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ISOTROPIC CURVATURE: A SURVEY

Harish Seshadri

Abstract. — We discuss the notion of isotropic curvature of a Riemannian
manifold and relations between the sign of this curvature and the geometry and
topology of the manifold.

1. Introduction

Let (M, g) be a Riemannian manifold. For any p ∈ M , the Riemann
curvature tensor gives rise to the curvature operator

R : ∧2TpM → ∧2TpM.

We can complexify TpM to get Tp⊗C and consider the C-linear extension
of R to ∧2TpM ⊗ C.

The Riemannian metric on TpM extends as a Hermitian metric 〈 , 〉
or a C-bilinear form ( , ) on TpM ⊗ C. The former extension gives rise
to a Hermitian metric, again denoted by 〈 , 〉, on ∧2TpM ⊗ C. A vector
v ∈ TpM⊗C is isotropic if (v, v) = 0. A subspace is isotropic if every vector
in it is isotropic.

(M, g) is said to have positive isotropic curvature if

〈R(v ∧ w), v ∧ w〉 > 0

for every pair of vectors v, w ∈ TpM ⊗C which span an isotropic 2-plane.

This condition can be formulated in purely real terms as follows: First, v
and w span an isotropic 2-plane if and only if there are orthonormal vectors
e1, e2, e3 and e4 so that

√
2 v
‖v‖

= e1 +
√
−1 e2,

√
2 w
‖w‖

= e3 +
√
−1 e4.

Keywords: Weyl Curvature, Euler Characteristic, Chern-Gauss-Bonnet Theorem,
Asymptotically Flat Manifolds, Yamabe metric.
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One then checks that
4

‖v‖2‖w‖2
〈R(v ∧ w), v ∧ w〉 = R1313 +R1414 +R2323 +R2424 + 2R1234,

where Rijkl = R(ei, ej , ek, el).
Hence (M, g) has positive isotropic curvature if and only if

R1313 +R1414 +R2323 +R2424 + 2R1234 > 0

for all orthonormal 4-frames (e1, e2, e3, e4).
The notions of nonnegative, negative and nonpositive isotropic curvature

are defined similarly.

2. The second variation of energy and isotropic curvature

We first recall the second variation formula for the energy of curves. Let
(M, g) be a Riemannian manifold let Ω be the space of smooth closed curves
in M . If γ : S1 → M is a smooth curve then the sections of the pull-back
bundle γ∗TM on S1 can be regarded as the tangent space to Ω at γ.

Consider the energy functional E : Ω→ R defined by

E(γ) =
∫
S1
‖γ′(s)‖2ds.

The critical points of E are precisely the closed geodesics on M . The Hes-
sian of E, being a symmetric bilinear form on TγΩ, is given by

I(X,X) =
∫
S1

(
‖X ′(s)‖2 −R(X, γ′, X, γ′)

)
ds,

where X is a section of γ∗TM . The second term, up to a nonnegative multi-
ple, is just the sectional curvature of the 2-plane spanned by {γ′(s), X(s)}.

Similarly, one can consider smooth maps φ : S2 →M and the energy E
of such maps. The critical points of E are now conformal branched minimal
immersions of S2 in M . The Hessian of E is a bilinear form on the space
of sections of φ∗TM .

Following Micallef and Moore [9], we can complexify the bundle φ∗TM
to get V := φ∗TM ⊗ C and consider the complex linear extension of the
Hessian to the space of sections of V . As before, the metric on φ∗TM can
be extended as a Hermitian metric 〈 , 〉 or a C-linear form ( , ) on V and
the connection can be extended in a C -linear fashion. Moreover V can be
given a holomorphic structure so that a section s is holomorphic if and only
if

∂s := ∇ ∂
∂z̄
s = 0.
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We then have

(2.1) I(s, s) =
∫
S2

(
‖∂̄s‖2 −

〈
R(s ∧ ∂f

∂z
), s ∧ ∂f

∂z

〉)
dx dy,

where z = x+
√
−1y is any local holomorphic coordinate and ∂f∂z = f∗( ∂∂z ).

The fact that f is conformal implies that

(∂f
∂z
,
∂f

∂z
) = 0,

i.e. ∂f∂z is an isotropic section. If s is a holomorphic section such that s
and ∂f

∂z span an isotropic 2-plane, then the second term in the integral
represents an isotropic curvature.

3. Examples

(1) If (M, g) has positive (nonnegative) curvature operator then the
isotropic curvature is positive (nonnegative).

Hence the standard round sphere (Sn, g0) has PIC and every
locally symmetric space of compact type has nonnegative isotropic
curvature.

(2) If the sectional curvatures of M are pointwise strictly quarter-
pinched, i.e. if there is a function a : M → R+ such that the
sectional curvatures K at p satisfy

a(p)
4
< K < a(p),

then (M, g) has PIC. If the inequalities above are weak one gets
that (M, g) has nonnegative isotropic curvature. [9].

(3) The product metric on Sn × S1 has PIC.
(4) The connected sum of manifolds with PIC admits a PIC metric

(Micallef-Wang [10]).

4. Topological implications of PIC

Throughout this section (M, g) will be a compact manifold with PIC.
The first major result relating topology to PIC is due to Micallef and

Moore [9]: If dim M = n then the homotopy groups πi(M) = {0} for
2 6 i 6 [n2 ]. If M is also simply-connected, one can combine this with
Poincáre duality and the h-cobordism theorem to conclude that M has to
be homeomorphic to Sn. To prove the vanishing of homotopy groups, the

VOLUME 26 (2007-2008)



142 HARISH SESHADRI

essential ingredient is the second variation formula (2.1). By showing the
existence of sufficiently many holomorphic sections of the bundle V one
can show that the index of the Hessian (of the energy functional) is at
least n−3

2 . The authors develop a Morse theory for the energy functional
on the space Ω of maps of S2 into M and use the bound on index to show
vanishing of homotopy groups of Ω. This, in turn, implies the vanishing of
the appropriate homotopy groups of M by standard topology.

For even-dimensional manifolds M Micallef-Wang [10] and Seaman [12]
independently proved that PIC implies the vanishing of the second Betti
number of M . In fact, they show that the curvature term in the Bochner
formula for harmonic 2-forms can be expressed in terms of isotropic curva-
tures. Hodge theory then gives the desired result.

The fundamental group π of a compact manifold with PIC is expected be
very special: Indeed, based on the connected sum result of Micallef-Wang
(Example (4) in Section 3), Gromov [7] has conjectured that π must be
virtually free. In this direction Fraser [4] and Fraser-Wolfson [5] prove that
π cannot contain any subgroup isomorphic to the fundamental group of a
closed orientable surface. The proof is again based on the second variation
formula of energy of minimal immersions.

The definitive conjecture about the topology of compact n-manifolds
with PIC is due to Schoen [11]: A finite cover of such a manifold must be
diffeomorphic to a connected sum of copies of Sn−1 × S1. Note that by
Examples (3) and (4) such connected do admit PIC metrics. In dimension
4, Hamilton [8] outlined a way of proving Schoen’s conjecture using Ricci
flow with surgery. Recently [2], Schoen and Brendle showed that Ricci flow
preserves the PIC condition in all dimensions. Hence a possible approach
to Schoen’s conjecture is via Ricci flow with surgery in all dimensions.

In [6], it is shown that Gromov’s conjecture implies part of Schoen’s
conjecture: More precisely, it is proved that if (M, g) has PIC and free
fundamental group, then M is homeomorphic to a connected sum of copies
of Sn−1 × S1.

5. Positive vs Nonnegative Isotropic Curvature

It turns out that one can classify manifolds with nonnegative isotropic
curvature in terms of those with PIC [13], [1] : Let (Mn, g), n > 4, be a
compact, orientable, locally irreducible Riemannian manifold with nonneg-
ative isotropic curvature, then one of the following holds:

(1) M admits a metric with positive isotropic curvature,
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(2) (M, g) is locally symmetric or
(3) M is Kähler and biholomorphic to CP n2 .

The proof of this is based on the results of Brendle and Schoen on Ricci
flow [2], [3] and the following very recent result of Brendle [1]: Every com-
pact Einstein manifold with nonnegative isotropic curvature is locally sym-
metric.

6. Negative Isotropic Curvature Metrics

In some ways, isotropic curvature behaves like scalar curvature, such
as the presevation of PIC under connected sums. It seems reasonable to
expect that any compact manifold admits a metric with negative isotropic
curvature. This is known to be true in dimension 4 [13]. The proof is based
on a variational characterization of the negativity condition.
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