ2].
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The present text corresponds to extended lecture notes of a talk (on No-
vember 25, 2010) by the author at the “Séminaire de Théorie Spectrale
et Géométrie” of the Institut Fourier - Grenoble. The main goal of the
talk (and hence of these notes) was to discuss the relationship between
the Teichmüller geodesic flow on the (cotangent bundle of the) moduli
space of curves and the geometry of Gauss-Manin connection. To do so,
we divide this text into two sections: in the first section we’ll spend our
time with the introduction of the main actors (e.g., Teichmüller and mod-
uli spaces of curves and Abelian differentials, Teichmüller geodesic flow,
Kontsevich-Zorich cocycle, Gauss-Manin connection and its second funda-
mental form/Kodaira-Spencer map, etc.), and in the second section we show
how the tools developed in the first section can be used to detect “totally
degenerate” orbits of both Teichmüller flow and the natural SL(2,R)-action
on the moduli space of Abelian differentials.
At this point, I had two options: either to pursue the “dynamical” conse-

quences of this discuss (e.g., its consequences to Lyapunov exponents of the
Kontsevich-Zorich cocycle) or to stop the discussion. I’ve chosen the second
option for two reasons: firstly, I wanted these notes to be as close as pos-
sible to the content of the talk, and secondly, the audience of the talk was
mainly interested in geometrical aspects of this subject rather than dynam-
ical ones. So, I apologize in advance the “dynamical” readers, but this time
I’ll make no mention neither to Lyapunov exponents of Kontsevich-Zorich
cocycle nor to the Ergodic Theory of Teichmüller flow (and its applications
to the deviations of ergodic averages and dynamics of interval exchanges,
translation flows and billiards). Instead, I refer them to the excellent survey
of A. Zorich [Z] for a nice account of the topics I’m omitting here.

Finally, let me say that the (introductory) material of these notes have
a large intersection with some texts I wrote in my mathematical blog (see
[DM]), even though there the texts are mostly focused in dynamical aspects
of the subject, and the material in Subsection 1.6 and Section 2 are largely
inspired by the joint work [FMZ2] (still in preparation) of G. Forni, A.
Zorich and the author.

1. Teichmüller flow, Hodge bundle and Kontsevich-Zorich
cocycle

1.1. Quasiconformal maps between Riemann surfaces

Given two Riemann surface structures S0 and S1 on a given compact
topological surface S of genus g > 1, in general there is no conformal
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TEICHMÜLLER FLOW AND HODGE BUNDLE 75

map f : S0 → S1 (i.e., a holomorphic map with non-vanishing derivative).
However, we can try to produce maps f : S0 → S1 as “nearly conformal”
as possible. To do so, one needs a way to “measure” the amount of “non-
conformality” of f . A fairly standard procedure is the following one. Given
x ∈ S0 and some (holomorphic) coordinates around x ∈ S0 and f(x) ∈ S1,
we can write the derivative Df(x) of f at x as Df(x)u = ∂f

∂z (x)u+ ∂f
∂z (x)u,

so that Df(x) maps circles into ellipses of eccentricity∣∣∣∂f∂z (x)
∣∣∣+
∣∣∣∂f∂z (x)

∣∣∣∣∣∣∂f∂z (x)
∣∣∣− ∣∣∣∂f∂z (x)

∣∣∣ = 1 + k(f, x)
1− k(f, x) := K(f, x)

where k(f, x) :=
∣∣∣∣ ∂f∂z (x)
∂f
∂z (x)

∣∣∣∣. See Figure 1 below.

1

x

|a|+|b||a|-|b|

f(x)

Df(x)	u	=	au	+	bu

Figure 1.1. Derivative of a quasiconformal C1 map f .

In the literature, K(f, x) is called the eccentricity coefficient of f at x,
while

K(f) = sup
x∈S0

K(f, x)

is the eccentricity coefficient of f . Note that, by definition, K(f) > 1 and
f is a conformal map if and only if K(f) = 1 (or, equivalently, k(f, x) =
0 for all x ∈ S0). Hence, K(f) accomplishes the task of measuring the
amount of “non-conformality” of f . Any reasonably smooth(1) map f is
called quasiconformal whenever K(f) <∞.
Once we dispose of a good measurement of non-conformality, namely

K(f), it is natural to try to measure the distance between two Riemann

(1)For instance, any C1 diffeomorphism f is quasiconformal. In general, a K-
quasiconformal map f is a homeomorphism whose distributional derivatives are locally
in L2 and satisfy

∣∣ ∂f
∂z

∣∣2 −
∣∣ ∂f

∂z

∣∣2 > 1
K

(∣∣ ∂f
∂z

∣∣+
∣∣ ∂f

∂z

∣∣)2
locally in L1.
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76 CARLOS MATHEUS

surfaces structures S0 and S1 by minimizing the eccentricity coefficient
K(f) among “all” maps f : S0 → S1. That is, it is tempting to say that
S0 and S1 are “close” if we can produce quasiconformal maps f : S0 → S1
between them with eccentricity coefficient K(f) “close” to 1. To formalize
this, we need first to investigate the “nature” of the quantities k(f, x) :=∣∣∣∣ ∂f∂z (x)
∂f
∂z (x)

∣∣∣∣.
We start by recalling that k(f, x) doesn’t provide a globally defined func-

tion on S0: indeed, since the definition of k(f, x) depended on the choice
of local coordinates around x ∈ S0 and f(x) ∈ S1, the quantity k(f, x)
can only (globally) define a function if it doesn’t change under change of
coordinates (which is not the case in general). By checking how k(f, x)
transforms under changes of coordinates, one can see that the quantities
k(f, x) can be collected to globally defined a tensor µ(x) (of type (−1, 1))
via the formula:

µ(x) =
∂f
∂z (x)dz
∂f
∂z (x)dz

In the literature, µ(x) is called a Beltrami differential. Note that ‖µ‖L∞ < 1
whenever f is an orientation-preserving quasiconformal map. The intimate
relationship between Beltrami differentials and quasiconformal maps is re-
vealed by the following profound theorem of Ahlfors and Bers:

Theorem 1 (Measurable Riemann mapping theorem). — Let U ⊂ C
be an open set and consider µ ∈ L∞(U) verifying ‖µ‖L∞ < 1. Then, there
exists a quasiconformal map f : U → C such that the Beltrami equation

∂f

∂z
= µ

∂f

∂z

is satisfied (in the sense of distributions). Furthermore, f is unique modulo
composition with conformal maps: if g is another solution of the Beltrami
equation above, there exists ϕ : f(U)→ C such that g = ϕ ◦ f .

A direct consequence of this striking theorem is the following theorem
(whose proof we left as an exercise to the reader):

Proposition 1. — Let X be a Riemann surface and µ be a Beltrami
differential on X. Given an atlas ϕi : Ui → C (compatible with the
complex structure on X), let us denote by µi the function defined by
µ|Ui := ϕ∗i

(
µidz
dz

)
. Then, there exists a family of maps ψi(µ) : Vi → C

solving the Beltrami equations
∂ψi(µ)
∂z

= µi
∂ψi(µ)
∂z
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TEICHMÜLLER FLOW AND HODGE BUNDLE 77

such that ψi : Vi → ψi(V ) ⊂ C are homeomorphisms. Moreover, ψi ◦
ϕi : Ui → C form an atlas associated to a well-defined Riemann surface
structure Xµ in the sense that it doesn’t depend on the initial choice of
atlas ϕi : Ui → C and the choice of ψi verifying the corresponding Beltrami
equations.

In simpler terms, this proposition (a by-product of Ahlfors-Bers theorem)
permits to deform Riemann surface structures X using Beltrami differen-
tials µ. Actually, this is part of a more general phenomenon: given two
Riemann surface structures S0 and S1, we can always relate them by qua-
siconformal maps with “optimal” eccentricity coefficient. More precisely,
we have the following remarkable theorem of Teichmüller:

Theorem 2. — Given two Riemann surface structures S0 and S1 on
a compact topological surface S of genus g > 1 and a homeomorphism
h : S → S, there exists a quasiconformal map f : S0 → S1 minimizing the
eccentricity coefficient K(g) among all quasiconformal maps g : S0 → S1
isotopic to h. Furthermore, whenever f : S0 → S1 minimizes the eccentric-
ity coefficient in a given isotopy class, the eccentricity coefficient of f at
“typical” points x ∈ S0 is constant, i.e., K(f, x) = K(f) for all but finitely
many x1, . . . , xn ∈ S0. Also, quasiconformal maps minimizing eccentricity
in an isotopy class are unique modulo (pre and/or post) composition with
conformal maps isotopic to identity.

In the literature, quasiconformal maps minimizing eccentricity in a given
isotopy class are called extremal maps. Using extremal quasiconformal
maps, we can define a distance between two Riemann surface structures S0
and S1 by the formula:

d(S0, S1) = 1
2 inf{logK(g) : gis isotopic to identity}

The metric d is the so-called Teichmüller metric.
In this way, we have a natural metric on the Teichmüller space of curves,

that is, the space T(S) of Riemann surface structures on S modulo confor-
mal maps isotopic to identity. Also, since the Teichmüller metric is equi-
variant with respect to the action of the so-calledmapping class group Γg =
Γ(S) = Diff+(S)/Diff+

0 (S) of isotopy classes of (orientation-preserving) dif-
feomorphisms(2) , the Teichmüller metric induces a natural metric on the

(2)Here Diff+(S) denotes the space of orientation-preserving diffeomorphisms of S and
Diff+

0 (S) denotes the connected component of the identity inside Diff+(S), i.e., the set
of orientation-preserving diffeomorphisms isotopic to identity.
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78 CARLOS MATHEUS

moduli space of curves, that is, the space M(S) of Riemann surface struc-
tures on S modulo conformal maps (i.e., M(S) = T(S)/Γ(S)).
Remark 1.1. — It is known that the Teichmüller metric is not a Rie-

mannian metric but only a Finsler metric. We will come back to this point
in the next subsection.
Remark 1.2. — It is also known that the Teichmüller space T(S) is a

complex manifold of complex dimension 1 when g = 1, and 3g − 3 when
g > 2, which is homeomorphic (but not diffeomorphic) to the unit open
ball of CdimC(T(S)). However, the moduli space M(S) is only a complex
orbifold (due to the fact that there are Riemann surfaces which are “more
symmetric” than others). Indeed, this lack of smoothness is already present
in the genus 1 case: since the Teichmüller space of tori (equipped with
Teichmüller metric) can be identified with the upper-half plane H ⊂ C
(equipped with the hyperbolic metric) and the mapping class group Γ1
can be identified with SL(2,Z), it follows that the moduli space of tori is
H/SL(2,Z) (where SL(2,Z) acts by Möbius transformations), an orbifold
with conical points at i, eπi/3 ∈ H (because the SL(2,Z) stabilizer of these
points have orders 4 and 6 resp. while it is trivial at other points). See the
author’s mathematical blog [DM] for an illustrated discussion.
In the sequel, we will study the Teichmüller geodesic flow (i.e., the geo-

desic flow associated to the Teichmüller metric). In particular, it is impor-
tant to understand the cotangent bundle of Teichmüller and moduli spaces
of curves.

1.2. Cotangent bundle of T(S) and M(S)

Recall from the discussion of the previous subsection that the Teichmüller
space of curves can be modeled by the space of Beltrami differentials. By
definition, Beltrami differentials µ are tensor of type (−1, 1) with ‖µ‖L∞ <

1. Therefore, the tangent bundle of T(S) can be naturally identified with
the space of essentially bounded (L∞) tensors of type (−1, 1) (because
Beltrami differentials form the unit open ball of this Banach space). Hence,
the cotangent bundle Q(S) of the Teichmüller space of curves T(S) can be
naturally identified with the space of integrable quadratic differentials on
S, i.e., the space of (integrable) tensors q of type (2, 0) (that is, locally q
has the form q(z)dz2). Intuitively, the cotangent bundle consists of objets
q (tensors of some type) such that the pairing

〈q, µ〉 =
∫
S

qµ
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TEICHMÜLLER FLOW AND HODGE BUNDLE 79

is well-defined. When µ is a tensor of type (−1, 1) and q is a tensor of type
(2, 0), we can write qµ = q(z)µ(z)dz2 dz

dz = q(z)µ(z)dzdz = q(z)µ(z)|dz|2,
i.e., qµ is a tensor of type (1, 1) (that is, an area form). Thus, since µ is
essentially bounded, the pairing is well-defined whenever q is integrable.

Remark 1.3. — It is possible to prove that the Teichmüller metric on
Teichmüller space is compatible with the Finsler metric associated to the
family of L1 norms on the space of integrable quadratic differentials (cotan-
gent bundle of Teichmüller space). However, this Finsler metric is not a
Riemannian metric: indeed, by developing appropriate asymptotic formu-
las, one can show this Finsler metric (family of norms on the cotangent
space) depends C1 on the base point but not C2! See [H] for more details.

Remark 1.4. — An alternative popular metric on Teichmüller space
is the Weil-Petersson metric coming from the Hermitian inner-product
〈q1, q2〉WP =

∫
S
q1q2
ρ2
S

where ρS is the hyperbolic metric (of curvature −1)
of the Riemann surface S and ρ2

S is the associated area form. This is
a Riemannian metric such that 2-form associated to its imaginary part
Im〈., .〉WP is closed, i.e., the Weil-Petersson metric is a Kähler metric.
Some important facts about the Weil-Petersson geodesic flow are:

• it is a negatively curved incomplete metric with unbounded curva-
ture (i.e., the sectional curvatures can approach either 0 or −∞);

• S. Wolpert showed that the geodesic flow is defined for all times in
a full measure subset of the cotangent bundle of the Teichmüller
space;

• J. Brock, H. Masur and Y. Minsky showed that this geodesic flow
is transitive, its set of periodic orbits is dense and it has infinite
topological entropy;

• based on important previous works of S. Wolpert and C. McMullen,
K. Burns, H. Masur and A. Wilkinson [BMW] proved that this
geodesic flow is ergodic with respect to Weil-Petersson volume form.

We recommend the article of [BMW] and references therein for the reader
interested in the Weil-Petersson flow.

Next, let’s see how the Teichmüller flow looks like after this identification
of Q(S) with the space of integrable quadratic differentials. To do so, we
need to better understand the geometry of extremal quasiconformal maps.
For this task, we invoke another remarkable theorem of Teichmüller:

Theorem 3 (Teichmüller). — Given an extremal map f : S0 → S1,
there is an atlas ϕi on S0 such that

VOLUME 29 (2010-2011)



80 CARLOS MATHEUS

• outside the neighborhoods of finitely many points x1, . . . , xn ∈ S0,
the changes of coordinates of the atlas ϕi have the form z 7→ ±z+c,
c ∈ C;

• the horizontal (resp. vertical) foliation {Imϕi ≡ constant} (resp.
{Reϕi ≡ constant}) is tangent to the major (resp. minor) axis of
the infinitesimal ellipses which are mapped by Df into infinitesimal
circles, and

• in the coordinates provided by the atlas ϕi, f expands the horizon-
tal direction by

√
K and contracts the vertical direction by 1/

√
K

(where K = K(f)).

The figure 1.2 below illustrates the action of an extremal map f in ap-
propriate coordinates ϕi.

A

B C

D

A

BC

D

A
B C

D

A

BC

D

et

e-t

Figure 1.2. Action of extremal map with eccentricity K = e2t

An atlas ϕi satisfying the property in the first item of Teichmüller’s the-
orem is called a half-translation structure. In this language, Teichmüller’s
theorem says that extremal maps f : S0 → S1 are very easy to describe in
terms of half-translation structures: it suffices to expand (resp. contract)
the horizontal (resp. vertical) direction by a factor of ed(S0,S1) =

√
K(f).

This provides an elegant way of describing Teichmüller geodesic flow in
terms of half-translation structures.
Thus, it remains to relate half-translation structures to quadratic dif-

ferentials to complete the description of Teichmüller geodesic flow in the
cotangent bundle of T(S). Given a half-translation structure ϕi : Ui → C,
we can construct a quadratic differential q by pulling back the canonical
quadratic differential dz2 on C through ϕi: indeed, this procedure leads
to a well-defined quadratic differential because the changes of coordinates
between the several ϕi always are of the form z 7→ ±z + c (outside the
neighborhoods of finitely many points). Conversely, given a quadratic dif-
ferential q, we take an atlas ϕi : Ui → C such that q|Ui = ϕ∗i (dz2) outside
the neighborhoods of the finitely many singularities (zeros and/or poles)
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of q. Because q is obtained by pulling back dz2, we have that the changes
of coordinates z 7→ z′ send (dz)2 to (dz′)2 (outside the neighborhoods of
finitely many points), and hence they have the form z 7→ ±z + c, c ∈ C,
that is, ϕi is a half-translation structure.

Remark 1.5. — Generally speaking, a quadratic differential on a Rie-
mann surface can be either orientable or non-orientable. More precisely,
given a quadratic differential q and denoting by ϕi the corresponding half-
translation structure, we say that q is orientable if the horizontal and ver-
tical foliations {Imϕi = constant} and {Reϕi = constant} are orientable
(and q is non-orientable otherwise). Alternatively, q is orientable if the
changes of coordinates of the atlas ϕi outside the singularities of q have
the form z 7→ z + c, c ∈ C, that is, ϕi is a translation structure. Equiva-
lently, q is orientable if it is the global square of a Abelian differential (i.e.,
holomorphic 1-form) ω, that is, q = ω2.

For the sake of simplicity, these notes will be mostly focused on the
case of orientable quadratic differentials. Actually, each time our quadratic
differential q is orientable, we will immediately forget about q and we will
concentrate on a choice ω of global square root of q.

Remark 1.6. — In general, there is not a great loss of generality by
restricting to the case of orientable quadratic differentials: in fact, given
a non-orientable quadratic differential, there is a canonical double-cover
procedure such that the lift of q is the global square of a holomorphic
1-form.

Before passing to the next subsection, let’s introduce some notation.
We denote by Ĥg the Teichmüller space of Abelian differentials of genus
g > 1, that is, the space of pairs (S0, ω) of Riemann surface structure
on a genus g > 1 compact topological surface S and a choice of (non-
zero) Abelian differential (holomorphic 1-form) ω on S0 modulo conformal
maps isotopic to identity. Similarly, we denote by Hg the moduli space of
Abelian differentials of genus g > 1, that is, the space of pairs (S0, ω) as
above modulo conformal maps. Again, we have that Hg = Ĥg/Γg (where
the mapping class group Γg acts on (S0, ω) by pullback on S0 and ω).

1.3. Teichmüller flow and SL(2,R) action on Ĥg and Hg

In the case of Abelian differentials ω, the discussion of the previous sub-
section says that the orbit gt(S0, ω) of the Teichmüller geodesic flow at a
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point (S0, ω) of the cotangent bundle of T(S) is given by gt(S0, ω) = (St, ωt)
where St is the unique Riemann surface structure such that the Abelian
differential

ωt = et · Reω + i · e−t · Imω

is holomorphic.
In other words, by writing

ωt =
(
et 0
0 e−t

)(
Reω
Imω

)
,

we see that the Teichmüller geodesic flow corresponds to the action of the
diagonal subgroup diag(et, e−t) of SL(2,R).
Of course, the previous equation hints that Teichmüller flow is part of

a SL(2,R)-action: indeed, given a matrix M ∈ SL(2,R) and a Abelian
differential ω, we can define

M(ω) := M ·
(

Reω
Imω

)
Actually, the attentive reader may complain that one can even define a

GL+(2,R)-action on the space of Abelian differentials (by the same for-
mula). In fact, even though one disposes of this larger action, we refrain
from using it because geodesic flows live naturally in the unit cotangent
bundle. In the case of the Teichmüller space, the discussion of the previous
subsection implies that the Abelian differentials living on the unit cotan-
gent bundle are precisely the unit area Abelian differentials, i.e., Abelian
differentials ω such that the total area function A evaluated at ω

A(ω) := i

2

∫
S

ω ∧ ω

equals to 1. In particular, since the total area function is invariant precisely
under the SL(2,R)-action, we prefer to stick to it (as we’re going to move
to the unit cotangent bundle sooner or later). In any event, we denote by
Ĥg

(1)
, resp. H(1)

g , the Teichmüller, resp. moduli, space of unit area Abelian
differentials.
Besides the total area function, the Teichmüller flow and the SL(2,R)

action on the Teichmüller and moduli space of Abelian differentials pre-
serves the so-called singularity pattern of Abelian differentials. In the next
subsection, we recall this notion and we review some important structures
on Ĥg and Hg related to it.
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1.4. Stratification of Ĥg and Hg, and period coordinates

Given a non-zero Abelian differential ω on a genus g > 1 Riemann sur-
face S0, we can list the orders of its zeros, say κ = (k1, . . . , kσ). Recall
that, by Poincaré-Hopf formula, this list κ is subjected to the constraint
σ∑

m=1
km = 2g − 2. We denote by Ĥ(κ), resp. H(κ), the subset of Ĥg, resp.

Hg consisting of Abelian differentials whose list of orders of zeros coincides
with κ. By definition, we have

Ĥg =
⋃

κ=(k1,...,kσ)
σ∑

m=1

km=2g−2

Ĥ(κ) and Hg =
⋃

κ=(k1,...,kσ)
σ∑

m=1

km=2g−2

H(κ)

In the literature, the sets Ĥ(κ) and H(κ) are called the strata of Ĥg and
Hg. The terminology is justified by the fact that each stratum Ĥ(κ) is
a complex manifold of complex dimension 2g + σ − 1, and each stratum
H(κ) = Ĥ(κ)/Γg is a complex orbifold with the same complex dimension.
Indeed, this can be proved with the aid of the so-called period coordinates
on Ĥ(κ). More precisely, given ω0 ∈ Ĥ(κ), we denote by Σ0 the set of
its zeros. The relative homology H1(S,Σ0,C) is generated by 2g absolute
homology classes a1, . . . , ag, b1, . . . , bg and σ−1 relative cycles c1, . . . , cσ−1
connecting an arbitrarily fixed point in Σ0 to the other points in Σ0. In
particular, for every ω ∈ Ĥ(κ) nearby ω0, we have a map

ω 7→

(∫
a1

ω, . . . ,

∫
ag

ω,

∫
b1

ω, . . . ,

∫
bg

ω,

∫
c1

ω, . . . ,

∫
cσ−1

ω

)
∈ C2g+σ−1

Alternatively, by integration, we have a local map from some neighborhood
of ω0 to Hom(H1(S,Σ0,Z),C) ' H1(S,Σ0,C). Such a local map is called
a period coordinate because it is obtained from the periods of ω and it is a
local homeomorphism (so that it can be used as local coordinates in Ĥ(κ)).
The reader can check that the change of coordinates between two period
coordinates always corresponds to an affine map of C2g+σ−1. Therefore,
Ĥ(κ) equipped with period coordinates is a complex affine manifold of
dimension 2g + σ − 1 (as claimed). Also, since these period coordinates
are compatible with the action of the mapping class group Γg, the period
coordinates endow H(κ) with a structure of complex affine orbifold of
dimension 2g + σ − 1.

Remark 1.7. — It is known that the strata are not connected in general
(for instance, W. Veech showed that H(4) is not connected and P. Arnoux

VOLUME 29 (2010-2011)



84 CARLOS MATHEUS

showed that H(6) is not connected). After the work of M. Kontsevich and
A. Zorich [KZ], we dispose nowadays of a complete classification of con-
nected components of strata: for instance, every stratum has 3 connected
components at most and they can be distinguished by certain invariants
(parity of spin and hyperellipticity).

Closing this subsection, the reader is invited to check that the SL(2,R)-
action (and, a fortiori, the Teichmüller geodesic flow) on Hg preserves each
stratum H(κ) (and hence its connected components).
For the next subsection, we will use the period coordinates to reduce

the study of the derivative of the Teichmüller flow gt to the so-called
Kontsevich-Zorich cocycle on the Hodge bundle over H(1)

g .

1.5. Derivative of Teichmüller flow and Kontsevich-Zorich
cocycle

Using the period coordinates, we see that the derivative Dgt of the Te-
ichmüller geodesic flow on the Teichmüller space of Abelian differentials
Ĥg can be identified with the trivial product map

gt × id : Ĥg ×H1(S,Σ,C)→ Ĥg ×H1(S,Σ,C)

of the Teichmüller flow on the first entry and the identity map on the sec-
ond entry. Now, when passing to the moduli space of Abelian differentials
Hg, one should do the quotient of this trivial product map by the action
of the mapping class group Γg on both factors. In particular, the bundle
(Ĥg ×H1(S,Σ,C))/Γg and the derivative of Dgt on Hg are no longer triv-
ial. However, we claim that the possibly interesting part of the action of
Dgt occurs only on the absolute part of the cohomology. In other words,
we affirm that the action of Dgt on (Ĥg × (H1(S,Σ,C)/H1(S,C)))/Γg is
“boring”.(3) Indeed, this is more clearly seen by using duality and consider-
ing the action of Dgt on the quotient H1(S,Σ0,C)/H1(S,C) of the relative
homology by the absolute homology: by writing H1(S,Σ0,C)/H1(S,C) =
C⊗H1(S,Σ0,R)/H1(S,R), one can write

Dgt|(Ĥg × (H1(S,Σ0,C)/H1(S,C)))/Γg = diag(et, e−t)⊗Grelt .

(3)Here we consider the quotient H1(S, Σ,C)/H1(S,C) because, generally speaking,
the absolute cohomology H1(S,C) doesn’t admit an equivariant supplement inside the
relative cohomology. Indeed, if this were the case our arguments concerning the relative
part would be easier, but the example in Appendix B of the article [MY] shows that this
is not always the case.
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In this way, our claim that the action of Dgt on the “purely relative homol-
ogy” part is “boring” corresponds to the fact that Grelt is the identity. To
show this, we observe that the image ct := Grelt (c0) under Grelt of a relative
cycle c0 joining two points p and q in Σ0 is again a relative cycle joining the
same points p and q. Therefore, ct−c0 is a cycle in absolute homology, that
is, c0 and ct represent the same element of H1(S,Σ0,R)/H1(S,R). Hence,
Grelt acts by the identity on H1(S,Σ0,R)/H1(S,R) and the claim is proved.

Therefore, the “interesting” part of the action of Dgt occurs on the
“absolute part” (Ĥg × H1(S,C))/Γg. In the literature, H1

g (C) := (Ĥg ×
H1(S,C))/Γg is called the (complex) Hodge bundle. Similarly,H1

g := (Ĥg×
H1(S,R))/Γg is called the (real) Hodge bundle.
As before, using the fact that H1(S,C) = C⊗H1(S,R), we can write

Dgt = diag(et, e−t)⊗GKZt

where GKZt : H1
g → H1

g is the quotient of the trivial product gt× id : Ĥg ×
H1(S,R)→ Ĥg×H1(S,R) by the action of the mapping class group Γg. In
the literature, GKZt is called the Kontsevich-Zorich cocycle.(4) To see that
this cocycle is far from trivial in general, we observe that the cohomology
classes of the real and imaginary parts of any Abelian differential ω defines
a plane H1

st := R · [Reω]⊕R · [Imω] in the absolute cohomology H1(S,R)
which is equivariant under the action of GKZt . Furthermore, by identifying
[Reω] with the vector e1 = (1, 0) ∈ R2 and [Imω] with the vector e2 =
(0, 1) ∈ R2 (so that H1

st ' R2), one sees that GKZt |H1
st
' diag(et, e−t). In

particular, the action of GKZt is never completely trivial!
In resume, the Kontsevich-Zorich cocycle captures the “essence” of the

derivative of the Teichmüller flow, so that we can safely restrict our at-
tention exclusively to the study of GKZt when trying to understand the
Teichmüller flow.
For the task of understanding the Kontsevich-Zorich cocycle, it will be

useful to introduce the Gauss-Manin connection and the Hodge norm on
the (real and complex) Hodge bundle. This is the main concern of the next
section.

(4)These definitions of the Hodge bundle and Kontsevich-Zorich cocycle work only for
Abelian differentials with no non-trivial automorphisms. For the general definitions see
[MYZ].
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1.6. Gauss-Manin connection and geometry of Hodge bundle

The fibers H1(S,C) of the complex Hodge bundle H1
g (C) over any Abel-

ian differential ω come equipped with a natural Hermitian intersection form

(ω1, ω2) = i

2

∫
S

ω1 ∧ ω2

Given (S, ω), we denote by H1,0(S, ω) the subspace (of complex dimension
g) ofH1(S,C) consisting of holomorphic 1-forms and byH0,1(S, ω) the sub-
space (of complex dimension g) of H1(S,C) consisting of anti-holomorphic
1-forms. In this way, we can decompose the complex Hodge bundle as a
direct sum

H1
g (C) = H1,0 ⊕H0,1

of two orthogonal (with respect to (., .)) subbundles. Furthermore, the re-
striction of (., .) to H1,0(S, ω) is positive-definite, while its restriction to
H0,1(S, ω) is negative-definite. In particular, (., .) is a Hermitian form of
signature (g, g) on H1

g (C).
The fundamental Hodge representation theorem asserts that any real

cohomology class c ∈ H1(S,R) can be written as c = [Reh(c)] for an
unique h(c) = hω(c) ∈ H1,0(S, ω) (holomorphic 1-form). In the literature,
the real cohomology class [Imh(c)] is denote by ∗c and the operator c 7→ ∗c
is called the Hodge * operator.
By combining Hodge’s representation theorem with the fact that the

Hermitian form (., .) is positive-definite on H1,0(S, ω), we can introduce
an inner-product (and hence a norm) on the real Hodge bundle H1

g . This
norm is called the Hodge norm. By defintion, we have

‖c‖2 = i

2

∫
S

h(c) ∧ h(c) =
∫
S

Reh(c) ∧ Imh(c)

In the sequel, the Hodge inner-product on the real Hodge bundle will be
denoted by (., .)ω = (., .) (slightly abusing of the notation) while the sym-
plectic intersection form on the real cohomology H1(S,R) (and the real
Hodge bundle) will be denoted by 〈., .〉. In this language, one has

(h(c1), h(c2)) = (c1, c2) + i〈c1, c2〉

Now we connect the Hermitian intersection form (., .) with the geometry
of the complex Hodge bundle as follows. Inside the fibers H1(S,C) of the
complex Hodge bundle H1

g (C) we have a natural lattices H1(S,Z⊕ iZ). By
declaring that the vectors of these lattices in nearby fibers (i.e., fibers asso-
ciated to nearby Abelian differentials) are identified by parallel transport,
we obtain the so-called Gauss-Mannin connection DH1

g(C) on H1
g (C). By
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definition, the Gauss-Manin connection is a flat connection on H1
g (C) pre-

serving the Hermitian intersection form (., .). However, the reader should
be aware that the decomposition

H1
g (C) = H1,0 ⊕H0,1

is not equivariant (neither by Gauss-Manin connection nor by Teichmüller
flow)! In any case, this decomposition defines an orthogonal projection π1 :
H1
g (C)→ H1,0 of vector bundles.
Since H1,0 is a Hermitian vector bundle (w.r.t. (., .)), we can consider

the unique (non-flat) connection DH1,0 on H1,0 which is compatible with
(., .) and the Gauss-Manin connection DH1

g(C), namely,

DH1,0 = π1 ◦DH1
g(C)

See [GH, p.73] for more details. The second fundamental form

AH1,0 := DH1
g(C) −DH1,0 = (Id− π1) ◦DH1

g(C)

is a differential form of type (1, 0) with values on the bundle of complex-
linear maps from H1,0 to H0,1. In particular, AH1,0 can be written as a
matrix-valued differential form of type (1, 0). In the literature, AH1,0 is
also called Kodaira-Spencer map.
The curvatures ΘDH1

g(C)
and ΘDH1,0 of the connectionsDH1

g(C) andDH1,0 ,
and the second fundamental form (Kodaira-Spencer map) are related by
the following formula:

ΘDH1,0 = ΘDH1
g(C)
|H1,0 +A∗H1,0 ∧AH1,0 .

See [GH, p.78] for more details. Since the Gauss-Manin connection DH1
g(C)

is flat, its curvature vanishes, so that, in our context, the previous formula
becomes:

ΘDH1,0 = A∗H1,0 ∧AH1,0 .

By taking an orthonormal basis {ω1, . . . , ωg} of H1,0 and observing that
{ω1, . . . , ωg} is an orthonormal basis ofH0,1, the previous equation becomes

Θ = −A ·A∗

where Θ = Θω and A = Aω are the matrix forms of ΘDH1,0 and AH1,0 at
the point (S, ω). In particular, the curvature of the Hermitian bundle H1,0

(identified with the real Hodge bundle by Hodge’s representation theorem)
is negative semi-definite.
As it is well-known in Differential Geometry, one can use the second

fundamental form to derive first order variational formulas along geodesics.
This is the content of the following lemma:
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Lemma 1.1. — The Lie derivative L(c1, c2)ω of the Hodge inner product
of two parallel (i.e., locally constant) sections c1, c2 ∈ H1(S,R) in the
direction of the Teichmüller flow can be written as

L(c1, c2)ω := d

dt
(c1, c2)gt(ω)|t=0 = 2Re(Aω(hω(c)), hω(c2))

Proof. — By definition, for any c ∈ H1(S,R), c = [(hω(c) + hω(c))/2]
and

(c1, c2)ω = Re (hω(c1), hω(c2)).
On the other hand, since the cohomology classes c ∈ H1(S,R) are inter-
preted as parallel (locally constant) sections of H1

g (C) with respect to the
Gauss-Manin connection, we have

DH1
g(C)hω(c) = −DH1

g(C)hω(c) = −DH1
g(C)hω(c).

Since the Gauss-Manin connection is compatible with the Hermitian inter-
section form, one gets

L(c1, c2)ω = (DH1
g(C)hω(c1), hω(c2)) + (hω(c1), DH1

g(C)hω(c2))

= −(π1DH1
g(C)hω(c1), hω(c2))− (hω(c1), π1DH1

g(C)hω(c2))

= −(Aω(hω(c1)), hω(c2))− (hω(c1), Aω(hω(c2)))

= (Aω(hω(c1)), hω(c2)) + (hω(c1), Aω(hω(c2)))

Because (hω(c1), hω(c2)) = 0 (as H1,0 and H0,1 are orthogonal), one also
gets

0 = (DH1
g(C)hω(c1), hω(c2)) + (hω(c1), DH1

g(C)hω(c2))

= (Aω(hω(c1)), hω(c2)) + (hω(c1), Aω(hω(c2)))

By putting these two equations together, one sees that the desired result
follows. �

The relevance of this lemma to the study of derivative of the Teichmüller
flow resides in the fact that, from the definitions, it is not hard to see that
the Kontsevich-Zorich cocycle is simply the parallel transport with respect
to Gauss-Manin connection of cohomology classes along the orbits of the
Teichmüller flow. In other words, the previous lemma says that the in-
finitesimal change of inner-products (and/or norms) of cohomology classes
under Kontsevich-Zorich cocycle is driven by the second fundamental form.
In particular, it is important to be able to compute the second fundamental
form A = Aω in a more explicit way. This is the content of the following
lemma due to Giovanni Forni [F1, Lemma 2.1, Lemma 2.1’].
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Lemma 1.2. — Denote by B = Bω the bilinear form

Bω(α, β) := i

2

∫
S

αβ

ω
ω, α, β ∈ H1,0(S, ω).

Then, the second fundamental form A = Aω can be expressed in terms of
B = Bω as

(Aω(α), β) = −Bω(α, β)
for all α, β ∈ H1,0(S, ω).

We refer to G. Forni’s article for the proof of this lemma. At this stage,
we dispose of all elements to study exhibit special (“totally degenerate”)
orbits of the Teichmüller flow (and actually SL(2,R)-action) on the moduli
space of Abelian differentials.

2. Two totally degenerate SL(2,R)-orbits

We consider the family of curves (Riemann surfaces) defined by the al-
gebraic equations

M3 = M3(x1, . . . , x4) = {y4 = (x− x1) . . . (x− x4)}

and

M4 = M4(x1, . . . , x4) = {y6 = (x− x1)3(x− x2)(x− x3)(x− x4)}

with x1, x2, x3, x4 ∈ C. The familyM3 (resp.M4) consists of genus 3 (resp.
4) Riemann surfaces. We equip the Riemann surface

{y4 = (x− x1) . . . (x− x4)}

with the Abelian differential ω3 = dx/y2, and the Riemann surface

{y6 = (x− x1)3(x− x2)(x− x3)(x− x4)}

with the Abelian differential ω4 = (x− x1)dx/y3.
A quick computation reveals that ω3 is an Abelian differential with 4

simple zeroes while ω4 is an Abelian differential with 3 double zeroes. In
other words, (M3, ω3) ∈ H(1, 1, 1, 1) and (M4, ω4) ∈ H(2, 2, 2).
We claim that the families (M3, ω3) and (M4, ω4) are SL(2,R)-orbits.

Indeed, since (ω3)2 = p∗3(q0) and (ω4)2 = p∗4(q0), where pl : Ml → C,
pl(x, y) = x, l = 3, 4 and q0 = dx2

(x−x1)...(x−x4) is a quadratic differential with
4 simple poles, and the SL(2,R)-action commutes with pl (as SL(2,R) acts
on moduli space of Abelian differentials by post-composition with charts),
we have that (M3, ω3) and (M4, ω4) are SL(2,R)-loci. On the other hand,
the Riemann surface structure of M3(x1, . . . , x4) and M4(x1, . . . , x4) are

VOLUME 29 (2010-2011)



90 CARLOS MATHEUS

completely determined by the cross-ratio of x1, . . . , x4 ∈ C (that is, a sin-
gle complex parameter), and the choice of an unit Abelian differential on
M3(x1, . . . , x4) or M4(x1, . . . , x4) corresponds to a single real parameter,
we also have that the loci (M3, ω3) and (M4, ω4) have the same real di-
mension as the real Lie group SL(2,R) (namely 3). Putting these two facts
together, we obtain the desired claim.
Now, we will proceed to understand the Kontsevich-Zorich cocycle over

these two SL(2,R)-orbits. Firstly, as we already noticed, the Kontsevich-
Zorich cocycle GKZt always acts by the usual SL(2,R) representation on
R2 ' R · [Re(ωl)]⊕ R · [Im(ωl)] =: H1

st(ωl), l = 3, 4. Therefore, since GKZt
preserves the symplectic intersection form on H1(S,R), our task is reduced
to study the restriction of GKZt to the symplectic orthogonal

H1
(0)(ωl) := {c ∈ H1(S,R) : c ∧ [Re(ωl)] = c ∧ [Im(ωl)] = 0}

of H1
st(ωl), l = 3, 4.

In the case at hand, we dispose of explicit basis of H1
(0)(ωl) in both cases

l = 3, 4. Indeed, we affirm that, after using Hodge’s representation theorem
to view H1

(0)(ωl) inside H1,0(Ml, ωl),

H1
(0)(ω3) = span{dx/y3, xdx/y3}

and

H1
(0)(ω4) = span{(x− x1)dx/y4, (x− x1)2dx/y5, (x− x1)3dx/y5}

In fact, a direct calculation shows that {ω3 := dx/y2, dx/y3, xdx/y3} is a
basis of holomorphic differentials of the genus 3 Riemann surface M3, and
{ω4 := (x− x1)dx/y3, (x− x1)dx/y4, (x− x1)2dx/y5, (x− x1)3dx/y5} is a
basis of holomorphic differentials of the genus 4 Riemann surfaceM4. Thus,
it suffices to check that the dx/y3 and xdx/y3 are “symplectic orthogonal”
to ω3, and (x − x1)dx/y4, (x − x1)2dx/y5, (x − x1)3dx/y5 are symplectic
orthogonal to ω4. To do so, we observe that Ml, l = 3, 4, has a natural
automorphism

Tl(x, y) := (x, εly)
where εl = exp(πi/(l−1)), l = 3, 4. Moreover, the holomorphic differentials
listed above are eigenforms for the action of T ∗ whose eigenvalues have the
form εjl for some j > (l − 1). Hence, for l = 3,

(dx/y3) ∧ ω3 = T ∗3 (dx/y3) ∧ T ∗3 (ω3) = 1
ε5

3
(dx/y3) ∧ ω3,

(xdx/y3) ∧ ω3 = T ∗3 (xdx/y3) ∧ T ∗3 (ω3) = 1
ε5

3
(xdx/y3) ∧ ω3
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and, for l = 4,

(x− x1)dx
y4 ∧ ω4 = T ∗4

(
(x− x1)dx

y4

)
∧ T ∗4 (ω4) = 1

ε7
4

(x− x1)dx
y4 ∧ ω4,

(x− x1)jdx
y5 ∧ ω4 = T ∗4

(
(x− x1)jdx

y5

)
∧ T ∗4 (ω4) = 1

ε8
4

(x− x1)jdx
y5 ∧ ω3,

for j = 2, 3. In particular, since ε5
3 = ε3 = i 6= 1, ε7

4 = ε4 = exp(πi/3) 6= 1
and ε8

4 = ε2
4 = exp(2πi/3) 6= 1, we conclude that all wedge products above

vanish, and the affirmation is proved.
Finally, the behavior of the Kontsevich-Zorich cocycle GKZt restricted to

H1
(0)(ωl), l = 3, 4, is described by the following result:

Theorem 4. — GKZt |H1
(0)(ωl), l = 3, 4, is isometric with respect to the

Hodge norm.

This theorem was first proved by G. Forni [F2] in the case l = 3, and
by G. Forni and the author [FMt] (see also [FMZ1]) in the case l = 4. The
proof below follows the original arguments in these articles.
Proof. — By Lemmas 1.1 and 1.2, the first order variation (derivative)

of the Hodge norm under Kontsevich-Zorich cocycle is controlled by the
second fundamental formAωl , andAωl can be written in terms of an explicit
bilinear form Bωl . In particular, from these lemmas one sees it suffices to
show that bilinear form B = Bωl vanishes identically on H1

(0)(ωl).
To do so, we use a similar strategy to the one applied to prove that

H1
(0)(ωl) is symplectically orthogonal toH1

st(ωl), namely, we use the natural
automorphism Tl of Ml to change variables in the integral defining Bωl .
For sake of concreteness, we perform the calculation in the case l = 3 only

(leaving the case l = 4 as an exercise to the reader). In this situation, we
saw that α = dx/y3 and β = xdx/y3 span H1

(0)(ω3). Hence, since B = Bω3

is a bilinear form, it suffices to check that

B(α, α) = B(α, β) = B(β, α) = B(β, β) = 0.

By definition,

B(α, α) =
∫
αα

ω3
ω3 =

∫
T ∗3 αT

∗
3 α

T ∗3 ω3
T ∗3 ω3 = ε2

3
ε3

3ε
3
3ε3

2B(α, α) = −B(α, α).

Similarly,

B(β, β) =
∫
ββ

ω3
ω3 =

∫
T ∗3 βT

∗
3 β

T ∗3 ω3
T ∗3 ω3 = ε2

3
ε3

3ε
3
3ε3

2B(β, β) = −B(β, β)
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and

B(α, β) =
∫
αβ

ω3
ω3 =

∫
T ∗3 αT

∗
3 β

T ∗3 ω3
T ∗3 ω3 = ε2

3
ε3

3ε
3
3ε3

2B(α, β) = −B(α, β).

Thus, B(α, α) = B(β, β) = B(α, β) = 0 and the argument for the case
l = 3 is complete. �

Actually, the content of this theorem was significantly improved in a
subsequent work by J.-C. Yoccoz and the author [MY]: in fact, there it
was shown that, in an appropriate basis, the Kontsevich-Zorich cocycle acts
through an explicit finite group of matrices (whose order is 96 for l = 3 and
72 for l = 4) related to “symplectic” subgroups of the automorphism group
of D4 type root systems. In particular, since any finite group of matrices
always preserves an inner-product, this allows to (re)derive the fact that
the Kontsevich-Zorich cocycle restricted to H1

(0)(ωl) acts by isometries.
In general, the fact that the Kontsevich-Zorich cocycle is isometric (on

the symplectic orthogonal of H1
st) is very unusual: for instance, the previ-

ous theorem ensures, in particular, that the homological action of pseudo-
Anosov elements (i.e., the Kontsevich-Zorich cocycle over periodic orbits
of Teichmüller flow) contained in the SL(2,R)-orbits (Ml, ωl), l = 3, 4, has
only eigenvalues of norm 1 (in H1

(0)(ωl)). This is in sharp contrast with the
well-known fact (among specialists) that the homological action of “typical”
pseudo-Anosov elements is highly non-trivial in the sense that its eigenval-
ues have multiplicity one and they don’t lie in the unit circle (in particular
no isometric behavior whatsoever).
Therefore, in this sense, the SL(2,R)-orbits (Ml, ωl), l = 3, 4, are “to-

tally degenerate” (as the Kontsevich-Zorich cocycle along them exhibit an
unexpected behaviour).
In the literature, the SL(2,R)-orbit (M3, ω3) is commonly called Eier-

legende Wollmilchsau due to its really unusual properties. In fact, it turns
out that this example was also discovered by F. Herrlich, M. Möller and G.
Schmithüsen [HS] (but the motivation [coming from Algebraic Geometry]
was slightly different from Forni’s one). More recently, after a suggestion of
B. Weiss and V. Delecroix, the SL(2,R)-orbit (M4, ω4) is sometimes called
Ornithorynque.
The curious reader maybe asking whether these examples can be gen-

eralized to provide more “totally degenerate” examples. Firstly, after the
works of M. Bainbridge [Ba], and A. Eskin, M. Kontsevich and A. Zorich
[EKZ1] that such examples can not exist in genus 2. Secondly, it was re-
cently proved by M. Möller [Mo] that besides the previous two examples
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and maybe some potential new examples in genus 5, there are no further ex-
amples of “totally degenerate” (i.e., GKZt |H1

(0)
is isometric) closed SL(2,R)!

In other words, G. Forni and the author were somewhat lucky to find the
sole two known examples of totally degenerate closed SL(2,R)-orbits. In
the language of Algebraic Geometry, a totally degenerate closed SL(2,R)-
orbit is called a family of Shimura and Teichmüller curves (because the
total degeneracy property can be shown to be equivalent to the fact that
the family of curves gives rise to totally geodesic curves in both moduli
spaces of curves and Abelian varieties), or equivalent, the Jacobians of the
(genus g) curves in such a family display a fixed part of maximal dimen-
sion (namely g− 1). For more comments on this, we refer the reader to M.
Möller’s article [Mo].
On the other hand, these examples can be generalized to a class of Rie-

mann surfaces giving rise to closed SL(2,R)-orbits called square-tiled cyclic
covers after the works of G. Forni, A. Zorich and the author [FMZ1], and A.
Eskin, M. Kontsevich and A. Zorich [EKZ2]. In particular, we know that,
although they can’t be totally degenerate in general, it is proven in these
works that they can be partially degenerate and we can decompose explic-
itly H1

(0) into a direct sum of a degenerate part (where GKZt is isometric)
and a non-degenerate part. Actually, in these square-tiled cyclic cover ex-
amples, the degenerate part is very easy to identify: as a part of a joint
work with G. Forni and A. Zorich [FMZ2], we show that this degenerate
part is exactly the annihilator of the bilinear form B = Bω and actually
this degenerate part is equivariant with respect to parallel transport with
respect to Gauss-Manin connection (in particular, SL(2,R)-invariant). In
the language of Algebraic Geometry, it follows that, for square-tiled cyclic
covers, the degenerate part corresponds exactly to the fixed part of the
Jacobians of the associated family of curves.
We end these notes with the following remark:

Remark 2.1. — At the time the talk was delivered (November 25, 2010),
it was an open question to know whether the annihilator of B = Bω
was always invariant under the SL(2,R)-action and/or parallel transport
with respect to Gauss-Manin connection. About a month later, G. Forni,
A. Zorich and the author [FMZ2] found an example of a 5-dimensional
SL(2,R)-invariant locus of Abelian differentials in genus 10 such that the
annihilator of Bω is not SL(2,R)-invariant, and, more recently, A. Avila,
J.-C. Yoccoz and the author generalized this example to construct a family
of loci with interesting dynamical properties (e.g., the associated “neutral
Oseledets bundle” is not continuous).

VOLUME 29 (2010-2011)



94 CARLOS MATHEUS

Acknowledgments

The author is grateful to his coauthors Giovanni Forni, Jean-Christo-
phe Yoccoz and Anton Zorich for the pleasure of working with them in
the projects [FMZ1], [FMZ2], [FMZ3] and [MY]. Also, he is thankful to
the organizers of the “Séminaire de Théorie Spectrale et Géométrie” of the
Institut Fourier - Univ. Grenoble I (in particular, Benoît Kloeckner) for the
kind invitation to deliver the talk at the origin of these notes. Finally, the
author thanks Collège de France for the hospitality during the preparation
of these (extended) lecture notes.

BIBLIOGRAPHY

[Ba] M. Bainbridge, Euler characteristics of Teichmüller curves in genus two, Geometry
and Topology, 11, 2007, 1887-2073.

[BMW] K. Burns, H. Masur and A. Wilkinson, The Weil-Petersson geodesic flow is
ergodic, Annals of Math. 175, 2012, 835–908, arXiv:1004.5343.

[EKZ1] A. Eskin, M. Kontsevich, A. Zorich, Sum of Lyapunov exponents of the Hodge
bundle with respect to the Teichmüller geodesic flow, arxiv:1112.5872, 2011, 1–106.

[EKZ2] , Lyapunov spectrum of square-tiled cyclic covers, J. Mod. Dyn., 5, n. 2,
2011, 319–353.

[F1] G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of
higher genus, Annals of Math., 155, no. 1, 2002, 1–103.

[F2] , On the Lyapunov exponents of the Kontsevich–Zorich cocycle, Handbook
of Dynamical Systems v. 1B, B. Hasselblatt and A. Katok, eds., Elsevier, 2006,
549–580.

[FMt] G. Forni and C. Matheus, An example of a Teichmuller disk in genus 4 with
degenerate Kontsevich–Zorich spectrum, arXiv:0810.0023v1, 2008, 1–8.

[FMZ1] G. Forni, C. Matheus and A. Zorich, Square-tiled cyclic covers, J. Mod. Dyn.,
5, n. 2, 2011, 285–318.

[FMZ2] G. Forni, C. Matheus and A. Zorich, Lyapunov spectrum of equivariant sub-
bundles of the Hodge bundle, arxiv:1112.0370, 2011, 1–63.

[FMZ3] G. Forni, C. Matheus and A. Zorich, Zero Lyapunov exponents of the Hodge
bundle, arxiv:1201.6075, 2012, 1–39.

[GH] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Pure and Applied
Mathematics. Wiley-Interscience [John Wiley & Sons], New York, 1978. xii+813
pp. ISBN: 0-471-32792-1

[H] J. Hubbard, Teichmüller theory and applications to geometry, topology, and dy-
namics, Vol. 1, Teichmüller theory, Matrix Editions, Ithaca, NY, 2006. xx+459 pp.
ISBN: 978-0-9715766-2-9; 0-9715766-2-9

[HS] F. Herrlich and G. Schmithüsen, An extraordinary origami curve, Math. Nachr.
281:2, 2008, 219–237.

[KZ] M. Kontsevich, A. Zorich, Connected components of the moduli spaces of Abelian
differentials, Inventiones Mathematicae, 153:3, 2003, 631–678.

[DM] C. Matheus, Lyapunov spectrum of Kontsevich-Zorich cocycle on the Hodge bun-
dle of square-tiled cyclic covers I, post at the mathematical blog “Disquisitiones
Mathematicae” (http://matheuscmss.wordpress.com/)

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



TEICHMÜLLER FLOW AND HODGE BUNDLE 95

[MY] C. Matheus and J.-C. Yoccoz, The action of the affine diffeomorphisms on the
relative homology group of certain exceptionally symmetric origamis, J. Mod. Dyn.,
4, n. 3, 2010, 453–486.

[MYZ] C. Matheus, J.-C. Yoccoz and D. Zmiaikou, Homology of origamis with symme-
tries, arxiv:1207.2423, 2012, 1–35.

[Mo] M. Möller, Shimura and Teichmüller curves, J. Mod. Dyn. 5, 2011, 1–32,
arXiv:math/0501333v2.

[Z] A. Zorich, Flat surfaces, in collection “Frontiers in Number Theory, Physics and
Geometry. Vol. 1: On random matrices, zeta functions and dynamical systems”;
Ecole de physique des Houches, France, March 9–21 2003, P. Cartier; B. Julia; P.
Moussa; P. Vanhove (Editors), Springer-Verlag, Berlin, 2006, 439–586.

Carlos Matheus
CNRS - LAGA, UMR 7539, Univ. Paris 13, 99, Av.
J.-B. Clément, 93430, Villetaneuse, France
matheus@impa.br.

VOLUME 29 (2010-2011)

mailto:matheus@impa.br.

	1. Teichmüller flow, Hodge bundle and Kontsevich-Zorich cocycle
	1.1. Quasiconformal maps between Riemann surfaces
	1.2. Cotangent bundle of T(S) and M(S)
	1.3. Teichmüller flow and SL(2,R) action on Hg"0362Hg and Hg
	1.4. Stratification of Hg"0362Hg and Hg, and period coordinates
	1.5. Derivative of Teichmüller flow and Kontsevich-Zorich cocycle
	1.6. Gauss-Manin connection and geometry of Hodge bundle

	2. Two totally degenerate SL(2,R)-orbits
	Acknowledgments

	Bibliography

