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Grenoble
Volume 26 (2007-2008) 77-90

INJECTIVITY RADIUS AND OPTIMAL REGULARITY
OF LORENTZIAN MANIFOLDS WITH BOUNDED

CURVATURE

Philippe G. LeFloch

Abstract. — We review recent work on the local geometry and optimal
regularity of Lorentzian manifolds with bounded curvature. Our main results
provide an estimate of the injectivity radius of an observer, and a local canonical
foliations by CMC (Constant Mean Curvature) hypersurfaces, together with
spatially harmonic coordinates. In contrast with earlier results based on a global
bound for derivatives of the curvature, our method requires only a sup-norm bound
on the curvature near the given observer.

1. Introduction

In this survey, we investigate a few questions about the local geometry
and regularity of pointed Lorentzian manifolds –in which, by definition,
a point and a future-oriented, unit time-like vector (an observer) have
been selected. We are especially interested in manifolds satisfying Einstein
equations of general relativity, referred to as spacetimes. Our main
assumption will be purely geometric, viz. an a priori bound on the
curvature of the manifold. In the existing literature, conditions involving
the derivatives of the curvature are assumed.

Our purpose is, first, to derive an estimate on the injectivity radius of a
given observer and, second, to construct local coordinate charts in which the
metric coefficients have the best possible regularity. This survey is based on
the papers [8, 9] written in collaboration with B.-L. Chen. We will present
the main statements together with a sketch of the proofs. For additional
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background and details, the reader should refer to [8, 9] and the references
therein.

In Riemannian geometry, it is well-known that normal coordinates
(defined from the exponential map) fail to achieve the optimal regularity
of the metric coefficients. Instead, the use of harmonic coordinates was
advocated by De Turck and Kazdan [10], while a quantitative estimate on
the harmonic radius (involving curvature and volume bounds, only) was
later derived by Jost and Karcher [13]; see Section 2, below.

A Lorentzian metric, by definition, is not positive definite and we need
to introduce Lorentzian notions of injectivity radius and curvature bound,
since standard definitions from Riemannian geometry do not apply. As it
turns out, it is necessary to fix an observer (p,Tp) which, in a canonical
way, induces a positive-definite, inner product gTp on the tangent space
at p. By parallel transporting the given vector (using the Lorentzian
structure) to a neighborhood of p we construct a (possibly multi-valued)
vector field T and, in turn, a “reference” Riemaniannian metric gT.

Our main estimate of the Lorentzian injectivity radius, in Section 3
below, is purely local and does not require to fix in advance a foliation
nor, a fortiori, a local coordinate chart. To the reference metric gT we
apply classical arguments from Riemannian geometry (involving geodesics,
Jacobi fields, and comparison arguments). By observing that geodesics in
the (flat) Euclidian and Minkowski spaces coincide, we are able to compare
the behavior of gT -geodesics and g-geodesics and, finally, to transpose the
Riemannian estimates into estimates for the Lorentzian metric g.

Section 4 concerns mainly the class of Einstein vacuum spacetimes and
is devoted to a construction of “canonical” local coordinates defined near
the observer. Under curvature and injectivity bounds only, we establish
the existence of local coordinates charts that are defined in balls with
definite size and in which the metric coefficients have optimal regularity.
The proof is based on quantitative estimates valid locally near the observer:
these estimates control, on one hand, a canonical foliation by spacelike
hypersurfaces with constant mean curvature and, on the other hand, the
metric coefficients expressed in spatially harmonic coordinates.

The results and techniques in this work should be useful in the context
of general relativity for investigating the long-time behavior of solutions to
the Einstein equations.

Recall that the first work on the local regularity of Lorentzian metrics is
due to Anderson who, in the pioneering work [2], proposed to use normal
coordinates and spatially harmonic coordinates; this approach, however,
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LORENTZIAN MANIFOLDS WITH BOUNDED CURVATURE 79

does not yield the optimal regularity. Anderson assumed a sup-norm bound
(plus other foliation conditions) and initiated an ambitious program to
investigate the long-time evolution for the Einstein equations in connection
with Penrose’s cosmic conjecture.

On the other hand, Klainerman and Rodnianski [14, 15] assume an L2

curvature bound (plus other foliation conditions) and currently develop
a vast program (the L2 curvature conjecture) on the Einstein vacuum
equations via harmonic analysis techniques. Their main results concern the
geometry of null cones in vacuum spacetimes, rather than the geometry
of the spacetime itself; their proofs rely on hyperbolic PDE’s techniques
(including harmonic analysis), while our approach is elliptic in nature.

There exists also an extensive study of (sufficiently regular) spacetimes
admitting global foliations by spatially compact hypersurfaces with
constant mean curvature; see, in particular, Andersson and Moncrief [3, 4]
who, also, advocate the use of CMC-harmonic coordinates. In these works,
estimates (based on the so-called Bel-Robinson tensor) for third-order
derivatives of the metric are involved. In contrast, we focus here on the local
existence of foliations but under the sole assumption that the curvature is
bounded.

2. The case of Riemannian manifolds

The following theorem summarizes two classical results due to Cheeger,
Gromov, and Taylor [7] and Jost and Karcher [13], respectively.

Theorem 2.1 (The case of Riemannian manifolds). — Let K0, V0 be
positive constants and let (M, g, p) be a complete, pointed Riemannian
n-manifold with boundary such that the unit geodesic ball Bg(p, 1) is
compactly included in M and the following curvature and volume bounds
hold

‖Rmg‖L∞(B(p,1)) 6 K0, Volg(Bg(p, 1)) > V0.

Then, for some constant I0 = I0(K0, V0, n) ∈ (0, 1) the following properties
hold:

(i) The injectivity radius i(p) at the point p is greater than I0, that is,
the (restriction of the) exponential map expp : B(0, I0) ⊂ TpM →
Bg(p, I0) ⊂M is a diffeomorphism onto its image.

VOLUME 26 (2007-2008)
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(ii) Given ε > 0, there exist harmonic coordinates which cover the
closed ball Bg(p, I0) and satisfy

e−ε gE 6 g 6 eε gE ,

‖g‖W 2,a(Bg(p,I0)) 6 Cε,a, a ∈ [1,∞),
where gE denotes the Euclidian metric in the local coordinates, and
the constant Cε,a > 0 depends solely on ε > 0 and a ∈ [1,∞).

The expression ‖g‖W 2,a(Bg(p,I0)) denotes the standardW 2,a Sobolev norm
of the metric coefficients in the local coordinates under consideration. An
important feature of the above theorem is that no assumption is imposed on
the derivatives of the curvature tensor for, otherwise, the statement would
be much weaker and of limited interest for the applications.

3. Injectivity radius of pointed Lorentzian manifolds

Let (M,g) be a time-oriented, (n+ 1)-dimensional Lorentzian manifold
with boundary, and let ∇ be the Levi-Civita connection associated with g.
Rather than a single point p ∈ M as was sufficient in the Riemannian
case, we need to prescribe an observer, that is, a pair (p,Tp) where Tp is
a reference vector in TpM, that is, a future-oriented, unit timelike vector.
We refer to (M,g,p,Tp) as a pointed Lorentzian manifold.

The reference vector induces an inner product gTp on the tangent space
TpM, defined as follows. Let eα (α = 0, . . . , n) be an orthonormal frame
at p, where e0 = Tp and the vectors ej (j = 1, . . . , n) are spacelike.
Denoting by eα the corresponding dual frame, we see that in the tangent
space at p, the Lorentzian metric reads g = −e0⊗e0 +e1⊗e1 + . . .+en⊗en
so that the reference metric is gTp := e0 ⊗ e0 + e1 ⊗ e1 + . . .+ en ⊗ en.

The reference metric gT is needed to compute the norms |A|gTp
of a

tensor A at the point p. In case T is a vector field defined in a neighborhood
of p then this construction can be done at each point and yields a reference
Riemannian metric gT, which is canonically determined from the given
vector field.

Consider now the exponential map expp at the point p, which is defined
on the Riemannian ball BgTp

(p, r) ⊂ TpM for all sufficiently small r, at
least.

Definition 3.1. — The injectivity radius Inj(M,g,p,Tp) of an
observer (p,Tp) is the supremum among all radii r such that the
exponential map expp is a global diffeomorphism from BTp(0, r) to
BTp(p, r) := exp(BTp(0, r)).
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To begin with, we present a result which relies on a given foliation of
a domain of the spacetime Ω =

⋃
t∈[−1,1]Ht containing the point p ∈

H0. Here, Ht are spacelike hypersurfaces with future-oriented, unit normal
vector Tα := −λ∇αt and lapse function λ > 0. We always assume that
the geodesic ball BH0(p, 1) ⊂ H0 (determined by the induced reference
metric gH0) is compactly contained in H0. We make the following main
assumptions:

(A1) e−K0 6 λ 6 eK0 .
(A2) supΩ |LTg|gT 6 K0.
(A3) supΩ |Rmg|gT 6 K0.
(A4) VolgH0

(BgH0
(p, 1)) > v0.

Theorem 3.2 (Injectivity radius estimate for a foliation). — Given
foliation constants K0, V0 and a dimension n, there exists a constant I0 > 0
such that, for every foliation satisfying the assumptions (A1)–(A4) near a
base point p ∈ M, the injectivity radius at p is uniform bounded below
by I0, that is,

Inj(M,g,p,Tp) > I0.

Proof. — We only indicate the main steps of the proof. First of all,
according to Jost and Karcher [13] and in view of the curvature bound (A3)
and the volume bound (A4) on the initial hypersurface, one can introduce
harmonic coordinates (xj) on the initial hypersurface H0, only.

Then, we can transport these coordinates to the whole of Ω by following
the integral curves of the vector field T. This generates coordinates (xα) =
(t, xj), in which the Lorentzian and Riemannian metrics read g = −λ2 dt2+
gij dx

idxj and gT = λ2 dt2 + gij dxidxj , respectively. By comparing the
covariant derivative operators, ∇ and ∇gT , of both metrics and relying on
the Lie derivative bound (A2), we obtain

|∇gT −∇|gT 6 K0 e
K0 .

Hence, using this estimate and computing the length of a Lorentzian
geodesic γ in terms of its Riemannian length, we control the radius of
definition of the exponential map.

Next, to control the radius of conjugacy associated with the exponential
map we estimate the length of Jacobi fields, that is, variations of geodesics
defined as usual by

J := ∂
∂t
γ(s, t), J̈ = −Rm(γ̇, γ̇, J).

Here, the estimates use in an essential way, the curvature assumption (A3).
Finally, we complete the proof by considering the radius of injectivity of
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the exponential map. and showing that no two geodesic can intersect in a
sufficiently small ball, at least. �

Clearly, Theorem 3.2 is not satisfactory since the notion of injectivity
radius of an observer depends only upon the given vector Tp and not
on the vector field T which we introduced along with the foliation of
a neighbhoorhood of the point. This observation motivates the following
discussion leading to the more general result in Theorem 3.3.

In fact, it is not necessary to prescribe a timelike vector field (or a
foliation) a priori and, instead, we can reconstruct geometrically and
determine a “canonical” foliation adapted to the local geometry. So, the
given data are now a single observer (p,Tp) which allows us to define the
reference inner product gTp at the point p, only. We always assume expp
defined in BgTp

(0, r) ⊂ TpM for some r > 0.
To state our main assumption that the curvature is bounded we need

a reference metric defined in a whole neighborhood of p. We proceed
as follows. By parallel transporting (with respect to the Lorentzian
connection ∇) the given vector Tp along radial geodesics leaving from p
we obtain a (possibly multivalued) vector field T defined in a neighborhood
of p. In turn, we can define an inner product gT defined in the tangent
space TqM for each q ∈ BgT(p, r) where the exponential map is already
well-defined.

We define the maximum curvature for the observer (p,Tp) at the scale r
as

Rmax(M,g,p,Tp; r) := sup
γ
|Rmg|Tγ ,

where the supremum is taken over all points along radial geodesics γ :
[0, r] → M from p with length at most r. Note that when two distinct
geodesics γ and γ′ meet, Tγ and Tγ′ are generally distinct.

The problem under consideration is equivalent to controling the geometry
of the local covering expp : BgTp

(0, r)→ BgTp
(p, r) ⊂M.

Theorem 3.3 (Injectivity radius estimate for an observer). —
Let (M,g,p,Tp) be a pointed Lorentzian (n+ 1)-manifold such that, for

some scalar r > 0, the unit geodesic ball BgTp
(p, r) is compactly included

in M and the map expp is defined on BgT(0, r) ⊂ TpM with

Rmax(M,g,p,Tp; r) 6 r−2.

Then, for some c(n) ∈ (0, 1] depending on the dimension, only, one has

Inj(M,g,p,Tp)
r

> c(n) Volg(BgT(p, c(n) r))
rn+1 .
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Proof. — We only sketch the proof and, without loss of generality, take
r = 1. For the analysis, the vector field T can not be used directly and,
instead, it is necessary to construct a new vector field N. Fix q ∈ I−(p)
(the past of the point p) and consider the “time function” τ := dg(·,q).
The vector field N := ∇τ is time-like and can be used as a (new) reference
field to which we associate the Riemannian metric gN.

Recall that Hessians of distance functions are controlled by curvature, on
which we precisely have a uniform bound. On the other hand, controling
the Hessian ∇2τ allows us to a control of the “relative” geometry of the
slices and, in turn, the curvature of the reference metric gN.

|RmgN |gN 6 C.

At this stage, we are back to the situation studied in Theorem 3.2 and we
can follow the same techniques and estimate the conjugate radius at p. The
final estimate of the radius of injectivity of the exponential map, as stated
in the theorem, is more precise than what we derived earlier and our final
argument here is a Lorentzian generalization of an homotopy argument on
geodesic loops due to Cheeger, Gromov, and Taylor [7] in the Riemannian
setting. �

4. Local regularity of pointed Lorentzian manifolds

Given a pointed Lorentzian manifold (M,g,p,Tp) that solely satisfies
curvature and injectivity radius bounds, our objective now is to establish
the existence of a local coordinates chart defined in a ball with definite
size, in which the metric coefficients have optimal regularity. No further
regularity of the metric beyond the curvature bound will be required.

Our objective, now, is to construct a foliation around the point p,⋃
t∈[t(p),t(p))

Σt,

by n-dimensional spacelike hypersurfaces Σt ⊂ M with constant mean
curvature t. The range of t is specified by two functions t(p), t(p).

The novelty of the following theorem lies in the quantitative estimates
involving curvature and injectivity bounds, only. It provides a canonical
local foliation for the given observer.

Theorem 4.1 (Local CMC foliation of an observer). — The following
property holds with constants c, ρ, . . . ∈ (0, 1) depending on the
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dimension n, only. Let (M,g,p,Tp) be a pointed Lorentzian manifold
satisfying, at some scale r > 0,

Rmax(M,g,p,Tp; r) 6 r−2, Inj(M,g,p,Tp) > r.

Then, the Riemannian ball BT(p, cr) is covered by a foliation of spacelike
hypersurfaces Σt with constant mean curvature t ∈ [t(p), t(p)]( ⋃

t(p)6t6t(p)

Σt
)
⊃ BT(p, cr),

rt ∈
[
(1− η)ρ, (1 + η)ρ

]
, t(p) := 1− ζ

sr
, t(p) := 1 + ζ

sr

for some ρ ∈ [ρ, ρ] and s ∈ [c, c]. Moreover, the unit normal N, the lapse
function λ2 := −g(∇t,∇t), and the second fundamental form h of this
foliation satisfy the uniform estimates

θ 6 −g(N,T) 6 1, θ 6 −r−2λ 6 θ−1,

r |h|gT 6 θ−1.

Recall that the vector field T is defined by parallel translating the vector Tp
along radial geodesics from p.

Our proof is a generalization of earlier work by Bartnik and Simon [5]
(for hypersurfaces in Minkowski space) and Gerhardt [11] (providing global
foliations of Lorentzian manifolds).

Proof. — We will only sketch the proof. First of all, we need a Lorentzian
geodesic foliation near the observer (p,Tp), that is, a foliation by geodesic
spheres

⋃
τ Hτ . This foliation is constructed by considering the future-

oriented, timelike geodesic γ : [0, cr] → M such that γ(cr) = p and
γ̇(p) = Tp for some (fixed once for all) constant c ∈ (0, 1), and by then
introducing normal coordinates y = (yα) = (τ, yj) based on radial geodesics
from the point q := γ(0).

Relying on our curvature bound together with a (Lorentzian) variant of
the Hessian comparison argument theorem, we obtain

k(τ, r) gij 6 (−∇2τ)|E,ij 6 k(τ, r) gij ,

where E :=
(
∇τ
)⊥ denotes the orthogonal complement of the gradient and

for some C > 0

k(τ, r) := r−1
√
C

tan
(
τ r−1

√
C
) , k(τ, r) := r−1

√
C

tanh
(
τ r−1

√
C
) .
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Hence, by taking the trace of (−∇2τ)|E,ij we can control the mean
curvature HHτ of each geodesic slice:

nk(τ, r) 6 HHτ 6 nk(τ, r).

In a similar fashion, we can also construct a Riemannian geodesic
foliation near p. Roughly speaking, we pick up a point p′ = γ(τ) in
the future of p τ > cr and, then, for each a within some interval we
consider the Riemannian slice A(p′, a) := SgTq

(p′, a)∩J +(q) determined
by the reference metric gTq associated with Tq. Again, using the curvature
bound and the standard Hessian comparison theorem we estimate the mean
curvature of the Riemannian slices HA(p′,a):

nk(a, r) 6 HA(p′,a) 6 nk(a, r).

We then search for the desired CMC foliation
⋃
tΣt in such a way that

each hypersurface Σt =
{

(ut(y), y)
}

can be viewed as a graph over a (fixed)
geodesic slice Hτ . The heart of our construction lies in the derivation of
uniform estimates for the mean curvature operator

Mu := hijgij = 1√
1 + |∇u|2

(
∆u+Ajj

)
, A := ∇2τ.

The Lorentzian and Riemannian slices above played the role of barrier
functions for this operator.

To precisely “localize” a CMC slice, we fix a real s in some interval [c, c]
and we consider the point ps := γ((s+s2)r). Then, we consider the domain
Ωs ⊂

{
τ = sr

}
defined so that its boundary is

∂Ωs := A
(
ps, (s2 + s3)r

)
∩ {τ = sr},

which implies that

Bsr
(
γ(sr), s5/2r/2

)
⊂ Ωs ⊂ Bsr

(
γ(sr), 2s5/2r

)
.

The CMC slice is searched as a graph over Ωs and, in particular, we
establish via a gradient estimate that this slice is uniformly spacelike,
as required. Our analysis uses the so-called Simons identity satisfied
by the second fundamental form and arguments from the Nash-Moser
technique. �

Our final objective is to introduce suitable coordinates in which the
coefficient of the Lorentzian metric have the best possible regularity, under
the sole regularity assumptions that the curvature is bounded. It turns out
that CMC-harmonic coordinates provides the best choice; our result below
covers manifolds satisfying Einstein vacuum equations, that is, the class of
Ricci-flat Lorentzian manifolds.
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Theorem 4.2 (Canonical cordinates of an observer). — There exist
constants c = c(n) < c = c(n) and C = C(n, q) > 0 depending
upon the dimension n (and some exponent q ∈ [1,∞)) such that the
following properties hold. Let (M,g,p,Tp) be an (n + 1)-dimensional,
pointed Einstein vacuum spacetime satisfying the following curvature and
injectivity bounds at the scale r > 0:

Rmax(M,g,p,Tp; r) 6 r−2, Inj(M,g,p,Tp) > r.

Then, there exist local coordinates x = (t, x1, . . . , xn) defined for all

|t− r1| < c2r,
(
(x1)2 + . . .+ (xn)2)1/2 < c2r,

such that x(p) = (r1, 0, . . . , 0) for some r1 ∈ [cr, cr] and the following
properties hold.

Each hypersurface Σt =
{

(x1)2 + . . . + (xn)2 < c4r2
}

is a spacelike
hypersurface with constant mean curvature c−1r−2t. The coordinates x :=
(x1, . . . , xn) are spatially harmonic for Riemannian metric induced on Σt.
Moreover, in the coordinates x = (t, x1, . . . , xn) the Lorentzian metric reads

g = −λ(x)2 (dt)2 + gij(x)
(
dxi + ξi(x) dt

)(
dxj + ξj(x) dt

)
and is close to Minkowski metric in these local coordinates, in the sense
that

e−C 6 λ 6 eC , e−Cδij 6 gij 6 eCδij ,

|ξ|2g := gijξiξj 6 e−C ,

and for all q ∈ [1,∞) and for some Q(n, q) > 0

r−n+q
∫

Σt
|∂g|q dvΣt + r−n+2q

∫
Σt
|∂2g|qdvΣt 6 Q(n, q).

5. Injectivity radius of null cones

The theory in Section 3 can be extended to null cones. Given an observer
(p,Tp) in a Lorentzian manifold, consider its past cones in both the tangent
space at p and the manifold, defined by

N−p :=
{
X ∈ TpM

/
gp(X,X) = 0, gp(Tp, X) > 0

}
and N−(p) := ∂J−(p). Given r > 0, the restriction of the exponential
map to the the cone is called the null exponential map and is denoted by
expNp : BNgT,p(0, r)→ N−(p), where BNgT,p(0, r) := BgT,p(0, r) ∩N−p .
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Definition 5.1. — The past null injectivity radius of an observer
(p,Tp),

Null Inj−(M,g,p,Tp),

is the supremum among all radii r such that expNp is a global
diffeomorphism from BNgT,p(0, r)\{0} to a pointed neighborhood of p ∈
N−(p).

We make the following assumptions on a foliation Ω =
⋃
t∈[−1,0]Ht, with

unit normal T and lapse function λ, normalized so that p ∈ H0:
(A1) e−K0 6 λ 6 eK0 in Ω.
(A2) supΩ |LTg|gT 6 K0.

(A3′) The null conjugate radius at p is > r and in BN := BNgT,p(0, r) the
null exponential map satisfies

e−K0 gT,p |BN6
(
expNp

)?(gT |BN ) 6 eK0 gT,p |BN .

(A4′) There exist coordinates on H−1 such that g |H−1 is comparable to
the Euclidian metric

e−K0 gE′ 6 g |H−16 e
K0 gE′ in BH−1,E′(p, r).

The latter condition follows, for instance, from curvature and
volume bounds on the “initial” hypersurface H−1.

Theorem 5.2 (Null injectivity radius estimate). — Let (M,g,p,Tp)
be a pointed Lorentzian manifold satisfying the regularity assumptions
(A1), (A2), (A3′), and (A4′). Then, there exists a positive constant I0 =
I0(K0, r, n) such that

Null Inj−(M,g,p,Tp) > I0.

Proof. — First, we construct coordinates (xα) = (t, xj) near p in
which the metric gT is comparable with the Euclidian metric gE in these
coordinates. Then, we establish uniform estimates that “localize” the null
cone within the region limited by two “flat” null cones:

N−(p) ∩Ht ⊂ At[c1 |t|,C1|t|], t ∈ [−c1 r, 0],

At[a,b] :=
{
x0 = t, a2 < (x1)2 + . . .+ (xn)2 < b2

}
⊂ Ha.

We obtain a Lipschitz continuous parametrization of the null cone and, in
turn, we can estimate the injectivity radius from an homotopy argument
restricted to the null cone. �
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We can combine the result above with an earlier theorem by Klainerman
and Rodnianski on the conjugacy radius of null cones ([15] and the
references therein): when n = 3 and the manifold satisfies the Einstein
vacuum equations (Ricci-flat condition), Assumption (A3′) is a consequence
of the following L2 curvature bound on the initial hypersurface:

(A3′′) ‖Rmg‖L2(H−1,gT ) 6 K0.
Hence, from Theorem 5.2 we can deduce that the null injectivity radius
of an observer in an Einstein vacuum spacetime is uniformly controled
solely in terms of the lapse function, the second fundamental form of the
foliation, and the L2 curvature and lower volume bounds on some initial
hypersurface.

Remark 5.3. — The condition (A3′) is a weaker version of (A3) and
we expect that it should hold when the curvature in every spacelike
hypersurface is bounded in Ln2 +ε for some ε > 0. On the other hand,
the condition (A4′) on the initial hypersurface is only “slightly” stronger
than the volume bound (A4) assumed earlier.

6. Concluding remarks

We conclude this text with possible extensions of the present work. In
the context of Riemannian geometry, Anderson and Petersen (see [17] for
a review) have introduced a notion of harmonic radius for Riemannian
manifolds and established pre-compactness results for sequences of
manifolds whose harmonic radius is uniformly bounded below. Similarly,
based on our results for Lorentzian manifolds, it should be possible
to define a notion of CMC-harmonic radius ra,Q(M,g,p,Tp) and
establish corresponding pre-compactness theorems for sequences of pointed
Lorentzian manifolds whose CMC–harmonic radius is bounded below.
Given reals a > 1 and Q, r > 0, we expect that the class of (n + 1)-
dimensional, pointed Lorentzian manifolds

Ea,Qn (r) := {(M,g,p,Tp) : ra,Q(M,g,p,Tp) > r}

is strongly pre-compact in W l,a for l ∈ [0, 2) and weakly pre-compact in
W 2,a.

In fact, our main result (Theorem 4.2) should be restated as a
uniform lower estimate on the CMC-harmonic radius, under curvature
and injectivity radius bounds. In turn, by combining the above two
statements, one arrives at a pre-compactness theorem for sequences of
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vacuum spacetimes with uniformly bounded curvature and injectivity
radius bounded below.

In another direction, we expect the techniques in this paper to be useful
in constructing a canonical CMC foliation near spacelike infinity i0, again
with a control of the geometry that only depends on the sup-norm of the
curvature.

In conclusion, our results show that a bound on the curvature allows one
to get optimal control on the geometry of pointed Lorentzian manifolds. In
contrast with Riemannian geometry where harmonic coordinates provide
the best regularity of metrics, in the Lorentzian setting one needs a foliation
by Constant Mean Curvature slices and spatially harmonic coordinates.
Another particular feature of Lorentzian geometry is the need of choosing
an observer on the spacetime. Provided with the key regularity properties in
Theorems 4.1 and 4.2, we have now the necessary tool to tackle questions
about convergence and compactness of spacetimes. A long-term goal of
this research will be to analyze the structure of the future boundary of a
spacetime (nature of singularities, curvature blow-up, relation with Penrose
conjecture).
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