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CANNON-THURSTON MAPS, I-BOUNDED
GEOMETRY AND A THEOREM OF MCMULLEN

Mahan Mj

Abstract. — The notion of i-bounded geometry generalises simultaneously
bounded geometry and the geometry of punctured torus Kleinian groups. We show
that the limit set of a surface Kleinian group of i-bounded geometry is locally
connected by constructing a natural Cannon-Thurston map.

1. Introduction

In [20] we prove the existence of Cannon-Thurston maps for arbitrary
surface Kleinian groups without accidental parabolics. The proof proceeds
by constructing a coarse model geometry, called split geometry, satisfied
by all associated hyperbolic 3-manifolds. Our starting point in [20] is a
model geometry constructed by Minsky in [14] and we proceed by forgetting
some of the finer structure in [14] to establish that all surface Kleinian
groups have associated hyperbolic 3-manifolds of split geometry. In [6],
[22, 5] and [19] we completed the programme of proving the existence of
Cannon-Thurston maps for arbitrary finitely generated Kleinian groups
and describing point pre-images in terms of ending laminations.

The purpose of the present paper is to give an exposition of the existence
of Cannon-Thurston maps for surface Kleinian groups without accidental
parabolics satisfying a more restrictive model geometry called i-bounded
geometry satisfied for instance by all punctured torus Kleinian groups.
This gives a new proof of a result of McMullen [13].

The main pre-requisites for understanding the present paper are:
(1) Generalities on hyperbolic metric spaces in the sense of Gromov [9]

[4], [8], especially boundary theory in terms of asymptote classes of
geodesics.

Math. classification: 57M50.
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64 MAHAN MJ

(2) The theory of simply and doubly degenerate Kleinian groups (Chap-
ter 8 of [25])

(3) Relative hyperbolicity and electric geometry [7, 9, 1].
A similar exposition in the special case of bounded geometry surface

Kleinian groups had been given by the author in [24]. In [21] we give an
exposition of more general model geometries leading up to split geometry
used in [20].

1.1. Statement of Results

The main theorem of this paper is:

Theorem 1.1 (7.6). — LetMh be a hyperbolic 3 manifold of i-bounded
geometry homeomorphic to Sh×J (for J = [0,∞) or (−∞,∞)), where Sh
is a hyperbolic surface of finite area. Let i : Sh →Mh be a type-preserving
(i.e. taking parabolics to parabolics) homotopy equivalence. Then the in-
clusion ĩ : S̃h → M̃h extends continuously to a map î : Ŝh → M̂h. Hence
the limit set of S̃h is locally connected.

The notion of i-bounded geometry generalises simultaneously bounded ge-
ometry and the geometry of punctured torus Kleinian groups. In particular,
since punctured torus groups have i-bounded geometry by a result of Min-
sky [16], we have a new proof of the following Theorem of McMullen [13]
as a consequence:

Theorem 1.2 (McMullen [13]). — Let Mh be a hyperbolic 3 manifold
homeomorphic to Sh×J (for J = [0,∞) or (−∞,∞)), where Sh is a punc-
tured torus. Let i : Sh → Mh be a type-preserving (i.e. taking parabolics
to parabolics) homotopy equivalence. Then the inclusion ĩ : S̃h → M̃h ex-
tends continuously to a map î : Ŝh → M̂h. Hence the limit set of S̃h is
locally connected.

i-bounded geometry can roughly be described as bounded geometry away
from Margulis tubes. But this description is a little ambiguous. More pre-
cisely, we start with a collection of (uniformly) bounded geometry blocks
S × I glued end to end. Next, for some blocks a curve is selected such that
its representative on the lower end of the block has (uniformly) bounded
length. Hyperbolic Dehn surgery is then performed along the geodesic rep-
resentative within the block. Precise definitions will be given in Section 2.2.

We describe below a collection of examples of manifolds of i-bounded
geometry for which Theorem 7.6 is known:
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CANNON-THURSTON MAPS 65

(1) The cover corresponding to the fiber subgroup of a closed hyperbolic
3-manifold fibering over the circle (Cannon and Thurston [3]).

(2) Hyperbolic 3 manifolds of bounded geometry, which correspond to
simply or doubly degenerate Kleinian groups isomorphic to closed
surface groups (Minsky [15]). (See also Section 4.3 of [18].)

(3) Hyperbolic 3 manifolds of bounded geometry, arising from simply
or doubly degenerate Kleinian groups corresponding to punctured
surface groups (Bowditch [2]). (See also [23])

(4) Punctured torus Kleinian groups (McMullen [13]).

1.2. Cannon-Thurston Maps and i-bounded geometry

Let S be a hyperbolic surface of finite area and let

ρ(π1(S)) = H ⊂ PSl2(C) = Isom (H3)

be a representation, such that the quotient hyperbolic 3-manifold M =
H3/H is simply degenerate. Let S̃ and M̃ denote the universal covers of
S and M respectively. Then S̃ and M̃ can be identified with H2 and H3

respectively. There exists a natural inclusion i : S̃ → M̃ . Now let D2 =
H2 ∪ S1

∞ and D3 = H3 ∪ S2
∞ denote the standard compactifications. The

local connectivity of the limit set of S̃ is equivalent to the existence of a
continuous extension (a Cannon-Thurston map) î : D2 → D3.

A word about the term i-bounded geometry. In the construction of a
general model manifold (Section 9 of [14]), as a step towards the resolution
of the Ending Lamination Conjecture, Minsky describes certain (complex)
meridian coefficients which encode the complex structure for boundary torii
of Margulis tubes. The uniform boundedness of these coefficients corre-
sponds to bounded geometry. The manifolds that we discuss in this paper
correspond to those which have a uniform bound on the imaginary part of
these coefficients. Hence the term i-bounded geometry. Clearly, manifolds of
bounded geometry have i-bounded geometry. In [16], Minsky further showed
that punctured torus groups (and four-holed sphere groups) have i-bounded
geometry. Roughly speaking, the number of twists gives the real part and
the number of vertical annulii gives the imaginary part of the coefficients.
Hence, in a manifold of i-bounded geometry, an arbitrarily large number of
twists are allowed for each Margulis tube, but only a uniformly bounded
number of vertical annulii.

As in [17, 18] and [23], our proof proceeds by constructing a ladder-like
set Bλ ⊂ M̃ from a geodesic segment λ ⊂ S̃ and then a retraction Πλ of
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66 MAHAN MJ

M̃ onto Bλ. We modify this construction in this paper and restrict our
attention to one block, i.e. a copy of S̃ × I minus certain neighborhoods of
geodesics and cusps and equip it with a model pseudometric which is zero
along lifts of a simple closed geodesic.

To prevent cluttering, we restrict ourselves to closed surfaces first, and
then indicate the modifications necessary for punctured surfaces.

2. Preliminaries

2.1. Hyperbolic Metric Spaces

We start off with some preliminaries about hyperbolic metric spaces in
the sense of Gromov [9, 4, 8]. Let (X, d) be a hyperbolic metric space. The
Gromov boundary of X, denoted by ∂X, is the collection of asymptote
classes of geodesic rays.

A subset Z of X is said to be k-quasiconvex if any geodesic joining
points of Z lies in a k-neighborhood of Z. A subset Z is quasiconvex if it
is k-quasiconvex for some k.

A map f from one metric space (Y, dY ) into another metric space (Z, dZ)
is said to be a (K, ε)-quasi-isometric embedding if

1
K

(dY (y1, y2))− ε 6 dZ(f(y1), f(y2)) 6 KdY (y1, y2) + ε

If f is a quasi-isometric embedding, and every point of Z lies at a uniformly
bounded distance from some f(y) then f is said to be a quasi-isometry.
A (K, ε)-quasi-isometric embedding that is a quasi-isometry will be called
a (K, ε)-quasi-isometry.

A (K, ε)-quasigeodesic is a (K, ε)-quasi-isometric embedding of a closed
interval in R. A (K,K)-quasigeodesic will also be called a K-quasigeodesic.

Let (X, dX) be a hyperbolic metric space and Y be a subspace that is
hyperbolic with the inherited path metric dY . By adjoining the Gromov
boundaries ∂X and ∂Y to X and Y , one obtains their compactifications X̂
and Ŷ respectively.

Let i : Y → X denote inclusion.

Definition 2.1. — Let X and Y be hyperbolic metric spaces and i :
Y → X be an embedding. A Cannon-Thurston map î from Ŷ to X̂ is a
continuous extension of i.

The following lemma (Lemma 2.1 of [17]) says that a Cannon-Thurston
map exists if for all M > 0 and y ∈ Y , there exists N > 0 such that if λ
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CANNON-THURSTON MAPS 67

lies outside an N ball around y in Y then any geodesic in X joining the
end-points of λ lies outside the M ball around i(y) in X. For convenience
of use later on, we state this somewhat differently.

Lemma 2.2. — A Cannon-Thurston map from Ŷ to X̂ exists if the
following condition is satisfied:

Given y0 ∈ Y , there exists a non-negative function M(N), such that
M(N) → ∞ as N → ∞ and for all geodesic segments λ lying outside an
N -ball around y0 ∈ Y any geodesic segment in ΓG joining the end-points
of i(λ) lies outside the M(N)-ball around i(y0) ∈ X.

The above result can be interpreted as saying that a Cannon-Thurston
map exists if the space of geodesic segments in Y embeds properly in the
space of geodesic segments in X.

2.2. i-bounded Geometry

We start with a hyperbolic surface Sh with or without punctures. The
hyperbolic structure is arbitrary, but it is important that a choice be made.
S will denote Sh minus a small enough neighborhood of the cusps.

Fix a finite collection C of (geodesic representatives of) simple closed
curves on S. Nε(σ) will denote the ε-neghborhood of a geodesic σ ∈ C.
Nε(σi) will denote an ε neighborhood of σi ⊂ Sh for some σi ∈ C. ε and

the neighborhood of the cusps in Sh are chosen small enough so that
(1) Nε(σi) is at least a distance of ε from the cusps.
(2) No two lifts of Nε(σi) to the universal cover S̃h intersect.

Note that S = Sh if S has no cusps. Restrict the metric on Sh to S and
equip S with the resultant path-metric.

The Thin Building Block

For the construction of a thin block, I will denote the closed interval [0, 3].
Now put a product metric structure on S × I, which restricts to the path-
metric on S for each slice S × a, a ∈ I and the Euclidean metric on the
I-factor. Let Bci denote (S × I −Nε(σi) × [1, 2]. Equip Bci with the path-
metric.

For each resultant torus component of the boundary of Bci , perform Dehn
filling on some (1, ni) curve, which goes ni times around the meridian and
once round the longitude. ni will be called the twist coefficient. The

VOLUME 28 (2009-2010)



68 MAHAN MJ

metric on the solid torus Θi glued in is arranged in such a way that it
is isometric to the quotient of a neighborhood of a bi-infinite hyperbolic
geodesic by a hyperbolic isometry. Further, the (1, ni)-curve is required to
bound a totally geodesic hyperbolic disk. In fact, we might as well foliate the
boundary of Θi by translates (under hyperbolic isometries) of the meridian,
and demand that each bounds a totally geodesic disk. Since there is no
canonical way to smooth out the resulting metric, we leave it as such. Θi
equipped with this metric will be called a Margulis tube in keeping with
the analogy from hyperbolic space.

The resulting copy of S × I obtained, equipped with the metric just
described, is called a thin building block and is denoted by Bi.

Thick Block

Fix constants D, ε and let µ = [p, q] be an ε-thick Teichmuller geodesic
of length less than D. µ is ε-thick means that for any x ∈ µ and any closed
geodesic η in the hyperbolic surface Shx over x, the length of η is greater
than ε. Now let Bh denote the universal curve over µ reparametrized such
that the length of µ is covered in unit time. Let B denote Bh minus a
neighborhood of the cusps. Thus B = S × [0, 1] topologically.

A small enough neighborhood of the cusps of Sh is fixed. Sh × {x}, x ∈
[0, 1] is given the hyperbolic structure Shx corresponding to the point at dis-
tance xdTeich(p, q) from p along µ (dTeich denotes Teichmuller metric). A
neighborhood of the cusps of Sh having been fixed, we remove the images
under the Teichmuller map (from Sh0 to Shx ) of this neighborhood (hav-
ing first fixed a neighborhood of the cusps of Sh0 as the image under the
Teichmuller map from Sh).

The resultant manifold B (possibly with boundary) is given the path
metric and is called a thick building block.

Note that after acting by an element of the mapping class group, we
might as well assume that µ lies in some given compact region of Teich-
muller space. This is because the marking on S×{0} is not important, but
rather its position relative to S×{1} Further, since we shall be constructing
models only upto quasi-isometry, we might as well assume that Sh × {0}
and Sh × {1} lie in the orbit under the mapping class group of some fixed
base surface. Hence µ can be further simplified to be a Teichmuller geodesic
joining a pair (p, q) amongst a finite set of points in the orbit of a fixed
hyperbolic surface Sh.
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The Model Manifold

Note that the boundary of a thin block Bi consists of S × {0, 3} and
the intrinsic path metric on each such S × {0} or S × {3} is equivalent to
the path metric on S. Also, the boundary of a thick block B consists of
S × {0, 1}, where Sh0 , Sh1 lie in some given bounded region of Teichmuller
space. The intrinsic path metrics on each such S × {0} or S × {1} is the
path metric on S.

The model manifold of i-bounded geometry is obtained from S × J
(where J is a sub-interval of R, which may be semi-infinite or bi-infinite.
In the former case, we choose the usual normalisation J = [0,∞) ) by first
choosing a sequence of blocks Bi (thick or thin) and corresponding intervals
Ii = [0, 3] or [0, 1] according as Bi is thick or thin. The metric on S × Ii is
then declared to be that on the building block Bi. Thus we have,

Definition 2.3. — A manifold M homeormorphic to S×J , where J =
[0,∞) or J = (−∞,∞), is said to be a model of i-bounded geometry if

(1) there is a fiber preserving homeomorphism from M to S̃ × J that
lifts to a quasi-isometry of universal covers

(2) there exists a sequence Ii of intervals (with disjoint interiors) and
blocks Bi where the metric on S × Ii is the same as that on some
building block Bi

(3)
⋃
i Ii = J

The figure below illustrates schematically what the model looks like.
Filled squares correspond to torii along which hyperbolic Dehn surgery is
performed. The blocks which have no filled squares are the thick blocks and
those with filled squares are the thin blocks.

Figure 2.1. Model of i-bounded geometry (schematic)

VOLUME 28 (2009-2010)



70 MAHAN MJ

Definition 2.4. — A manifold M homeormorphic to S×J , where J =
[0,∞) or J = (−∞,∞), is said to have i-bounded geometry if there
exists K, ε > 0 such that the universal cover M̃ is K, ε quasi-isometric to a
model manifold of i-bounded geometry.

The Punctured Torus

In [16], Minsky constructs a model manifold for arbitrary punctured torus
groups that motivates the above definitions. For him, Sh is the square
punctured torus. C consists of precisely two shortest curves a, b of equal
length on Sh. Ci is the singleton set {a} for i even and the set {b} for i
odd. The numbers n corresponding to the surgery coefficients correspond
to the number of Dehn twists performed about the ith curve. Thus, we
see from Minsky’s construction of the model manifold for punctured torus
groups that all punctured torus groups give rise to manifolds of i-bounded
geometry

Alternate Description of i-bounded geometry

We could weaken the definition of thin blocks in models of i-bounded ge-
ometry by requiring that a family C of disjoint simple closed curves (rather
than a single simple closed curve) are modified by hyperbolic Dehn surgery.
This gives rise to an equivalent definition.

To see this, add on as many blocks (indexed by j) of S × I as there are
curves in C (this number is bounded in terms of the genus of S). Then
isotope Margulis tubes to different levels by a bi-Lipschitz map away from
the tubes. The universal covers of the original S× I and the new S×

⋃
j Ij

are quasi-isometric.
Hence, it does not multiply examples to allow a family C rather than a

single curve.

3. Relative Hyperbolicity

In this section, we shall recall first certain notions of relative hyperbolic-
ity due to Farb [7]. Using these, we shall derive certain Lemmas that will be
useful in studying the geometry of the universal covers of building blocks.
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3.1. Electric Geometry

Given some σ, we construct a pseudometric, on S by defining
• the length of any path that lies along σ to be zero,
• the length of any path [a, b] that misses all such geodesics in its

interior (a, b) to be the hyperbolic length, and
• the length of any other path to be the sum of lengths of pieces of

the above two kinds.
This allows us to define distances by taking the infimum of lengths of

paths joining pairs of points and gives us a path pseudometric, which we call
the electric metric. The electric metric also allows us to define geodesics.
Let us call S equipped with the above pseudometric Sel.

We shall be interested in the universal cover S̃el of Sel. Paths in Sel
and S̃el will be called electric paths (following Farb [7]). Geodesics and
quasigeodesics in the electric metric will be called electric geodesics and
electric quasigeodesics respectively.

Definition 3.1. — γ is said to be an electric K, ε-quasigeodesic in S̃el
without backtracking if γ is an electric K-quasigeodesic in S̃el and γ

does not return to any any lift Nε(σ̃) ⊂ S̃el of Nε(σ) after leaving it.

A hyperbolic geodesic λ may follow a lift σ̃ for a long time without/
after/ before/ before and after intersecting it. This is why in the definition
of quasigeodesics without backtracking, we take Nε(σ̃) rather than σ̃ itself.

A similar definition can be given in the case of manifolds with cusps. Here
electrocuted sets correspond to horodisks (lifts of cusps). More generally,
we can consider X to be a convex subset of Hn and H to be a collection
of uniformly separated horoballs in X based on points of ∂X (i.e. they are
the intersection with X of certain horoballs in Hn whose boundary point
lies in ∂X). We present below two basic Lemmas due to Farb [7] in the
general setup of hyperbolic metric spaces. Their specializations for S̃el are
also indicated.

Definition 3.2. — Let X be a convex subset of Hn and H a collection
of uniformly separated horoballsH. Let Y be the complementX−{H : H ∈
H}. γ is said to be an ambient K-quasigeodesic (resp. a K-quasigeodesic
in X) without backtracking if

• γ is an ambient K-quasigeodesic in Y (resp. a K-quasigeodesic
in X)
• γ is obtained from a K-quasigeodesic in X by replacing each maxi-

mal subsegment with end-points on a horosphere by a quasigeodesic
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72 MAHAN MJ

lying on the surface of the horosphere (resp. γ does not return to
any horoball H after leaving it).

We collect together certain facts about the electric metric that Farb
proves in [7]. NR(Z) will denote the R-neighborhood about the subset Z
in the hyperbolic metric. NeR(Z) will denote the R-neighborhood about the
subset Z in the electric metric.

Lemma 3.3 (Lemma 4.5 and Proposition 4.6 of [7]). —
(1) Electric quasi-geodesics electrically track hyperbolic geodesics: Given

P > 0, there exists K > 0 with the following property: For some
S̃i, let β be any electric P -quasigeodesic without backtracking from
x to y, and let γ be the hyperbolic geodesic from x to y. Then
β ⊂ NeK(γ).

(2) Hyperbolicity: There exists δ such that each S̃el is δ-hyperbolic,
independent of the curve σ ∈ C whose lifts are electrocuted.

Note. — In [7], Farb proves the above Lemma for horospheres rather
than geodesics. There is however, an easy trick to convert geodesics to
horocycles as follows:

For each geodesic σi, construct a geometrically finite hyperbolic 3-mani-
fold Mi, in which the curve σi is an (accidental) parabolic, i.e. one boundary
component ofMi corresponds to the surface Sh and on the other component
the curve become parabolic. Removing horoball neighborhoods of cusps,
we get a manifold quasi-isometric to S (the quasi-isometry is uniform, i.e.
independent of i, since only finitely many choices are possible for Ci). The
electric pseudo-metric obtained by putting the zero metric on horospheres
is easily seen to be quasi-isometric to the metric on Si. As a consequence,
all of Farb’s results go through with very minor modifications.

An alternate approach is to follow Lemmas 4.4 through 4.10 of [7] with
geodesics replacing horospheres, and exactly the same arguments apply.
However, we have to state the results a little carefully, to avoid some obvious
errors. This is particularly necessary for the Lemmas 4.8 through 4.10 of [7],
where the corresponding notion of “bounded penetration” for geodesics is
a little different.

Farb gives more precise information regarding the tracking properties
mentioned in Lemma 3.7 above. But before we go into this, we want to make
the notion of penetration more precise. Hyperbolic geodesics may come
arbitrarily close to an electrocuted geodesic without meeting it. However,
from the first part of Lemma 3.7, electric geodesics lie electrically close
to the hyperbolic geodesic. This is where we need a neighborhood of the
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electrocuted geodesic rather than the geodesic itself. Recall that we chose
an ε such that the ε-neighborhoods of the electrocuted geodesics are ε-
separated. This allows us to give the following modified versions of Lemmas
4.8 - 4.10 of [7].

Lemma 3.4. — Let β be an electric P -quasigeodesic without backtrack-
ing and γ a hyperbolic geodesic, both joining x, y in some S̃el. Then, given ε
there exists D = D(P, ε) such that

(1) Similar Intersection Patterns 1: if precisely one of {β, γ} meets
an ε-neighborhood Nε(σ̃) of an electrocuted geodesic σ̃, then the
length (measured in the intrinsic path-metric on Nε(σ̃)) from the
first (entry) point to the last (exit) point is at most D.

(2) Similar Intersection Patterns 2: if both {β, γ} meet some Nε(σ̃)
then the length (measured in the intrinsic path-metric on Nε(σ̃))
from the entry point of β to that of γ is at most D; similarly for
exit points.

In fact, much of what Farb proved in [7] goes through under consider-
ably weaker assumptions. In [7] the theorems were proven in the particular
context of a pair (X,H), where X is a Hadamard space of pinched negative
curvature with the interiors of a family of horoballsH removed. ThenH can
be regarded as a collection of horospheres in X separated by a minimum
distance from each other. In this situation, X is not a hyperbolic metric
space itself, but is hyperbolic relative to a collection of separated horo-
spheres. Alternately, X may be regarded as hyperbolic space itself, and H
as a separated collection of horoballs. Note that this gives an equivalent
description, and moreover, one that is easier to formulate abstractly.

Let X be a hyperbolic metric space and H a collection of (uniformly)
C-quasiconvex uniformly separated subsets, i.e. there exists D > 0 such
that for H1,H2 ∈ H, dX(H1,H2) > D. In this situation X is hyperbolic
relative to the collection H (see [1]).

However, the property of Bounded Horosphere Penetration (BHP) or
Bounded Coset Penetartion (BCP) [7] was not abstracted out in Klarreich’s
proof as it was not necessary. What is essential for BCP (or BHP) to go
through has been abstracted out by Bowditch [2, 1] in the case that the
collection H is a collection of geodesics or horocycles in a Farey graph.
But though these things are available at the level of folklore, an explicit
statement seems to be lacking. The crucial condition can be isolated as per
the following definition:

VOLUME 28 (2009-2010)
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Definition 3.5. — A collection H of uniformly C-quasiconvex sets in a
δ-hyperbolic metric space X is said to be mutually D-cobounded if for
all Hi,Hj ∈ H, πi(Hj) has diameter less than D, where πi denotes a nearest
point projection of X onto Hi. A collection is mutually cobounded if it
is mutually D-cobounded for some D.

Mutual coboundedness was proven for horoballs by Farb in Lemma 4.7
of [7] and by Bowditch in stating that the projection of the link of a vertex
onto another [1] has bounded diameter in the link. However, the compara-
bility of intersection patterns in this context needs to be stated a bit more
carefully. We give the general version of Farb’s theorem below and refer to
[7, 1] and Klarreich [12] for proofs.

Lemma 3.6 (See Lemma 4.5 and Proposition 4.6 of [7]). — Given δ, C,D
there exists ∆ such that if X is a δ-hyperbolic metric space with a collec-
tion H of C-quasiconvex D-separated sets. then,

(1) Electric quasi-geodesics electrically track hyperbolic geodesics: Given
P > 0, there exists K > 0 with the following property: Let β be any
electric P -quasigeodesic from x to y, and let γ be the hyperbolic
geodesic from x to y. Then β ⊂ NeK(γ).

(2) γ lies in a hyperbolic K-neighborhood of N0(β), where N0(β) de-
notes the zero neighborhood of β in the electric metric.

(3) Hyperbolicity: X is ∆-hyperbolic.

We shall have need to use Lemma 3.6 in the special case that X = S̃

and where the electric metric on S̃el is obtained as at the beginning of this
subsection.

Lemma 3.7. — (1) Given P > 0, there exists K > 0 with the fol-
lowing property: For some S̃i, let β be any electric P -quasigeodesic
without backtracking from x to y, and let γ be the hyperbolic geo-
desic from x to y. Then β ⊂ NeK(γ).

(2) There exists δ such that each S̃el is δ-hyperbolic, independent of
the curve σ ∈ C whose lifts are electrocuted.

We shall need to give a general definition of geodesics and quasigeodesics
without backtracking.

Definition 3.8. — Given a collectionH of C-quasiconvex, D-separated
sets and a number ε we shall say that a geodesic (resp. quasigeodesic) γ is
a geodesic (resp. quasigeodesic) without backtracking with respect to ε
neighborhoods if γ does not return to Nε(H) after leaving it, for any H ∈
H. A geodesic (resp. quasigeodesic) γ is a geodesic (resp. quasigeodesic)
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CANNON-THURSTON MAPS 75

without backtracking if it is a geodesic (resp. quasigeodesic) without
backtracking with respect to ε neighborhoods for some ε > 0.

Note. — For strictly convex sets, ε = 0 suffices, whereas for convex sets
any ε > 0 is enough.

Item (2) in Lemma 3.6 is due to Klarreich [12], where the proof is given
for β an electric geodesic, but the same proof goes through for electric
quasigeodesics.

Note. — For Lemma 3.6, the hypothesis is that H consists of uniformly
quasiconvex, mutually separated sets. Mutual coboundedness has not yet
been used. We introduce co-boundedness in the next lemma.

Lemma 3.9. — Suppose X is a δ-hyperbolic metric space with a col-
lection H of C-quasiconvex K-separated D-mutually cobounded subsets.
There exists ε0 = ε0(C,K,D, δ) such that the following holds:

Let β be an electric P -quasigeodesic without backtracking and γ a hy-
perbolic geodesic, both joining x, y. Then, given ε > ε0 there exists D =
D(P, ε) such that

(1) Similar Intersection Patterns 1: if precisely one of {β, γ} meets an
ε-neighborhood Nε(H1) of an electrocuted quasiconvex set H1 ∈ H,
then the length (measured in the intrinsic path-metric on Nε(H1))
from the entry point to the exit point is at most D.

(2) Similar Intersection Patterns 2: if both {β, γ} meet some Nε(H1)
then the length (measured in the intrinsic path-metric on Nε(H1))
from the entry point of β to that of γ is at most D; similarly for
exit points.

We summarise the two Lemmas 3.6 and 3.9 in forms that we shall use:
• If X is a hyperbolic metric space and H a collection of uniformly

quasiconvex separated subsets, then X is hyperbolic relative to the
collection H.
• If X is a hyperbolic metric space and H a collection of uniformly

quasiconvex mutually cobounded separated subsets, then X is hy-
perbolic relative to the collection H and satisfies Bounded Pene-
tration, i.e. hyperbolic geodesics and electric quasigeodesics have
similar intersection patterns in the sense of Lemma 3.9.

The relevance of co-boundedness comes from the following Lemma which
is essentially due to Farb [7].
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Lemma 3.10. — Let Mh be a hyperbolic manifold of i-bounded geom-
etry, with Margulis tubes Ti ∈ T and horoballs Hj ∈ H. Then the lifts T̃i
and H̃j are mutually co-bounded.

The proof given in [7] is for a collection of separated horospheres, but
the same proof works for neighborhoods of geodesics and horospheres as
well.

A closely related theorem was proved by McMullen (Theorem 8.1 of [13]).
As usual, NR(Z) will denote the R-neighborhood of the set Z.
Let H be a locally finite collection of horoballs in a convex subset X

of Hn (where the intersection of a horoball, which meets ∂X in a point,
with X is called a horoball in X).

Definition 3.11. — The ε-neighborhood of a bi-infinite geodesic in Hn
will be called a thickened geodesic.

Theorem 3.12 ([13]). — Let γ : I → X \
⋃
H be an ambient K-

quasigeodesic (for X a convex subset of Hn) and let H denote a uniformly
separated collection of horoballs and thickened geodesics. Let η be the
hyperbolic geodesic with the same endpoints as γ. Let H(η) be the union
of all the horoballs and thickened geodesics in H meeting η. Then η∪H(η)
is (uniformly) quasiconvex and γ(I) ⊂ BR(η ∪ H(η)), where R depends
only on K.

As in Lemmas 3.6 and 3.9, this theorem goes through for mutually
cobounded separated uniformly quasiconvex sets H.

A special kind of geodesic without backtracking will be necessary for
universal covers of surfaces with some electric metric.

Let λe be an electric geodesic in some (S̃, de) for S̃ equipped with some
electric metric obtained by electrocuting a collection of mutually cobounded
separated geodesics. Then, each segment of λe between electrocuted geode-
sics is perpendicular to the electrocuted geodesics that it starts and ends
at. We shall refer to these segments of λe as complementary segments
because they lie in the complement of the electrocuted geodesics. Let aη, bη
be the points at which λe enters and leaves the electrocuted (bi-infinite)
geodesic η. Let [a, b]η denote the geodesic segment contained in η joining
a, b. Segments like [a, b]η shall be referred to as interpolating segments.
The union of the complementary segments along with the interpolating
segments gives rise to a preferred representative of geodesics joining the
end-points of λe; in fact it is the unique quasigeodesic without backtracking
whose underlying set represents an electric geodesic joining the end-points
of λe. Such a representative of the class of λe shall be called the canonical
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representative of λe. Further, the underlying set of the canonical rep-
resentative in the hyperbolic metric shall be called the electro-ambient
representative λq of λe. Since λq will turn out to be a hyperbolic quasi-
geodesic, we shall also call it an electro-ambient quasigeodesic. See
Figure 3.1 below:

Figure 3.1. Electro-ambient quasigeodesic

Now, let λh denote the hyperbolic geodesic joining the end-points of λe.
By Lemma 3.9, λh and λe, and hence λh and λq have similar intersection
patterns with Nε(η) for electrocuted geodesics η. Also, λh and λq track each
other off Nε(η). Further, each interpolating segment of λq being a hyper-
bolic geodesic, it follows (from the ‘K-fellow-traveller’ property of hyper-
bolic geodesics starting and ending near each other) that each interpolating
segment of λq lies within a (K + 2ε) neighborhood of λh. Again, since each
segment of λq that does not meet an electrocuted geodesic that λh meets is
of uniformly bounded (by C say) length, we have finally that λq lies within
a (K +C + 2ε) neighborhood of λh. Finally, since λq is an electro-ambient
representative, it does not backtrack. Hence we have the following:

Lemma 3.13. — There exists (K, ε) such that each electro-ambient rep-
resentative of an electric geodesic is a (K, ε) hyperbolic quasigeodesic.

In the above form, electro-ambient quasigeodesics are considered only in
the context of surfaces and closed geodesics on them. This can be gen-
eralised considerably. Let X be a δ-hyperbolic metric space, and H a
family of C-quasiconvex, D-separated, k-cobounded collection of subsets.
Then by Lemma 3.6, Xel obtained by electrocuting the subsets in H is a
∆ = ∆(δ, C,D) -hyperbolic metric space. Now, let α = [a, b] be a hyperbolic
geodesic in X and β be an electric P -quasigeodesic without backtracking
joining a, b. Replace each maximal subsegment (with end-points p, q, say)
of β lying within some H ∈ H by a hyperbolic interpolating geodesic [p, q].
The resulting connected path βq is called an electro-ambient quasigeodesic
in X. The following Lemmas justify the terminology.
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Lemma 3.14. — Given δ,D,C, k, P as above, there exists C3 such that
the following holds: Let α, β be as above. Then α lies in a C3 neighborhood
of βq

Proof. — The proof idea is similar to that for surfaces and geodesics.
By Lemma 3.6, item (2), there exists C0 such that α lies in a (hyper-

bolic) C0-neighborhood of N0(βq). Further, by bounded penetration fol-
lowing from co-boundedness, there exists C1 such that if some interpo-
lating geodesic [p, q] in H is of length greater than C1, then there exist
p1, q1 ∈ H ∩ α such that

d(p, p1) 6 C1

d(q, q1) 6 C1

d(p1, q1) is maximal over all pairs u, v ∈ H ∩ α

Hence, by the fellow traveller property, there exists C2 such that the
hyperbolic geodesic [p1, q1] ⊂ α lies in a C2-neighborhood of [p, q] and
hence βq.

Now, if x ∈ α, x lies in a C0 neighborhood of N0(βq). Let y ∈ N0(βq) be
the point nearest to x. If y lies on β −H, then d(x, βq) 6 C0. Else, y lies
on some H. Two cases arise:

Case 1. — β and hence βq do not penetrate H for more than C1. In
this case, there exists y ∈ β −H, such that d(x, y) 6 C0 + C1.

Case 2. — β and hence βq do penetrate H for more than C1 and there-
fore an interpolating geodesic [p, q] of length greater than C1 exists. Hence
there exists a maximal subsegment of α within a C2 neighborhood of [p, q].
From this it follows easily that x lies in a C2 neighborhood of βq.

Thus α lies in a (uniformly) bounded C3-neighborhood of βq. (Here,
C3 = C0 + C1 + C2 suffices). �

In fact, more is true. βq is a hyperbolic quasigeodesic. But to see this
needs a bit more work. For the sake of concreteness, and to simplify the
exposition, we assume that X is a complete simply connected manifold
of pinched negative curvature. Let πα denote the nearest point retraction
onto α. Since βq is connected, joins the end-points of α and πα is continuous,
πα(βq) = α.

Claim 3.1. — There exists D > 0 such that any two points u, v with
πα(u) = πα(v) = w satisfy d(u, v) 6 D

Proof of Claim. — The loop that goes from w to u by a hyperbolic path
of length less than C3 (from Lemma 3.14 ), then from u to v along βq and
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then back to w by a hyperbolic path of less than C3 is a C4-quasigeodesic
(for some uniform C4). It can also be converted into a path without back-
tracking. Clearly, the geodesic joining the end-points of the path (a loop)
has length zero. By Lemma 3.9 the path penetrates each H ∈ H by a
uniformly bounded amount C5. Hence, there exists a uniform constant C6
depending on C5 and D, such that the loop has (hyperbolic) length less
than C6. The Claim follows. �

In the same way, it follows that given D0 there exists D1, such that if
d(πα(u), πα(v)) 6 D0 then d(u, v) 6 D1.

From the Claim above, it follows that βq also must lie in a bounded
neighborhood of α (else there will have to be long detours along βq starting
and ending at a distance less than 2C3 from each other). Further, βq cannot
have long pieces starting and ending close to each other for the same reason.
Thus βq lying in a bounded neighborhood of α must “progress”. In other
words βq must be a hyperbolic quasigeodesic. We state this formally below:

Lemma 3.15. — There exist K, ε depending on δ,D,C, k, P , such that
βq is a (K, ε)-quasigeodesic.

In our proof of Lemma 3.14, we have used the hypothesis that the col-
lection H of qc sets is a mutually cobounded collection. However, this hy-
pothesis can be relaxed. The proof is exactly the same as Klarreich’s proof
of Proposition 4.3 of [12], which has been stated here as Item (2) in Lemma
3.6 above. We state this below and refer to Proposition 4.3 of [12] for the
relevant details.

Lemma 3.16. — Given δ, C,D,P there exists C3 such that the following
holds.

Let (X, d) be a δ-hyperbolic metric space andH a family of C-quasiconvex,
D-separated collection of quasiconvex subsets. Let (X, de) denote the elec-
tric space obtained by electrocuting elements of H. Then, if α, βq denote
respectively a hyperbolic geodesic and an electro-ambient P -quasigeodesic
with the same end-points, then α lies in a (hyperbolic) C3 neighborhood
of βq.

Note. — The above Lemma generalises Klarreich’s Property (2) in Lem-
ma 3.6 by replacing N0(β) with βq. The former set can be quite large,
but βq is much smaller, containing only one geodesic segment in H rather
than all of H. It is the introduction of the notion of electro-ambient quasi-
geodesic that makes for this generalisation. However, Lemma 3.15 is false
in this generality. The idea is that two elements of H might have geodesics
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that are parallel (i.e. close to each other) for their entire length. Then an
electro-ambient quasigeodesic might look like two adjacent edges of a thin
triangle. This is precluded in Lemma 3.15 by the hypothesis of cobounded-
ness. We shall not be needing this stronger Lemma 3.16 in this paper and
it is included here for completeness.

Another Lemma which we shall be using follows from the proof of the
Claim in the proof of Lemma 3.15 above.

Lemma 3.17. — Given D0 there exists D1 such that if α be a loop
without backtracking in Xel with electric length less than D0 and further,
if α ∩H is a geodesic for each H ∈ H, then the hyperbolic length of α is
less than D1.

3.2. Dehn twists are electric isometries

Let Si be a surface whose path-pseudometric is obtained from a (fixed)
hyperbolic metric by electrocuting the geodesic σi in C. We can think of
the Dehn twists as supported in the ε-neighborhood Nε(σi) and that these
neighborhoods have been given the zero-metric. Denote the resultant elec-
tric metric on Si by ρi

We want to show that any power of a Dehn twist about σi induces an
isometry of the surface Si equipped with ρi. Consider any two points x,
y ∈ S. Let α be any path in general position with respect to σ joining x, y.
Look at the action of Dehn twist tw about some curve σi ∈ C on α. Let
α meet σ in p1, . . . pk. Let tw(α) be the path obtained from α by keeping
it unchanged off σ and for each intersection point pi, we compose α with
a path lying on σ starting and ending at pi and traversing σ once in the
direction of the Dehn twist. Since the restriction ρi|σ = 0, α and tw(α)
have the same length. Hence, the length of the shortest path (geodesic) in
the homotopy class (rel. end-points) of tw(α) is less than or equal to the
length of the geodesic reperesentative of the class of α.

Again, let β be any path in the homotopy class of tw(α). Then by acting
by the reverse Dehn twist tw−1 about σ, we find by an identical argument
that the geodesic representative of of the homotopy class of α, which is the
same as that of tw−1(β) has length less than or equal to the length of the
geodesic representative of β.

Since β and tw(α) are homotopic rel. endpoints, we conclude that α and
tw(α) have geodesic reperesentatives of the same length.

This proves:
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Lemma 3.18. — Let twni denote a power of a Dehn twist about the
curve σi ∈ C and ρi denote the electric metric on Si. Then twni induces an
isometry of (Si, ρi). In particular, we may arrange twni to take geodesics to
geodesics.

The last statement in Lemma 3.18 has been put because geodesics are not
uniquely defined in the usual sense in the electric metric. But a preferred
path does exist, viz. the path which does not backtrack (or double back)
on any σ ∈ Ci, i.e. restricted to σ the path is a geodesic in the ordinary
sense.

Everything in the above can be lifted to the universal cover S̃i. We let
t̃w denote the lift of tw to S̃i. This gives:

Lemma 3.19. — Let t̃wni denote a lift of twni to S̃i. Let ρ̃i denote the
lifted electric metric on S̃i. Then t̃wni induces an isometry of (S̃i, ρ̃i). In
particular, we may arrange t̃wni to take geodesics to geodesics.

3.3. Nearest-point Projections

We need the following basic lemmas from [18]. The following Lemma says
nearest point projections in a δ-hyperbolic metric space do not increase
distances much.

Lemma 3.20 (Lemma 3.1 of [18]). — Let (Y, d) be a δ-hyperbolic metric
space and let µ ⊂ Y be a C-quasiconvex subset, e.g. a geodesic segment. Let
π : Y → µ map y ∈ Y to a point on µ nearest to y. Then d(π(x), π(y)) 6
C3d(x, y) for all x, y ∈ Y where C3 depends only on δ, C.

The next lemma says that quasi-isometries and nearest-point projections
on hyperbolic metric spaces “almost commute”.

Lemma 3.21 (Lemma 3.5 of [18]). — Suppose (Y1, d1) and (Y2, d2) are
δ-hyperbolic. Let µ1 be some geodesic segment in Y1 joining a, b and let p be
any vertex of Y1. Also let q be a vertex on µ1 such that d1(p, q) 6 d2(p, x)
for x ∈ µ1. Let φ be a (K, ε) - quasiisometric embedding from Y1 to Y2.
Let µ2 be a geodesic segment in Y2 joining φ(a) to φ(b) . Let r be a point
on µ2 such that d2(φ(p), r) 6 d2(φ(p), x) for x ∈ µ2. Then d2(r, φ(q)) 6 C4
for some constant C4 depending only on K, ε and δ.

Sketch of Proof (See [18] for details.). — [p, q] ∪ µ1 is called a tripod.
Then [p, q]∪ [q, b], [p, q]∪ [q, a] and [a, b] are all quasigeodesics. Hence after
acting by φ they map to quasigeodesics. In particular, φ(q) must lie close
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to the image under φ of each of [p, q] ∪ [q, b], [p, q] ∪ [q, a] and [a, b]. Hence
it must lie close to each of [φ(a), φ(b)], [φ(a), φ(p)] and [φ(b), φ(p)]. Again,
if φ(a), φ(b), φ(p), z form the four points of a tripod (where z is a nearest
point projection of φ(p) onto the geodesic joining φ(a), φ(b)), then z too
must lie close to each of [φ(a), φ(b)], [φ(a), φ(p)] and [φ(b), φ(p)].

The result follows by thinness of hyperbolic triangles. �

For our purposes we shall need the above Lemma for quasi-isometries
from S̃a to S̃b for two different hyperbolic structures on the same surface.
We shall also need it for the electrocuted surfaces obtained in Lemma 3.7.

Yet another property that we shall require for nearest point projections
is that nearest point projections in the electric metric and in the hyperbolic
metric almost agree. Let S̃ = Y be the universal cover of a surface with the
hyperbolic metric minus a neighborhood of cusps. Equip Y with the path
metric d as usual. Then Y is either the hyperbolic plane (if S has no cusps)
or else is quasi-isometric to a tree (the Cayley graph of a free group). Let σ
be a closed geodesic on S. Let de denote the electric metric on Y obtained
by electrocuting the lifts of σ. Now, let µ = [a, b] be a hyperbolic geodesic on
(Y, d) and let µq denote the electro-ambient quasigeodesic joining a, b. Let
π denote the nearest point projection in (Y, d). Tentatively, let πe denote
the nearest point projection in (Y, de). Note that πe is not well-defined.
It is defined upto a bounded amount of discrepancy in the electric metric
de. But we would like to make πe well-defined upto a bounded amount of
discrepancy in the hyperbolic metric d.

Definition 3.22. — Let y ∈ Y and µq be an electro-ambient repre-
sentative of an electric geodesic µe in (Y, de). Then πe(y) = z ∈ µq if the
ordered pair {de(y, πe(y)), d(y, πe(y))} is minimised at z.

Note that this gives us a definition of πe which is ambiguous by a fi-
nite amount of discrepancy not only in the electric metric but also in the
hyperbolic metric.

Lemma 3.23. — There exists C > 0 such that the following holds. Let µ
be a hyperbolic geodesic joining a, b. Let µe be the canonical representative
of the electric geodesic joining a, b. Also let µq be the electro-ambient rep-
resentative of µe. Let πh denote the nearest point projection of H2 onto µ.
d(πh(y), πe(y)) is uniformly bounded.

Proof. — The proof is similar to that of Lemma 3.21, i.e. Lemma 3.5
of [18].

[u, v]h and [u, v]e will denote respectively the hyperbolic geodesic and
the canonical representative of the electric geodesic joining u, v
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[y, πe(y)] ∪ [πe(y), a] is an electric quasigeodesic without backtracking.
Hence as in the proof of Lemma 3.21, [y, πe(y)]∪ [πe(y), a] lies in a bounded
neighborhood of [y, a]h. In particular πe(y) lies in a bounded (hyperbolic)
neighborhood of [y, a]h. By an identical argument πe(y) lies in a bounded
neighborhood of [y, b]h. Again, since πe(y) lies on µe, therefore by Lemma 3.13,
πe(y) lies in a bounded neighborhood of µ. Hence there exists C > 0 such
that πe(y) ∈ NC([y, a]h) ∩NC([y, b]h) ∩NC(µ).

Again, [y, πh(y)] ∪ [πh(y), a] is a hyperbolic quasigeodesic. Hence

[y, πh(y)] ∪ [πh(y), a]

lies in a bounded neighborhood of [y, a]h. In particular πh(y) lies in a
bounded (hyperbolic) neighborhood of [y, a]h. By an identical argument
πh(y) lies in a bounded neighborhood of [y, b]h. Again, since πh(y) lies on
µ, therefore, trivially πh(y) lies in a bounded neighborhood of µ. Hence
there exists D > 0 such that

πh(y) ∈ ND([y, a]h) ∩ND([y, b]h) ∩ND(µ).

Next, by hyperbolicity (thin-triangles) ND([y, a]h) ∩ ND([y, b]h) ∩ ND(µ)
and NC([y, a]h)∩NC([y, b]h)∩NC(µ) have diameter bounded by some D1
depending on D,C and choosing D = C = max(C,D), we get

d(πh(y), πe(y)) 6 D1.

�

4. Universal Covers of Building Blocks and Electric
Geometry

For most of this section (except the last subsection) we shall restrict
our attention to closed surfaces and models corresponding to them. Let
S = Sh be a closed surface with some hyperbolic structure. For surfaces
with punctures S will denote Sh minus a neighborhood of cusps. This will
call for some modifications of the exposition, but not the overall construc-
tion. Hence, for ease of exposition, we postpone dealing with cusps till the
last subsection of this section.
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4.1. Graph Model of Building Blocks

Thin Blocks

Given a geodesic segment λ ⊂ S̃ and a basic thin building block B, let
λ = [a, b] ⊂ S̃ × {0} be a geodesic segment, where S̃ × {0}B̃, and B is
obtained from S × I by hyperbolic (1, n) Dehn surgery on Nε(σ)× [1, 2].

We shall now build a graph model for B̃ which will be quasi-isometric
to an electrocuted version of the original model, where lifts of the curves
σ ∈ C which correspond to cores of Margulis tubes are electrocuted.

On S̃×{0} and S̃×{3} put the hyperbolic metric obtained from S = Sh.
On S̃ × {1} and S̃ × {2} put the electric metric obtained by electrocuting
the lifts of σ. This constructs 4 “sheets” of S̃ comprising the “horizontal
skeleton” of the “graph model” of B̃. Now for the vertical strands. On each
vertical element of the form x×[0, 1] and x×[2, 3] put the Euclidean metric.

The resulting copy of B̃ will be called the graph model of a thin
block.

Next, let φ denote the map induced on S̃ by twnσ , the n-fold Dehn twist
along σ. Join each x×{1} to φ(x)×{2} by a Euclidean segment of length 1.

Thick Block

For a thick block B = S̃× [0, 1], recall that B is the universal curve over
a “thick” Teichmuller geodesic λTeich = [a, b] of length less than some fixed
D > 0. Each S×{x} is identified with the hyperbolic surface over (a+ x

b−a )
(assuming that the Teichmuller geodesic is parametrized by arc-length).

Here S × {0} is identified with the hyperbolic surface corresponding to
a, S × {1} is identified with the hyperbolic surface corresponding to b and
each (x, a) is joined to (x, b) by a segment of length 1.

The resulting model of B̃ is called a graph model of a thick block.

Admissible Paths

Admissible paths consist of the following:
(1) Horizontal segments along some S̃ × {i} for i = {0, 1, 2, 3} (thin

blocks) or i = {0, 1} (thick blocks).
(2) Vertical segments x× [0, 1] or x× [2, 3] for thin blocks or x× [0, 1]

for thick blocks.
(3) Vertical segments of length 1 joining x×{1} to φ(x)×{2} for thin

blocks.
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4.2. Construction of Quasiconvex Sets for Building Blocks

In the next section, we will construct a set Bλ containing λ and a retrac-
tion Πλ of M̃ onto it. Πλ will have the property that it does not stretch
distances much. This will show that Bλ is quasi-isometrically embedded
in M̃ .

In this subsection, we describe the construction of Bλ restricted to a
building block B.

Construction of Bλ(B) - Thick Block

Let the thick block be the universal curve over a Teichmuller geodesic
[α, β]. Let Sα denote the hyperbolic surface over α and Sβ denote the
hyperbolic surface over β.

First, let λ = [a, b] be a geodesic segment in S̃. Let λB0 denote λ× {0}.
Next, let φ be the lift of the “identity” map from S̃α to S̃β . Let Φ denote

the induced map on geodesics and let Φ(λ) denote the hyperbolic geodesic
joining φ(a), φ(b). Let λB1 denote Φ(λ)× {1}.

For the universal cover B̃ of the thick block B, define:

Bλ(B) =
⋃
i=0,1

λBi

Definition 4.1. — Each S̃ × i for i = 0, 1 will be called a horizontal
sheet of B̃ when B is a thick block.

Construction of Bλ(B) - Thin Block

First, recall that λ = [a, b] is a geodesic segment in S̃. Let λB0 denote
λ× {0}.

Next, let λel denote the electric geodesic joining a, b in the electric
pseudo-metric on S̃ obtained by electrocuting lifts of σ. Let λB1 denote
λel × {1}.

Third, recall that φ is the lift of the Dehn twist twnσ to S̃ equipped
with the electric metric. Let Φ denote the induced map on geodesics, i.e.
if µ = [x, y] ⊂ (S̃, del), then Φ(µ) = [φ(x), φ(y)] is the geodesic joining
φ(x), φ(y). Let λB2 denote Φ(λel)× {2}.

Fourthly, let Φ(λ) denote the hyperbolic geodesic joining φ(a), φ(b). Let
λB3 denote Φ(λ)× {3}.

For the universal cover B̃ of the thin block B, define:

Bλ(B) =
⋃

i=0,...,3
λBi
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Definition 4.2. — Each S̃×i for i = 0 . . . 3 will be called a horizontal
sheet of B̃ when B is a thick block.

Construction of Πλ,B - Thick Block

On S̃×{0}, let ΠB0 denote nearest point projection onto λB0 in the path
metric on S̃ × {0}.

On S̃×{1}, let ΠB1 denote nearest point projection onto λB1 in the path
metric on S̃ × {1}.

For the universal cover B̃ of the thick block B, define:

Πλ,B(x) = ΠBi(x), x ∈ S̃ × {i}, i = 0, 1

Construction of Πλ,B - Thin Block

On S̃ × {0}, let ΠB0 denote nearest point projection onto λB0. Here the
nearest point projection is taken in the path metric on S̃ × {0} which is a
hyperbolic metric space.

On S̃ × {1}, let ΠB1 denote the nearest point projection onto λB1. Here
the nearest point projection is taken in the sense of the definition preceding
Lemma 3.23, that is minimising the ordered pair (del, dhyp) (where del, dhyp
refer to electric and hyperbolic metrics respectively.)

On S̃×{2}, let ΠB2 denote the nearest point projection onto λB2. Here,
again the nearest point projection is taken in the sense of the definition
preceding Lemma 3.23.

Again, on S̃ × {3}, let ΠB3 denote nearest point projection onto λB3.
Here the nearest point projection is taken in the path metric on S̃ × {3}
which is a hyperbolic metric space.

For the universal cover B̃ of the thin block B, define:

Πλ,B(x) = ΠBi(x), x ∈ S̃ × {i}, i = 0, · · · , 3

Πλ,B is a retract - Thick Block

The proof for a thick block is exactly as in [18]. The crucial tool is Lemma
3.21.

Lemma 4.3. — There exists C > 0 such that the following holds.
Let x, y ∈ S̃ × {0, 1} ⊂ B̃ for some thick block B. Then

d(Πλ,B(x),Πλ,B(y)) 6 Cd(x, y).
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Proof. — It is enough to show this for the two following cases:
(1) x, y ∈ S̃ × {0} OR x, y ∈ S̃ × {1}.
(2) x, y are of the form (p, 0) and (φ(p), 1) which are connected by

a vertical segment of length one (as per the construction of the
model B).

Case 1 above follows from Lemma 3.20, and Case 2 from the fact that φ
is a uniform quasi-isometry (depending on the uniform bound on the length
of the Teichmuller geodesic over which B is the universal curve) and Lem-
ma 3.21 which says that there exists C1 > 0 such that if π be the nearest
point retraction in S̃ onto λ then d(φ(π(p)), π(φ(p))) 6 C1. From this it
follows that

d(Πλ,B((p, 0)),Πλ,B((φ(p), 1))) 6 C1 + 1

Choosing C = C1 + 1 we are through. �

Πλ,B is a retract - Thin Block

The two main ingredients in this case are Lemmas 3.21 and 3.23.

Note. — In the Lemma 4.4 below, there is implicit a constant n, the
twist coefficient of the Dehn twist that distinguishes B. But the constant C
below is independent of n due to the fact that powers of Dehn twists are
uniform quasi-isometries of the electric metric. In fact this is the reason
why we introduce the electric metric in the first place, so as to ensure that
the techniques of [18] and [17] go through here.

Lemma 4.4. — There exists C > 0 such that the following holds: Let
x, y ∈ S̃ × {0, 1, 2, 3} ⊂ B̃ for some thin block B. Then

de(Πλ,B(x),Πλ,B(y)) 6 Cde(x, y).

Proof. — It is enough to show this for the two following cases:
(1) x, y ∈ S̃ × {0} OR x, y ∈ S̃ × {1}.
(2) x = (p, 0) and y = (p, 1) for some p
(3) x, y are of the form (p, 1) and (φ(p), 2) which are connected by

a vertical segment of length one (as per the construction of the
model B)

(4) x = (p, 2) and y = (p, 3) for some p.

Case 1. — As in Lemma 4.3 above, this follows from 3.20.
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Case 2 and Case 4. — These follow from Lemma 3.23 which says that
the hyperbolic and electric projections of p onto the hyperbolic geodesic
[a, b] and the electro-ambient geodesic [a, b]ea respectively “almost agree”.
If πh and πe denote the hyperbolic and electric projections, then there
exists C1 > 0 such that d(πh(p), πe(p)) 6 C1. Hence

d(Πλ,B((p, i)),Πλ,B((p, i+ 1))) 6 C1 + 1, fori = 0, 2.

Case 3. — First, from Lemma 3.19 the (power of the) Dehn twist φ
used in the construction of B is a (uniform) quasi-isometry of S̃ equipped
with the electric metric. Again, if π denotes the nearest point projection in
the electric metric, then from Lemma 3.21, there exists C2 > 0 such that
de(φ(π(p)), π(φ(p))) 6 C2. Here de denotes the electric metric. From this
it follows that

de(Πλ,B((p, 1)),Πλ,B((φ(p), 2))) 6 C1 + 1

Choosing C = max(C1 + 1, C2 + 1) we are through. �

4.3. Modifications for Surfaces With Punctures

We deal with the thin block first.

Thin Block

For Sh a hyperbolic surface with punctures, let S denote Sh minus some
neighborhood of the cusps. Then the construction of the model B and hence
the graph model of B̃ for a thin block B goes through mutatis mutandis
even with respect to notation. The construction of the quasi-convex set and
the retraction are modified as follows.
λ will no longer be a hyperbolic geodesic but rather an ambient quasi-

geodesic in S̃. The construction is taken from [23]. We start with a hy-
perbolic geodesic λh in Sh. Fix a neighborhood of the cusps lifting to an
equivariant family of horoballs in the universal cover H2 = S̃h. Since λh

is a hyperbolic geodesic in S̃h there are unique entry and exit points for
each horoball that λh meets and hence unique Euclidean geodesics joining
them on the corresponding horosphere. Replacing the segments of λh lying
inside Z-horoballs by the corresponding Euclidean geodesics, we obtain an
ambient quasigeodesic λ in M̃0 by Theorem 3.12. See Figure below.
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Figure 4.1. Horo-ambient quasigeodesics

Ambient quasigeodesics obtained by this kind of a construction will be
termed horo-ambient quasigeodesics to distinguish them from electro-
ambient quasigeodesics defined earlier. Starting with a horo-ambient quasi-
geodesic λ ⊂ S̃, we can proceed as before to construct Bλ,B , Πλ,B and
prove Lemma 4.4 above. In fact the statement and proof of this Lemma
goes through unchanged, with the only pro viso that for punctured surfaces,
S and Sh are not the same and that λ is a horo-ambient quasigeodesic in
general. (Note that if S has no punctures, a horo-ambient quasigeodesic is
a hyperbolic geodesic).

Thick Block

Here B is obtained from the universal curve over a Teichmuller geodesic
by removing a neighborhood of the cusps. Again, S is obtained from Sh

by removing a neighborhood of the cusps. That the map φ is a uniform
quasi-isometry is ensured by the fact that the corresponding copies of Sh
are a uniformly bounded Teichmuller distance from each other, and that
if φ denote a map between these copies of Sh, one can ensure that φ takes
cusps to cusps.

The construction of the graph model for B̃, the construction of Bλ,B and
Πλ,B also go through as before with the pro viso that λ is a horo-ambient
quasigeodesic. Lemma 4.3 goes through as before.
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5. Construction of Quasiconvex Sets

5.1. Construction of Bλ and Πλ

Given a manifold M of i-bounded geometry, we know that M is homeo-
morphic to S × J for J = [0,∞) or (−∞,∞). By definition of i-bounded
geometry, there exists a sequence Ii of intervals and blocks Bi where the
metric on S × Ii coincides with that on some building block Bi. Denote:

• Bµ,Bi = Biµ
• Πµ,Bi = Πiµ.

Now for a block B = S × I (thick or thin), a natural map ΦB may be
defined taking µ = Bµ,B ∩ S̃ × {0} to a geodesic Bµ,B ∩ S̃ × {k} = ΦB(µ)
where k = 1 or 3 according as B is thick or thin. Let the map ΦBi be
denoted as Φi for i > 0. For i < 0 we shall modify this by defining Φi to be
the map that takes µ = Bµ,Bi∩S̃×{k} to a geodesic Bµ,Bi∩S̃×{0} = Φi(µ)
where k = 1 or 3 according as B is thick or thin.

We start with a reference block B0 and a reference geodesic segment
λ = λ0 on the “lower surface” S̃ × {0}. Now inductively define:

• λi+1 = Φi(λi) for i > 0
• λi−1 = Φi(λi) for i 6 0
• Biλ = Bλi(Bi)
• Πiλ = Πλi,Bi
• Bλ =

⋃
iBiλ

• Πλ =
⋃
iΠiλ.

Recall that each S̃ × i for i = 0 · · ·K is called a horizontal sheet of B̃,
where K = 1 or 3 according as B is thick or thin. We will restrict our
attention to the union of the horizontal sheets M̃H of M̃ with the induced
metric.

Clearly, Bλ ⊂ M̃H ⊂ M̃ , and Πλ is defined from M̃H to Bλ. Since M̃H
is a “coarse net” in M̃ , we will be able to get all the coarse information we
need by restricting ourselves to M̃H .

By Lemmas 4.3 and 4.4, we obtain the fact that each Πiλ is a retract.
Hence assembling all these retracts together, we have the following basic
theorem.

Theorem 5.1. — There exists C > 0 such that for any geodesic λ =
λ0 ⊂ S̃ × {0} ⊂ B̃0, the retraction Πλ : M̃H → Bλ satisfies.

Then d(Πλ,B(x),Πλ,B(y)) 6 Cd(x, y) + C.
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Note 5.2. — For Theorem 5.1 above, note that all that we really require
is that the universal cover S̃ be a hyperbolic metric space. There is no
restriction on M̃H . In fact, Theorem 5.1 would hold for general stacks
of hyperbolic metric spaces with hyperbolic Dehn surgery performed on
blocks.

Note 5.3. — MH has been given built up out of graph models of
thick and thin blocks and have sheets that are electrocuted.

5.2. Heights of Blocks

Instead of considering all the horizontal sheets, we would now like to
consider only the boundary horizontal sheets, i.e. for a thick block we
consider S̃ × {0, 1} and for a thin block we consider S̃ × {0, 3}. The union
of all boundary horizontal sheets will be denoted by MBH .

Observation 5.1. — M̃BH is a “coarse net” in M̃ in the graph model,
but not in the model of i-bounded geometry.

In the graph model, any point can be connected by a vertical segment of
length 6 2 to one of the boundary horizontal sheets.

However, in the model of i-bounded geometry, there are points within
Margulis tubes (say for instance, the center of the totally geodesic disk
bounded by a meridian) which are at a distance of the order of ln(ni) from
the boundary horizontal sheets. Since ni is arbitrary, M̃BH is no longer a
“coarse net” in M̃ equipped with the model of i-bounded geometry.

Observation 5.2. — M̃H is defined only in the graph model, but not
in the model of i-bounded geometry.

Observation 5.3. — The electric metric on the model of i-bounded
geometry on M̃ obtained by electrocuting all lifts of Margulis tubes is
quasi-isometric to the graph model of M̃ .

This follows from the fact that any lift of a Margulis tube has diameter 1
in the graph model of M̃ .

Bounded Height of Thick Block

Let µ ⊂ S̃ × {0}B̃i be a geodesic in a (thick or thin) block. Then there
exists a (Ki, εi)- quasi-isometry ψi (= φi for thick blocks) from S̃ × {0} to
S̃ × {1} and Ψi is the induced map on geodesics. Hence, for any x ∈ µ,
ψi(x) lies within some bounded distance Ci of Ψi(µ). But x is connected
to ψi(x) by:
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Case 1. — Thick Blocks: a vertical segment of length 1
Case 2. — Thin Blocks: the union of
(1) two vertical segments of length 1 between S̃ × {i} and S̃ × {i+ 1}

for i = 0, 2
(2) a horizontal segment of length bounded by (some uniform) C ′ (cf.

Lemma 3.13) connecting (x, 1) to a point on the electro-ambient
geodesic Bλ(B) ∩ S̃ × {1}

(3) a vertical segment of length one in the graph model connecting
(x, 1) to (φ(x), 2). Such a path has to travel through the Margulis
tube in the model of i-bounded geometry and has length less
than g0(ni) for some function g0 : Z → N, and ni the twist coeffi-
cient.

(4) a horizontal segment of length less than C ′ (Lemma 3.13) connect-
ing (φi(x), 3) to a point on the hyperbolic geodesic Bλ(B)∩ S̃×{3}

Thus x can be connected to a point on x′ ∈ Ψi(µ) by a path of length
less than g(i) = 2+2C ′+g0(ni). Here, in fact g0 is at most linear in ni but
we shall not need this. Recall that λi is the geodesic on the lower horizontal
surface of the block B̃i. The same can be done for blocks B̃i−1 and going
down from λi to λi−1. What we have thus shown is:

Lemma 5.4. — There exists a function g : Z → N such that for any
block Bi (resp. Bi−1), and x ∈ λi, there exists x′ ∈ λi+1 (resp. λi−1) for
i > 0 (resp. i 6 0), satisfying:

d(x, x′) 6 g(i)

Modifications for Punctured Surfaces

For a punctured surface, the above argument has to be modified using
some constructions from Lemma 5.1 of [23].

Given λh ∈ S̃h we have already indicated how to construct a horo-
ambient quasigeodesic λ in S̃ (where, recall that S is Sh minus a neigh-
borhood of cusps). Let λc denote the union of the segments of λ that lie
along cusps. Let λb = λ − λc. For punctured surfaces, recall that λi is a
horo-ambient quasigeodesic on the lower horizontal surface of B̃i. λic will
denote the union of segments of λi lying along cusps and λib will denote
λi − λic.

Lemma 5.1 of [23] says that there exists C0 such that for any thick
block Bi, and x ∈ λib there exists x′ ∈ λi+1,b such that d(x, x′) 6 C ′. Com-
bining this with the argument given above for surfaces without punctures,
we conclude:
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Lemma 5.5. — There exists a function g : Z → N such that for any
block Bi (resp. Bi−1), and x ∈ λib, there exists x′ ∈ λi+1,b (resp. λi−1,b)
for i > 0 (resp. i 6 0), satisfying:

d(x, x′) 6 g(i)

Note. — For a surface without punctures, λ and λb coincide.

6. Cannon-Thurston Maps for Surfaces Without
Punctures

Unless explicitly mentioned otherwise, we shall assume till the end of
this section that

• S is a closed surface. Hence Sh = S.
• there exists a hyperbolic manifold M and a homeomorphism from
M̃ to S̃ × R. We identify M̃ with S̃ × R via this homeomorphism.
• S̃ ×R admits a quasi-isometry g to a model manifold of i-bounded

geometry
• g preserves the fibers over Z ⊂ R

Remarks. — 1) The above assumption is much stronger than what
we need. It suffices to assume that M̃ is a Gromov-hyperbolic met-
ric space. Further relaxations on the hypothesis may be considered
while generalising the results of this paper to other hyperbolic met-
ric spaces.

2) We have taken J to be R here for concreteness. The other possi-
bility of J = R+ can be treated in exactly the same way. We shall
henceforth ignore the quasi-isometry g and think of M̃ itself as the
universal cover of a model manifold of i-bounded geometry.

6.1. Admissible Paths

We want to define a collection of Bλ-elementary admissible paths
lying in a bounded neighborhood of Bλ. Bλ is not connected. Hence, it
does not make much sense to speak of the path-metric on Bλ. To remedy
this we introduce a “thickening” (cf. [10]) of Bλ which is path-connected
and where the paths are controlled. A Bλ-admissible path will be a
composition of Bλ-elementary admissible paths.

Recall that admissible paths in the graph model of bounded geometry
consist of the following :
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(1) Horizontal segments along some S̃ × {i} for i = {0, 1, 2, 3} (thin
blocks) or i = {0, 1} (thick blocks).

(2) Vertical segments x× [0, 1] or x× [2, 3] for thin blocks, where x ∈ S̃.
(3) Vertical segments of length 1 joining x×{1} to φ(x)×{2} for thin

blocks.
(4) Vertical segments of length 1 joining x × {0} to φ(x) × {1} (or

x×{1} if φ is regarded as the identity map at the topological level)
for thick blocks.

We shall choose a subclass of these admissible paths to defineBλ-element-
ary admissible paths.

Bλ-elementary admissible paths in the thick block

Let B = S× [i, i+1] be a thick block, where each (x, i) is connected by a
vertical segment of length 1 to (φ(x), i+1). Also Φ is the map on geodesics
induced by φ. Let Bλ∩B̃ = λi∪λi+1 where λi lies on S̃×{i} and λi+1 lies on
S̃ × {i+ 1}. πj , for j = i, i+ 1 denote nearest-point projections of S̃ × {j}
onto λj . Next, since φ is a quasi-isometry, there exists C > 0 such that
for all (x, i) ∈ λi, (φ(x), i + 1) lies in a C-neighborhood of Φ(λi) = λi+1.
The same holds for φ−1 and points in λi+1, where φ−1 denotes the quasi-
isometric inverse of φ from S̃ × {i + 1} to S̃ × {i}. The Bλ-elementary
admissible paths in B̃ consist of the following:

(1) Horizontal geodesic subsegments of λj , j = {i, i+ 1}.
(2) Vertical segments of length 1 joining x× {0} to φ(x)× {1}.
(3) Vertical segments of length 1 joining y × {1} to φ−1(y)× {0}.
(4) Horizontal geodesic segments lying in a C-neighborhood of λj , j =

i, i+ 1.

Bλ-elementary admissible paths in the thin block

Let B = S× [i, i+3] be a thin block, where each (x, i+1) is connected by
a vertical segment of length 1 to (φ(x), i+2). Also Φ is the map on canonical
representatives of electric geodesics induced by φ. LetBλ∩B̃ =

⋃
j=i···i+3 λj

where λj lies on S̃ × {j}. πj denotes nearest-point projection of S̃ × {j}
onto λj (in the appropriate sense - hyperbolic for j = i, i + 3 and electric
for j = i+ 1, i+ 2). Next, since φ is an electric isometry, but a hyperbolic
quasi-isometry, there exists C > 0 (uniform constant) and K = K(B) such
that for all (x, i) ∈ λi, (φ(x), i + 1) lies in an (electric) C-neighborhood
and a hyperbolic K-neighborhood of Φ(λi+1) = λi+2. The same holds for
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φ−1 and points in λi+2, where φ−1 denotes the quasi-isometric inverse of
φ from S̃ × {i+ 2} to S̃ × {i+ 1}.

Again, since λi+1 and λi+2 are electro-ambient quasigeodesics, we further
note that there exists C > 0 (assuming the same C for convenience) such
that for all (x, i) ∈ λi, (x, i + 1) lies in a (hyperbolic) C-neighborhood of
λi+1. Similarly for all (x, i + 2) ∈ λi+2, (x, i + 3) lies in a (hyperbolic) C-
neighborhood of λi+3. The same holds if we go “down” from λi+1 to λi or
from λi+3 to λi+2. The Bλ-elementary admissible paths in B̃ consist
of the following:

(1) Horizontal subsegments of λj , j = {i, · · · i+ 3}.
(2) Vertical segments of length 1 joining x× {i+ 1} to φ(x)× {i+ 2},

for x ∈ λi+1.
(3) Vertical segments of length 1 joining x × {j} to x × {j + 1}, for

j = i, i+ 2.
(4) Horizontal geodesic segments lying in a hyperbolic C-neighborhood

of λj , j = i, · · · i+ 3.
(5) Horizontal hyperbolic segments of electric length 6 C and hyper-

bolic length 6 K(B) joining points of the form (φ(x), i + 2) to a
point on λi+2 for (x, i+ 1) ∈ λi+1.

(6) Horizontal hyperbolic segments of electric length 6 C and hyper-
bolic length 6 K(B) joining points of the form (φ−1(x), i+ 1) to a
point on λi+1 for (x, i+ 2) ∈ λi+2.

(7) Hyperbolic geodesic segments lying entirely within some lift of a
Margulis tube Nε(σ̃)× [1, 2] joining points x, y ∈ λi+1 ∪ λi+2.

Definition 6.1. — A Bλ-admissible path is a union of Bλ-elementary
admissible paths.

The following lemma follows from the above definition and Lemma 5.4.

Lemma 6.2. — There exists a function g : Z → N such that for any
block Bi, and x lying on a Bλ-admissible path in B̃i, there exist y ∈ λj and
z ∈ λk where λj ⊂ Bλ and λk ⊂ Bλ lie on the two boundary horizontal
sheets, satisfying:

d(x, y) 6 g(i)
d(x, z) 6 g(i)

Let h(i) = Σj=0···ig(j) be the sum of the values of g(j) as j ranges from
0 to i (with the assumption that increments are by +1 for i > 0 and by −1
for i 6 0). Then we have from Lemma 6.2 above,
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Corollary 6.3. — There exists a function h : Z→ N such that for any
block Bi, and x lying on a Bλ-admissible path in B̃i, there exist y ∈ λ0 = λ

such that:
d(x, y) 6 h(i)

Important Note. — In the above Lemma 6.2 and Corollary 6.3, it is
important to note that the distance d is hyperbolic, not electric. This is
because the number K(Bi) occurring in elementary paths of type 5 and 6
is a hyperbolic length depending only on i (in Bi).

Next suppose that λ lies outside BN (p), the N -ball about a fixed refer-
ence point p on the boundary horizontal surface S̃ × {0} ⊂ B̃0. Then by
Corollary 6.3, any x lying on a Bλ-admissible path in B̃i satisfies

d(x, p) > N − h(i)

Also, since the electric, and hence hyperbolic “thickness” (the shortest dis-
tance between its boundary horizontal sheets) is > 1, we get,

d(x, p) > |i|

Assume for convenience that i > 0 (a similar argument works, reversing
signs for i < 0). Then,

d(x, p) > min{i,N − h(i)}

Let h1(i) = h(i) + i. Then h1 is a monotonically increasing function on
the integers. If h−1

1 (N) denote the largest positive integer n such that
h(n) 6 m, then clearly, . h−1

1 (N)→∞ as N →∞. We have thus shown:

Lemma 6.4. — There exists a function M(N) : N → N such that
M(N) → ∞ as N → ∞ for which the following holds: For any geodesic
λ ⊂ S̃ × {0} ⊂ B̃0, a fixed reference point p ∈ S̃ × {0} ⊂ B̃0 and any x on
a Bλ-admissible path,

d(λ, p) > N ⇒ d(x, p) > M(N).

Aside for Punctured Surfaces

We mention parenthetically the versions of Corollary 6.3 and Lemma 6.4
here that will be useful for punctured surfaces in the next section.

Corollary 6.5. — There exists a function h : Z → N such that for
any block Bi, and x lying on λib, there exist y ∈ λ0b = λb such that:

d(x, y) 6 h(i)

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



CANNON-THURSTON MAPS 97

Lemma 6.6. — There exists a function M(N) : N → N such that
M(N)→∞ as N →∞ for which the following holds: For any horo-ambient
quasigeodesic λ ⊂ S̃ × {0} ⊂ B̃0, a fixed reference point p ∈ S̃ × {0} ⊂ B̃0
and any x on some λib,

d(λb, p) > N ⇒ d(x, p) > M(N).

In Lemma 6.6 we have used λb in place of λ as λb is constructed from λh

by changing it along horocycles. However, another version of the above
Lemma will also sometimes be useful. If we start with a λh that lies outside
large balls about p, we can ensure that λb also lies outside large balls
about p, for λ may approach p only along cusps. Hence we may replace the
hypothesis that λb lie outside BN (p) by the hypothesis that λh lie outside
BN (p):

Lemma 6.7. — There exists a function M(N) : N → N such that
M(N)→∞ as N →∞ for which the following holds:
For any hyperbolic geodesic λh ⊂ S̃h × {0} ⊂ B̃0, a fixed reference point
p ∈ S̃h × {0} ⊂ B̃0 and any x on some λib,

d(λh, p) > N ⇒ d(x, p) > M(N).

6.2. Joining the Dots

Recall that admissible paths in a model manifold of bounded geometry
consist of:

(1) Horizontal segments along some S̃ × {i} for i = {0, 1, 2, 3} (thin
blocks) or i = {0, 1} (thick blocks).

(2) Vertical segments x× [0, 1] or x× [2, 3] for thin blocks.
(3) Vertical segments of length 1 joining x×{1} to φ(x)×{2} for thin

blocks.
(4) Vertical segments of length 1 joining x×{0} to φ(x)×{1} for thick

blocks.
Our strategy in this subsection is:
• Start with an electric geodesic βe in M̃el joining the end-points of λ.
• Replace it by an admissible quasigeodesic, i.e. an admissible path

that is a quasigeodesic.
• Project the intersection of the admissible quasigeodesic with the

horizontal sheets onto Bλ.
• The result of step 3 above is disconnected. Join the dots using Bλ-

admissible paths.
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The end product is an electric quasigeodesic built up of Bλ admissible
paths.

Now for the first two steps: Since B̃ (for a thick block B) has thickness 1,
any path lying in a thick block can be pertubed to an admissible path lying
in B̃, changing the length by at most a bounded multiplicative factor. For
B thin, we decompose paths into horizontal paths lying in some S̃×{j}, for
j = 0, . . . 3 and vertical paths of types (2) or (3) above. All this can be done
as for thick blocks, changing lengths by a bounded multiplicative constant.
The result is therefore an electric quasigeodesic. Without loss of generality,
we can assume that the electric quasigeodesic is one without back-tracking
(as this can be done without increasing the length of the geodesic - see [7]
or [12] for instance). Abusing notation slightly, assume therefore that βe is
an admissible electric quasigeodesic without backtracking joining the end-
points of λ.

Now act on βe by Πλ. From Theorem 5.1, we conclude, by restricting
Πλ to the horizontal sheets of M̃el that the image Πλ(βe) is a “dotted
electric quasigeodesic” lying entirely on Bλ. This completes step 3. Note
that since βe consists of admissible segments, we can arrange so that two
nearest points on βe which are not connected to each other are at a distance
of one apart, i.e. they form the end-points of a vertical segment of type (2),
(3) or (4). Let Πλ(βe)∩Bλ = βd, be the dotted quasigedoesic lying on Bλ.
We want to join the dots in βd converting it into a connected electric
quasigeodesic built up of Bλ-admissible paths.

For vertical segments of type (4) joining p, q (say), Πλ(p),Πλ(q) are a
bounded hyperbolic distance apart. Hence, by the proof of Lemma 4.3, we
can join Πλ(p),Πλ(q) by a Bλ-admissible path of length bounded by some
C0 (independent of B, λ).

For vertical segments of type (2) joining p, q, we note that Πλ(p),Πλ(q)
are a bounded hyperbolic distance apart. Hence, by the proof of Lemma 4.4,
we can join Πλ(p),Πλ(q) by a Bλ-admissible path of length bounded by
some C1 (independent of B, λ).

This leaves us to deal with case (3). Such a segment consists of a segment
lying within a lift of a Margulis tube and a horizontal segment of length 1
lying outside. Decompose the bit within a Margulis tube into a horizontal
segment lying on some horizontal surface and (possibly) a vertical segment
of hyperbolic length 1. The image of the horizontal part of the path is again
uniformly bounded in the electric metric. Further, by co-boundedness,
we can ensure that the hyperbolic length of the image away from the lift
of at most one Margulis tube lying in the zero neighborhood of Bλ is
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bounded uniformly by some C2. The same can be ensured of vertical paths
of hyperbolic length one lying inside lifts of Margulis tubes. These two
pieces (images under Πλ of horizontal paths inside lifts of Margulis tubes
and vertical segments of length one inside lifts of Margulis tubes) can be
replaced by Bλ-admissible paths of uniformly bounded electric length (since
at most one lift of a Margulis tube lying in a zero neighborhood of Bλ is
in the image for length > C2.) Finally, the segment lying outside, being
horizontal, its image is connected and of bounded length by Lemma 3.20.

After joining the dots, we can assume further that the quasigeodesic thus
obtained does not backtrack (cf [7] and [12]).

Putting all this together, we conclude:

Lemma 6.8. — There exists a function M(N) : N → N such that
M(N)→∞ as N →∞ for which the following holds:
For any geodesic λ ⊂ S̃ × {0} ⊂ B̃0, and a fixed reference point p ∈
S̃×{0} ⊂ B̃0, there exists a connected electric quasigeodesic βadm without
backtracking, such that

• βadm is built up of Bλ-admissible paths.
• βadm joins the end-points of λ.
• d(λ, p) > N ⇒ d(βadm, p) > M(N).

Proof. — The first two criteria follow from the discussion preceding this
lemma. The last follows from Lemma 6.4 since the discussion above gives
a quasigeodesic built up out of admissible paths. �

6.3. Proof of Theorem

Electric Geometry Revisited

We note the following properties of the pair (X,H) where X = M̃ and H
consists of the lifts of Margulis tubes in M to the universal cover. Each lift
of a Margulis tube shall henceforth be termed an extended Margulis tube.
There exist C,D,∆ such that

(1) Each extended Margulis tube is C-quasiconvex.
(2) Any two extended Margulis tubes are D-separated.
(3) The collection H is C-cobounded, i.e. the nearest point projection

of any member of H onto any other has diameter bounded by C.
(4) M̃el = Xel is ∆-hyperbolic, (where M̃el = Xel is the electric metric

on M̃ = X obtained by electrocuting all extended Margulis tubes,
i.e. all members of H).
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(5) (Xel,H) has the Bounded Penetration Property.
(6) An electro-ambient quasigeodesic is a hyperbolic quasigeodesic.

The first property follows from the fact that each ε-neighborhood of a
closed geodesic in a hyperbolic manifold is convex for sufficiently small ε.

The second follows from choosing ε sufficiently small.
The third follows from the uniform separation of (the convex) extended

Margulis sets.
The fourth and fifth follow from Lemmas 3.6 and 3.9.
Property (6) follows from Lemma 3.15.

Note. — So far we have not used the hypothesis that M̃ and hence,
(from Property (4) above, or by Lemma 3.6) M̃el are hyperbolic metric
spaces. It is at this stage that we shall do so and assemble the proof of the
main Theorem.

Theorem 6.9. — Let M be a 3 manifold homeomorphic to S × J (for
J = [0,∞) or (−∞,∞)). Further suppose that M has i-bounded geometry,
where S0 ⊂ B0 is the lower horizontal surface of the building block B0.
Then the inclusion i : S̃ → M̃ extends continuously to a map î : Ŝ → M̂ .
Hence the limit set of S̃ is locally connected.

Proof. — Suppose λ ⊂ S̃ lies outside a large N -ball about p. By Lem-
ma 6.8 we obtain an electric quasigeodesic without backtracking βadm built
up of Bλ-admissible paths lying outside an M(N)-ball about p (where
M(N)→∞ as N →∞).

Suppose that βadm is a (K, ε) quasigeodesic. Note that K, ε depend on
“the Lipschitz constant” of Πλ and hence only on S̃ and M̃ .

From Property (6) (or Lemma 3.14) we find that if βh denote the hy-
perbolic geodesic in M̃ joining the end-points of λ, then βh lies in a (uni-
form) C ′ neighborhood of βadm.

Let M1(N) = M(N) − C ′. Then M1(N) → ∞ as N → ∞. Further,
the hyperbolic geodesic βh lies outside an M1(N)-ball around p. Hence,
by Lemma 2.2, the inclusion i : S̃ → M̃ extends continuously to a map
î : Ŝ → M̂ .

Since the continuous image of a compact locally connected set is locally
connected (see [11]) and the (intrinsic) boundary of S̃ is a circle, we con-
clude that the limit set of S̃ is locally connected.

This proves the theorem. �
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7. Cannon-Thurston Maps for Surfaces With Punctures

7.1. Modification of Construction for Punctured Surfaces

We summarise the modifications to be made to the construction in the
previous sections, so as to make the results applicable for punctured sur-
faces:

(1) λ is now a horo-ambient quasigeodesic built out of a hyperbolic
geodesic λh

(2) Πλ and Bλ are constructed as before
(3) Let βa be an ambient admissible quasigeodesic, i.e. an ambient

quasigeodesic built up of elementary admissible paths. Then

Πλ(βa ∩ M̃BH) ⊂ Bλ.

(4) Joining the dots on this projected image of βa, we obtain finally
via Lemma 6.6 • Suppose λh lies outside large balls about a fixed
reference point p. There exists an ambient admissible electric quasi-
geodesic βamb in M̃el such that any horizontal piece of βamb ∩ Bbλ
also lies outside large balls. Further, any piece of βamb lying wholly
inside the lift of a Margulis tube also lies outside large balls. (Note
that Bbλ =

⋃
i λib).

Next recall that Mh is a hyperbolic manifold with cusps, and that excis-
ing these cusps we get M which is naturally homeomorphic to S×J where
J = R or [0,∞). Further we may assume that M is given the structure of
a model of i-bounded geometry. (Here we are abusing notation slightly
as M , strictly speaking, is only quasi-isometric to a model of i-bounded
geometry.) Let Mhel, Mel denote Mh, M with Margulis tubes electrocuted.
LetH0 denote the collection of horoballs that corespond to the lifts of cusps
in M̃hel. Thus, M̃el = M̃hel−{H : H ∈ H0}. M̃hel is hyperbolic by Lemma 3.6.

Now let βhel be the electric geodesic in the hyperbolic metric space M̃hel
joining the end-points a, b of λh. Let H(βhel) denote the union of βhel and
the collection of horoballs in H0 that βhel meets. Then by Theorem 3.12
(using the fact stated there that the theroem goes through for separated
mutually cobounded uniformly quasiconvex sets), we have

• H(βhel) is quasiconvex in M̃hel.
• βamb lies in a bounded electric neighborhood of H(βhel).

VOLUME 28 (2009-2010)



102 MAHAN MJ

7.2. Electrically close implies hyperbolically close

In what follows we want to construct out of βamb a hyperbolic quasi-
geodesic γ in M̃hel such that entry and exit points of γ with respect to
H ∈ H0 lie outside large balls BN (p) ⊂ M̃ (here the metric is the hyper-
bolic metric). The strategy is as follows.

For any Hi ∈ H0 look at the part βi of βamb that lies close to Hi. We
claim that if this piece is long, then after pruning it a bit at the ends if
necessary, the pruned subsegment of βi lies hyperbolically close to Hi.
We make this precise below.

By Theorem 3.12, and as in [13], there exists ∆ > 0 such that βamb lies in
an (electric) ∆ neighborhood of H(βhel). Let H1, · · ·Hk denote the horoballs
in H(βhel). Let βi be the maximal subsegment of βamb joining points of
Nel∆ (Hi)∩ βamb. Then there exists D = D(∆) such that βi ⊂ NelD (Hi). Let
ai, bi be the end-points of βi and Pi denote nearest point projection onto Hi.
[x, y]e will denote the electric geodesic joining x, y. [Pi(x), Pi(y)] will denote
the hyperbolic geodesic joining Pi(x), Pi(y) within the horoball Hi.

Fixing K > 0 (K = 4D will suffice for our purposes) let ci, di ∈ βi be
such that cidi, the subsegment of βi joining ci, di has length less than K.
Suppose further that ai, ci, di, bi occur in that order along the segment
joining ai, bi. Then

[Pi(ci), ci]e ∪ cidi ∪ [di, Pi(di)]e ∪ [Pi(di), Pi(ci)] = σ

is a loop of electric length less than C = C(K,D) (= C(D) if K = 4C).
This follows from the following observations:

(1) [P (ci), ci]e, [P (di), di]e have length less than or equal to D
(2) cidi has length less than K

(3) [Pi(ci), Pi(di)] has length bounded in terms of K by Lemma 3.20.
Since σ has electric length less than C, we could conclude that σ has

bounded hyperbolic length by Lemma 3.17 if in addition we knew that σ
does not backtrack. (In particular we would be able to show that σ has
bounded penetration.) However, we only know that each of the four com-
ponents of σ individually does not backtrack. In fact,

[ci, Pi(ci)]e ∪ [Pi(ci), Pi(di)] ∪ [Pi(di), di]e

is a path without backtracking. Therefore, backtracking, if it exists, is a con-
sequence of overlap of initial segments of [ci.Pi(ci)]e and cidi (or, [di.Pi(di)]e
and di, ci). Clearly, such overlaps can have length at most D. Therefore, any
such segment cidi with de(ai, ci) > D, de(bi, di) > D must have bounded
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penetration property (since the paths

[ai, Pi(ai)]e ∪ [Pi(ai), Pi(bi)] ∪ [Pi(bi), bi]e
and aibi can have overlaps of length at most D at the beginning and end),
i.e there exists D0 = D0(D,K) > 0 such that cidi∩T has hyperbolic length
less than D0 (where T is any lift of a Margulis tube).

Now, choose x ∈ aibi such that de(x, ai) > 2D and de(x, bi) > 2D.
Choose ci, di such that de(x, ci) = 2D, de(x, di) = 2D and ai, ci, di, bi lie in
that order along the path from ai to bi. Then using the loop

[Pi(ci), ci]e ∪ ci, x ∪ [x, Pi(x)]e ∪ [Pi(x), Pi(ci)] = σ

and the argument above, we conclude that [x, P (x)]e satisfies the bounded
penetration property and hence [x, P (x)] has bounded hyperbolic length.
This is summarised in the following Lemma.

Lemma 7.1. — There exists D0 > 0 such that the following holds. Let
βi = aibi be as above and x ∈ aibi with de(x, ai) > 2D, de(x, bi) > 2D.
Then d(x,Hi) 6 D0. (Note that d(x,Hi) denotes hyperbolic distance.)

Thus the subpath of βi obtained by pruning pieces of (electric) length 2D
from the beginning and the end lies in a bounded hyperbolic neighborhood
of Hi (and not just in a bounded electric neighborhood of Hi).

7.3. Constructing an electric quasigeodesic

The argument in this subsection is a slight modification of the argument
in [23] for punctured surfaces of bounded geometry. The slight modifica-
tion is due to pruning electric quasigeodesics that follow a horoball for a
considerable length.

Choose from the the collection ofHi ∈ H(β) the subcollection for which βi
has diameter greater than 4D. We denote this subcollection as Hl(β)
(l stand for “large”). Let Hl1, . . . Hlk be the horoballs in this collection.

For the relevant subpaths βl1, . . . βlk of β we construct γl1, . . . γlk as
follows.

Let αli = clidli ⊂ βli = alibli denote the subpath at distance less
than or equal to D from Hli. By Lemma 7.1 we have de(cli, ali) 6 2D
and de(dli, bli) 6 2D. Let

γli = [cli, Pli(cli)]e ∪ [Pli(cli), Pli(dli)] ∪ [Pli(dli), dli]e
Let γ = (β −

⋃
i βli) ∪

⋃
i γli.
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Each βli starts and ends (electrically) close to the entry and exit points
uli, vli of βhel with respect to the horoball Hli.

Since cli, dli are close (bounded by 2D) to ali, bli respectively, then from
Lemma 3.10, Lemma 3.17 and Lemma 3.20 we find that there exists D1 > 0
such that

d(Pli(cli), Pli(ali)) 6 D1

d(Pli(dli), Pli(bli)) 6 D1

Note that d here is the hyperbolic distance. Hence the hyperbolic geodesic
[cli, dli] lies close to [ali, bli] and hence to the hyperbolic geodesic [uli, vli]
(by fellow traveller property).

Thus we conclude
• γ lies in a bounded neighbourhood of the electric geodesic βhel.

Note. — The remaining βi’s being less than 4D in length are therefore
uniformly bounded. Hence their projections onto the correspondingHi’s are
also uniformly bounded in diameter. The length of βhel ∩Hi for these Hi’s
is also therefore uniformly bounded. (Else the projection onto βhel ∪H(βhel)
would have to have jumps and hence not be “large-scale continuous”.)

Since γ is obtained from βamb, γ tracks βhel off horoballs. Further, since
entry and exit points of γ and βhel with respect to horoballs are a bounded
distance apart, they are fellow travellers within horoballs. From this it
follows easily that γ is an electric quasigeodesic.
γ therefore has two properties:
(1) γ lies close to βhel and is an electric quasigeodesic.
(2) All points of γ∩M̃ lie outside a large ball about the fixed reference

point p if λh does.
The first property follows from the above discussion and the last is just

a restatement of property (4) of Section 7.1 (the first subsection of the
present section), coupled with the fact that entry points of γ into horoballs
Hi ∈ H lie hyperbolically close to βamb.

This gives rise to the following property of γ. Recall that building blocks
are built from the truncated surface S, and that we fix a “starting block”B0.
We identify S × {0} with the truncated surface obtained from Sh the hy-
perbolic reference surface.

Proposition 7.2. — There exists a function M(N) : N→ N such that
M(N)→∞ as N →∞ for which the following holds:
For any geodesic λh ⊂ S̃h, and a fixed reference point p ∈ S̃ × {0} ⊂ B̃0,
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there exists a connected electric quasigeodesic γ without backtracking, such
that

• If λh lies outside BN (p), then every point x of γ − {H : H ∈ H}
lies at a hyperbolic distance of at least M(N) from p.

The above Proposition is a punctured surface version of Lemma 6.8.
Now, recall a Lemma from [23] (which has been proven there as a part

of Theorem 5.9).

Lemma 7.3. — There exists a function M1(N) such that M1(N)→∞
as N →∞ satisfying the following.

Given a uniformly separated collection of horoballs H and a point p lying
outside them, let γ be a path without backtracking, such that

γ − {H : H ∈ H}

lies outside BN (p). Further suppose that γ ∩H is a (hyperbolic) geodesic,
whenever γ ∩H is non-empty. Then γ lies outside an M1(N) ball about p.

Combining Proposition 7.2 (for pieces of γ outside horoballs) and Lem-
ma 7.3 above (for the geodesic segments within horoballs) we conclude:

Proposition 7.4. — There exists a function M(N) : N→ N such that
M(N)→∞ as N →∞ for which the following holds:
For any geodesic λh ⊂ S̃h, and a fixed reference point p ∈ S̃ × {0} ⊂ B̃0,
there exists a connected electric quasigeodesic γ without backtracking, such
that

• If λh lies outside BN (p), then every point x of γ lies at a hyperbolic
distance of at least M(N) from p.

7.4. From electric quasigeodesics to hyperbolic quasigeodesics

We have thus constructed an electric quasigeodesic γ without backtrack-
ing joining the end-points of λh every point of which lies outside a (hy-
perbolic) large ball about p. The last step is to promote γ to a hyperbolic
quasigeodesic.

Since γ is built up of admissible paths within Margulis tubes, we might
as well assume that γ is an electro-ambient quasigeodesic without back-
tracking.

Lemma 7.5. — The undelying path of γ is a hyperbolic quasigeodesic.
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Proof. — Margulis tubes satisfy the mutual co-boundedness property by
Lemma 3.10. Hence by Lemma 3.15, γ is a hyperbolic quasigeodesic. �

Theorem 7.6. — Let Mh be a 3 manifold homeomorphic to Sh × J
(for J = [0,∞) or (−∞,∞)). Further suppose that Mh has i-bounded
geometry. Let S0 ⊂ B0 be the lower horizontal surface of the building
block B0 in the manifold M obtained by removing cusps. Then the inclusion
i : S̃h → M̃h extends continuously to a map î : Ŝh → M̂h. Hence the limit
set of S̃ is locally connected.

Proof. — Suppose λh ⊂ S̃h lies outside a large N -ball about p. By
Lemma 7.4 and Lemma 7.5, we obtain a hyperbolic quasigeodesic γ ly-
ing outside an M(N)-ball about p (where M(N)→∞ as N →∞).

If βh denote the hyperbolic geodesic in M̃h joining the end-points of λh,
then βh lies in a (uniform) C ′ neighborhood of γ (since hyperbolic quasi-
geodesics starting and ending at the same points track each other through-
out their lengths).

Let M1(N) = M(N) − C ′. Then M1(N) → ∞ as N → ∞. Further,
the hyperbolic geodesic βh lies outside an M1(N)-ball around p. Hence,
by Lemma 2.2, the inclusion i : S̃h → M̃h extends continuously to a map
î : Ŝh → M̂h.

Since the continuous image of a compact locally connected set is locally
connected (see [11]) and the (intrinsic) boundary of S̃h is a circle, we con-
clude that the limit set of S̃h is locally connected.

This proves the theorem. �

The proof of the above theorem is just a modification of Theorem 6.9,
once Lemma 7.4 and Lemma 7.5 are in place.
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