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Séminaire de théorie spectrale et géométrie
Grenoble
Volume 25 (2006-2007) 55-69

ELASTIC WAVE EQUATION

Yves Colin de Verdière

Abstract. — The goal of this talk is to describe the Lamé operator which
drives the propagation of linear elastic waves. The main motivation for me is the
work I have done in collaboration with Michel Campillo’s group from LGIT (Greno-
ble) on passive imaging in seismology. From this work, several mathematical prob-
lems emerged: equipartition of energy between S− and P−waves, high frequency
description of surface waves in a stratified medium and related inverse spectral
problems.

We discuss the following topics:
• What is the definition of the operator and the natural (free) boundary con-

ditions?
• The polarizations of waves (S−waves and P−waves) and its relation to Hodge

decomposition
• The Weyl law and equipartition of energy between S−waves and P−waves.

We formulate here questions in the spirit of Schnirelman’s Theorem about
limits of Wigner measures of eigenmodes and of Schubert’s Theorem about
the large time equipartition of an evolved Lagrangian state.

• Rayleigh waves for the half-space: we compute in a rather explicit way the
spectral decomposition following the work of Ph. Sécher. Of particular inter-
est are the scattering matrix and the density of states.

1. Linear elastic waves

Let (X, g) be a 3-dimensional smooth compact Riemannian manifold
with boundary. We want to define the Lamé operator L which is a lin-
ear self-adjoint elliptic differential operator of order 2 on the Hilbert space
L2(X, TX) of L2 vector fields u on X with respect to the density
ρ(x)|dx|, i.e.:

‖u‖2 =
∫

X

|u(x)|2ρ(x)|dx|

where the pointwise norm |u(x)| is computed w.r. to the Riemannian met-
ric. The vector field u corresponds to the small deplacement x → x+ εu(x)
of the medium. The Dirichlet form (elastic energy induced by the small
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deplacement) is given as follows:

Q(u) =
∫

X

qx(δu(x))|dx|

where δu := 1
2Lug, the Lie derivative of g w.r. to u, is the deformation

tensor. For example, if g = dx2
1 + dx2

2 + dx2
3, (δu)ij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
. The

quadratic form qx is positive definite on the vector space S2(T ?
x X). It means

that qx is a quadratic form on a vector space of dimension 6:

qx(δu) =
∑

i,j,k,l

cij,kl(δu)ij(δu)kl ,

which involves a priori 21 independent coefficients cij,kl, i, j, k, l = 1, 2, 3,

with

• cij,kl = cji,kl

• cij,kl = cij,lk

• cij,kl = ckl,ij .

Usually people do assume that qx is isotropic, meaning that it is invariant
by the natural action of O(3) on TxX. From the general results of invariant
theory, it follows that qx(δu) = λ(x)Trace(δu)2 + 2µ(x)Trace(δu2), i.e.

qx(δu) = λ(x)

(
3∑

i=1

∂ui

∂xi

)2

+
1
2
µ(x)

3∑
i,j=1

(
∂ui

∂xj
+

∂uj

∂xi

)2

,

the 21 coefficients cij,kl reducing to 2. In order that qx is positive definite
we assume:

(1.1) µ > 0, λ > −2
3
µ .

The functions λ and µ are the so called Lamé’s coefficients.

Lemma 1.1. — The form Q defined on smooth vector fields on X is
closable(1) .

Proof. — It is enough to proof that if un → 0 in L2 and δun converges
to w in L2, then w = 0: this is clear because un → 0 in the sense of
distributions and then δun too. �

Remark 1.2. — The domain of the closure of Q is the Sobolev space H1

because u → δu is elliptic of order 1.

(1) It means that the completion of smooth vector fields w.r. to the norm ‖u‖21 = ‖u‖L2 +

Q(u) is a subspace of L2
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It is known that if Q is a closable quadratic form on an Hilbert space,
there is a canonical way to build from it a self-adjoint operator called its
Friedrichs extension (see [10]).

Definition 1.3. — The Lamé operator L is the linear self-adjoint oper-
ator on the Hilbert space of L2 vector fields which is the Friedrichs extension
of Q .

We will see that L is elliptic et describe its domain (including the bound-
ary conditions) in a precise way.

In order to simplify the calculations, we will assume that

• X is a smooth compact domain of R3 with the euclidian metric
dx2

1 + dx2
2 + dx2

3

• ρ(x) ≡ 1
• λ and µ are constants satisfying the inequalities (1.1).

2. Computing the Lamé operator L

We want to write in a rather explicit way the operator L and the “Neu-
mann” (or free) boundary conditions for L.

We start with Q(u) =
∫

X
q(du1, du2, du3)|dx| where u = u1∂1 + u2∂2 +

u3∂3. Let us introduce the vector fields fi, i = 1, 2, 3 defined by fi =
1
2∂q/∂(dui) . The fi’s are vector fields because dui is a 1−form by duality
(Legendre transform). The field fi is the force created by the reaction of
the elastic body to the deformation ui∂i. We have(2)

Q(u, v) =
∑

i

∫
X

dvi(fi)|dx|,

Q(u, v) =
∑

i

∫
X

dvi ∧ (ι(fi)dx)

and by integration by parts:

Q(u, v) =
∑

i

(
−
∫

X

vid(ι(fi)dx) +
∫

∂X

viι(fi)dx

)
.

Hence
(Lu)idx = −d(ι(fi)dx) = −Lfidx

(2) If α is a differential p-form and V a vector field, the inner product ι(V )α is the
(p− 1)-form defined by putting V inside as the first entry

VOLUME 25 (2006-2007)



58 YVES COLIN DE VERDIÈRE

and the boundary conditions are given by:

ι(fi)dx = 0

as a differential form on the boundary ∂X; this boundary condition can be
interpreted as saying that fi is tangent to ∂X which is quite natural from
the point of view of physics.

The symmetric tensor (f1, f2, f3) is called the stress tensor and denoted
σ = (σij). Using an orthonormal frame, we get the expression:

σij := λdiv(u)δij + µ

(
∂ui

∂xj
+

∂uj

∂xi

)
.

Finally, we get:

L = −(λ + µ)grad div u− µ∆u

with the boundary conditions: σν = 0 where ν is the normal to the bound-
ary.

The principal symbol l(x, ξ) of L can then be computed:

l(x, ξ) = (λ + µ)(ξiξj) + µ‖ξ‖2Id.

We see that L is elliptic.
We are interested in the wave equation

utt + Lu = 0

and the related spectral theory; there exists an orthonormal basis of the
Hilbert space of L2(X, R3) which consists of eigenmodes Luj = ω2

j uj with
the usual convention

0 = ω1 = · · · = ω6 < ω7 6 · · · 6 ωj 6 · · ·

where each eigenvalue is repeated according to its own multiplicity. Let us
remark that ω1 = 0 is of multiplicity 6, the eigenspace being the space of
infinitesimal isometries of R3 for which δu = 0 by definition.

3. S-waves and P-waves

For (x, ξ) ∈ T ?X, l(x, ξ) is a positive definite symmetric endomorphism
of TxX which admits 2 eigenvalues: λP (x, ξ) = (λ+2µ)‖ξ‖2 and λS(x, ξ) =
µ‖ξ‖2. The corresponding eigenspaces are

EP (x, ξ) = Rv(x, ξ), ES(x, ξ) = v(x, ξ)⊥

where v(x, ξ) ∈ TxX is the Legendre transform of (x, ξ). We will denote by
πP (resp. πS) the orthogonal projectors of R3 onto EP (resp. ES). Let us
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remark that we have hence 2 dynamics on T ?X associated to the Hamiltoni-
ans λP and λS . The P (resp. S)-waves propagates following the Hamiltonian
λP (resp. λS) and polarizations EP (resp. ES).

The speed of the P (resp. S)-waves is cP =
√

λ + 2µ (resp. cS =
√

µ).

4. Link with Hodge Laplacians

4.1. Helmholtz decomposition

They are several ways to decompose a vector field into a sum of a gradient
and a divergence free vector fields. This problem is fully described in the
book [14].

Identifying vector fields and 1-forms, we have:

Theorem 4.1. — Every smooth vector field u in X can be uniquely
written as

u = uP + uS ,

with
• uP = grad f and f smooth
• div uS = 0 and uS is tangent to ∂X

Moreover, both parts are orthogonal. The associated L2 projectors ΠP and
ΠS are pseudo-differential operators of symbols πP (x, ξ) =the orthogonal
projector onto Rξ and πS(x, ξ) = Id− πP .

4.2. Lamé operator and Hodge theory

Using the Riemannian metric, we can identify vector fields with 1-forms.
On the 1-forms, we have already the “natural” differential operators ∆+ =
dd? and ∆− = d?d. The Hodge laplacian is usually defined as ∆ = ∆++∆−.
We want to compute L in terms of ∆+ and ∆−. The main result is:

Theorem 4.2. — With the natural identification of vector fields and
1−forms, the action of L on C∞

o (X, R3) is given by:

L = (λ + 2µ)∆+ + µ∆− .

In other words, L(uP + uS) = (λ + 2µ)∆uP + µ∆uS . The boundary condi-
tions for L are not those given in Hodge theory.

The previous identity comes from ∆+ ≡ −grad div and ∆− ≡ rot rot.
Let us note that the eigenmodes have in general a non trivial decomposition
uj = uj,P + uj,S .

VOLUME 25 (2006-2007)



60 YVES COLIN DE VERDIÈRE

5. The spectral resolution of L in R3

Let us write the spectral measure of
√

L with constant coefficients in R3:

δ(x = y) =
∫ ∞

0

e(x,y, ω)dω ,

and
[L](x,y) =

∫ ∞

0

ω2e(x,y, ω)dω .

We insert Id = πS(k) + πP (k) in the Fourier inversion formula:

δ(x = y) = (2π)−3

(∫
R3

ei〈k|x−y〉πP (k)dk +
∫

R3
ei〈k|x−y〉πS(k)dk

)
.

Using polar coordinates k = c−1
P ω~u (with |~u| = 1) and k = c−1

S ω~u, we get:

e(x,y, ω) =

ω2

(2π)3

(
c−3
P

∫
cP k=ω

ei〈k|x−y〉πP (k)dθ + c−3
S

∫
cSk=ω

ei〈k|x−y〉πS(k)dθ

)
,

where dθ is the uniform measure of total mass 4π on the unit sphere and
k := |k|.

We get hence the density of states dσ(x, ω) := trace(e(x, x, ω))dω:

dσ(x, ω) =
1

2π2

(
1
c3
P

+
2
c3
S

)
ω2dω.

6. Explicit spectral decomposition in the case of the
half-space

We will now consider the case of the half-space X := {(x, y, z)|z 6 0}.
We want to compute quite explicitely the spectral decomposition of the
Lamé operator in X with constant Lamé coefficients. Using the invariance
by translation, we can decompose L as an integral of operators Lk, k ∈ R2

which we need to study explicitely:

(6.1) L =
∫

R2
F−1LkFdk.

As a consequence we get an explicit expression of the unitary reflection
matrix R(k).

Let us first describe roughly the situation: the operators Lk act on
L2(R−, R3). The operator Lk splits into a trivial part L′k corresponding
to pure S−waves reflecting on the boundary with a polarization tangent

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



ELASTIC WAVE EQUATION 61

to the boundary and a non trivial part L′′k with modes conversions. L′k is
equivalent to the scalar Laplace operator on the half space with Neumann
boundary conditions.

The spectrum of
√

L′′k splits into 3 parts:
• An eigenvalue of multiplicity 1, cRk with 0 < cR < cS . The corre-

sponding waves are called the Rayleigh waves
• A continuous spectrum of multiplicity 1, the intervall I = [cSk, cP k]

corresponding to pure reflection of S−waves with a reflection coef-
ficient rSS(k) of modulus 1

• A continuous spectrum of multiplicity 2, the intervall J = [cP k, +∞[
corresponding to incident S− or P−waves which are reflected as a
linear combination of both kind of waves. We have then a reflection
matrix which is a 2× 2 unitary matrix.

The reflection matrix is also calculated in the paper [11].

6.1. Separation of variables: the Sturm-Liouville operator Lk.

We can reduce to the case where k =
(

0
k

)
. For k ∈ R, let us compute

Lku(z) := e−ikyL(eikyu(z))

with u =

u1

u2

u3

.

A short calculus gives:

Lk =

µ(k2 + D2) 0 0
0 (λ + 2µ)k2 + µD2 (λ + µ)kD

0 (λ + µ)kD µk2 + (λ + 2µ)D2

 ,

with D = −i d
dz .

The boundary conditions at z = 0 are:
u′1 = 0

u′2 + iku3 = 0
ikλu2 + (λ + 2µ)u′3 = 0

.

We see that Lk splits as L′k + L′′k while splitting

u =

u1

0
0

+

 0
u2

u3

 .

VOLUME 25 (2006-2007)
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The spectral resolution of
√

L′k is easily related to the cosinus transform

f(z) =
2
π

∫ 0

−∞
dz′
∫ +∞

0

dζ cos ζz cos ζz′f(z′) .

By performing the change ζ :=
√

ω2

µ − k2, we get:

de′k(z, z′, ω) =
2
π

ω

c2
Sζ

cos ζz cos ζz′dω.

We are reduced to study L′′k .

6.2. L′′k on the real line

We want to describe the spectral decomposition on the half-line from
that on the line as a scattering problem. Let us first write explicitely the
spectral decomposition of Lk on the line. As in section 5, we start from
Fourier inversion formula, but now with one variable. Following the same
path, we get the following spectral resolution for Lk:

δ(z, z′) =
1
2π(∫ ∞

kcP

ω

c2
P ζP

eiζP (z−z′)πP (0, k, ζS)dω+
∫ ∞

kcS

ω

c2
SζS

eiζS(z−z′)πS(0, k, ζS)dω

)
.

This decomposition gives the normalisation of the generalized eigenfunc-
tions:

u±P := (ωζP )−
1
2 e±iζP z

(
k

±ζP

)
and

u±S := (ωζS)−
1
2 e±iζSz

(
±ζS

−k

)
.

6.3. The reflection matrix

We now compute the reflection matrix

Rk(ω) =
(

rPP rPS

rSP rSS

)
for ω2 ∈ J and rSS(ω) for ω2 ∈ I by looking at eigenmodes of Lk of the
form: u′ω := u+

P + rPP u−P + rPSu−S satisfying the boundary condition. And
similarly u′′ω := u+

S + rSP u−P + rSSu−S .
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We get the following result: if A := (2k2 − ω2

µ ) and B = 2k
√

ζP ζS ,

Rk(ω) =
1

A2 + B2

(
B2 −A2 2AB

−2AB B2 −A2

)
.

We check that Rk(ω) is unitary in J , |rSS(ω)| = 1 in I and Rk(ω) admit
poles at the zeroes of δ = A2 + B2.

6.4. The Rayleigh waves

Let us look at the zeroes of δ = A2 + B2 which are poles of Rk(ω):
putting Ω = ω/k

√
µ and r = µ/(λ + 2µ), we get

4
√

1− ρΩ2)(1− Ω2) = (2− Ω2)2 .

This equation admits the root 0 and the square roots of the zeroes of a
polynomial of degree 3: p(t) = t3 − 8t2 + 8(3 − 2ρ)t − 16(1 − ρ). This
polynomial admits a real root 0 < t0 < 1 and 2 non real roots. Let us
define cR := cS

√
t0. For ω = cRk, the residu of u′ or of u′′ is a wave

exponentially decaying as z → −∞, called the Rayleigh wave: uRayl =
u−P + αu−S . We will denote by uR the L2 normalized Rayleigh wave. Let
us note that the polarisation of the Rayleigh wave is contained in the
plane normal to the boundary containing the incoming ray (normal to the
incident wave). Moreover, because then ζS and ζP are purely imaginary,
the polarization is complex, meaning that we have a real polarization which
lies on some ellipse: at a fixed point of the boundary, the wave is moving
on an ellipse with a frequency kcR.

6.5. The spectral resolution of L′′k

We are now able to write the spectral resolution of
√

Lk:

dek(ω) = dek,R + dek,SN + dek,ST + dek,P

with

dek,R(z, z′) = δ(ω = cRk)uR(z)⊗ (uR(z′))?

dek,SN (z, z′) =
2
π
1[cSk,∞[(ω)

ω

c2
SζS

cos ζSz cos ζSz′)

1 0 0
0 0 0
0 0 0

 dω

dek,ST (z, z′) =
1
2π

1[cSk,∞[(ω)u′′ω(z)⊗ (u′′ω(z′))?dω

dek,P (z, z′) =
1
2π

1[cP k,∞[(ω)u′ω(z)⊗ (u′ω(z′))?dω.

VOLUME 25 (2006-2007)



64 YVES COLIN DE VERDIÈRE

6.6. The spectral resolution of L in X = {z 6 0}

We can obtain the spectral resolution of L by puting the spectral reso-
lutions of the Lk’s into the formula (6.1).

7. Weyl law and equipartition of energy

7.1. Weyl law

Let us consider the spectral decomposition (uj , ωj) with Luj = ω2
j uj ,

j = 1, · · · , and uj an orthonormal basis of L2(X, R3).

Theorem 7.1. — (The Weyl law) If N(ω) := #{j|ωj 6 ω} we have
N(ω) ∼ NP (ω) + NS(ω) with

• NP (ω) := 1
6π2 vol(X)

(
ω

cP

)3

• NS(ω) := 2
6π2 vol(X)

(
ω

cS

)3

The previous theorem says that the asymptotic behaviour of the eigen-
values is the same as if we had 3 decoupled scalar operators, one of symbol
c2
P ‖ξ‖2 and 2 of symbol c2

S‖ξ‖2 acting on functions.
We have a more precise result (usually called the local Weyl law):

Theorem 7.2. — For any homogeneous symbol a ∈ C∞(T ?X, Sym(R3))
compactly supported in x ∈ X,

∑
ωj6ω

〈Op(a)uj |uj〉 ∼ (2π)−3

(∫
cP |ξ|6ω

traceP (a)|dxdξ|+
∫

cS |ξ|6ω

traceS(a)|dxdξ|

)
,

with traceP (a) = trace(πP a) and similarly for traceS(a).

In particular
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Corollary 7.3. — For any domain D ⊂ Int(X), we have∑
ωj6ω

∫
D

‖uj,P ‖2|dx| ∼ 1
6π2

|D|
(

ω

cP

)3

,

∑
ωj6ω

∫
D

‖uj,S‖2|dx| ∼ 2
6π2

|D|
(

ω

cS

)3

,

∑
ωj6ω

∫
D

〈uj,P |uj,S〉|dx| = O(ω2).

A very basic question is to understand how the dynamics produces a
random wave in the previous setting. Let us give a

Definition 7.4. — Let us take a solution of the wave equation u(x, t)
and a frequency Φω cut-off around the frequency ω. We will say that u(x, t)
is equipartited if we have for large ω:

lim
t→∞

∫
D
‖Φωu(x, t)‖2|dx|∫

X
‖Φωu(x, t)‖2|dx|

=
|D|
|X|

,

lim
t→∞

∫
D
‖ΦωuS(x, t)‖2|dx|∫

D
‖ΦωuP (x, t)‖2|dx|

=
2c3

P

c3
S

.

Remark 7.5. — From the experimental point of view, only the second
limit can be measured.

There are in fact 2 cases:

(1) The case u = uj(x)eiωjt. Do the large frequencies individual eigen-
modes satisfy an equipartition property?

(2) The case where the Cauchy datas of u are localized at some point
x0. This case is much more interesting from the physical point of
view. It corresponds to an earthquake with a source at x0.

In the case of the (scalar) Laplace operator, both cases of the question
have satisfactory answers:

• The first one is the celebrated Schnirelman Theorem (1974) which
says that the answer is yes if the geodesic (billiard) flow is ergodic
[12, 16, 3, 5, 17]

• The second one is a recent result by Roman Schubert [13] which
says that the answer is yes if the geodesic (billiard) flow is Anosov
and if t is of the order of the so-called Heisenberg time. It uses the
fact that Anosov systems are mixing.

VOLUME 25 (2006-2007)



66 YVES COLIN DE VERDIÈRE

7.2. A statistical interpretation of Weyl laws: the
microcanonical ensemble

On any Hilbert space H = (H, 〈.|.〉), there is a canonical random field
wH , the white noise of H, which satisfies:

∀e, f ∈ H, E(〈wH |e〉〈wH |f〉) = 〈f |e〉 .

If dimH = ∞, this field is not a vector of H but a “distribution”: if
A : H → K is an Hilbert-Schmidt operator, AwH is a random field on
K.

Let us give some E > 0 and consider the Hilbert space HE ⊂ L2(X, TX)
which is generated by the eigenfields of frequency less than E. The associ-
ated random fields wE can be splited as wE = wE,S + wE,P .

8. The classical limit

Let us fix the frequency ω > 0. Inside X, we have 2 decoupled dynamics:
they are given by the Hamiltonians hP = cP ‖ξ‖ (resp. hS = cS‖ξ‖) on the
energy surfaces ΣP = {hP = ω} (resp. ΣS = {hS = ω}). More precisely,
we will introduce an extended phase space Z := ZS ∪ ZP with a measure
dm where

• ZS is the total space of the projective fiber bundle P (ES) → ΣS

with the dynamics given by ΦS
t (z,< v >) = (φS

t (z), < Tt(v) >)
with φS

t the Hamiltonian flow of hS and Tt the parallel transport
in the fiber bundle ES (the “Berry” phase). ZS is equiped with the
measure dmS = dLS⊗dh where dLS is the microcanonical Liouville
measure and dh is the uniform measure on P (ES) with total mass
2.

• Similarly ZP = ΣP and dmP is the microcanonical Liouville mea-
sure and the Hamiltonian dynamics ϕP

t associated to hP .
Of course the previous dynamics is not yet defined when hitting the bound-
ary. At that point, we will define it as a Markov process whose proba-
bility transitions are given by the squares πP , πS of the entries of the
reflection matrix. Let us remark that the component of an S−wave tan-
gent to the boundary (and normal to the ray) is reflected without adding
a P−component. On the other hand the incoming and outgoing points
(y, ξ±), y ∈ ∂X are related by ξ+

|TyX = ξ−|TyX .
Let us check that the measure dm is invariant by the previous stochastic

process. Let us assume that X0(ω) follows the probabiliy dm:
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P({X0 ∈ U}) = m(U) for any U ⊂ Z. We need to check that, for all
t > 0,

P({Xt ∈ U}) = m({X0 ∈ U}) .

Let us do that for small t and U : let us consider for example U ⊂ ZP and
t so that the only way that Xt ∈ U is one reflection at some point y ∈ ∂X.
Either X0 ∈ US

− or X0 ∈ UP
− . In the first case X0 = (z0, θ) and we can fix

that θ = 0 corresponds to a polarisation in the plane generated by the ray
and the normal to the boundary. We get

P({Xt ∈ U}) =
∫

UP
−

πP dmP +
2
π

∫
US
−

πS cos2 θdLSdθ .

We get, using
2
π

∫ π

0

cos2 θ dθ = 1,

P({Xt ∈ U}) =
∫

UP
−

πP dmP +
∫

US
−

πSdmS

and using the fact that the microlocal Liouville measures are conserved by
the reflection process and that πP + πS = 1, we get the result. One can
check a similar result if U ⊂ ZS .

In order to use the usual definitions of dynamical systems, we introduce
the set T of trajectories z(t), t ∈ R with the measure dP given as usual
on cylindrical sets. The measure dP is invariant by the translation along
trajectories. So we can say that the classical limit is ergodic or mixing.

8.1. Conjectures

• In the spirit of Schnirelman’s Theorem, we can ask the following:

Question 8.1. — If the classical random walk is ergodic, do
we have equipartition of energies for a density one subsequence of
eigenmodes ujl

?

Let us remark that the previous property is not valid if the mani-
fold has no boundary. This conjecture is probably not true. A similar
conjecture for another model with a probabilistic classical dynamics
is not valid: the case of the Laplace operator on a generic star graph
for which Schnirelman Theorem does not hold (see [7] for explicit
formulae for eigenfunctions). At least the usual proof uses Egorov’s
Theorem which is not true in this context!
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• In the spirit of Schubert Theorem, I put the following

Conjecture 8.2. — Let us assume that the classical limit is
mixing and has some kind of hyperbolicity. If the Cauchy data of the
Lamé wave equation are localized, there is a dynamical equiparti-
tion (large time): u(x, t) satisfies equipartition for t large but smaller
than Ehrenfest times (to be defined).

9. Appendix A: spectral resolutions, density of states and
microcanonical ensembles

Let L be a positive self-adjoint operator on L2(X, RN ). The spectral
resolution de(x, y, ω) of

√
L is a measure with values in Sym(RN ) which

satisfies:

δ(x− y) =
∫

R
de(x, y, ω)

and, for any function Φ of L:

[Φ(L)](x, y) =
∫

R
Φ(ω2)de(x, y, ω).

The density of states is a measure on X × R defined by dσ(x, ω) =
trace(de(x, x, ω)). In particular, we have, in case of a discrete spectrum:

#{ωj 6 ω} =
∫

X

dx

∫ ω

0

dσ(x, ω′).

The microcanonical ensemble associated to an intervall I = [ω−, ω+] is
the white noise on the Hilbert space ΠI(L2(X, RN ). We have then

E(
∫

D

|u(x)|2dx) =
∫

D

dx

∫
ω∈I

dσ(x, ω) .

In other words, the expected energy of a mode whose frequency lies in
[ω−, ω+] is given in terms of the density of states.

More generally, we have

EI(〈Au|u〉) = TraceAΠI .

This can be evaluated in the large frequency regime if A is a ΨDO as the
trace of the pseudo-differential operator AΠI of symbol a ◦ χI(

√
L).
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