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DYNAMICS OF THE FOCUSING CRITICAL WAVE EQUATION

THOMAS DUYCKAERTS (JOINT WORK WITH H. JIA, C. KENIG ET F. MERLE)

1. INTRODUCTION

This note concerns results by Duyckaerts, Kenig and Merle [13], Jia [23] and Duyck-
aerts, Jia, Kenig and Merle [12] on the focusing energy critical wave equation:

(NLW)

{
∂2t u−∆u = |u| 4

N−2u, x ∈ RN

~u�t=0 = (u0, u1) ∈ H = Ḣ1(RN )× L2(RN ),

where N ∈ {3, 4, 5} and ~u = (u, ∂tu). It is locally well-posed in the scale invariant-space
H = Ḣ1 × L2, and has two conserved quantities: the energy

E(~u) =
1

2

∫

RN

|∇xu(t)|2 +
1

2

∫

RN

|∂tu(t)|2 − N − 2

2N

∫
|u(t)| 2N

N−2

and the momentum
P (~u) =

∫

RN

∇xu∂tu.
The equation admits the following transformations:
• if u is a solution, λ > 0, t0 ∈ R, x0 ∈ RN , R ∈ ON (R), ι0, ι1 ∈ {±1}, then

v(t, x) =
ι0

λ
N
2 −1

u

(
ι1(t− t0)

λ
,
R(x− x0)

λ

)

is also a solution with the same energy.
• Lorentz transformation. If u is a global solution, p ∈ RN and p = |p| < 1, then

up(t, x) = u

(
t− p · x√

1− |p|2
,

(
− t√

1− p2
+

1

p2

(
1√

1− p2
− 1

)
p · x

)
p + x

)

is also a solution (the Lorentz transform of u). Note that this last transformation
mixes the space and time variables, which is problematic when the solution u is
not globally defined. Unlike the preceeding transformations, it does not preserve
the energy.

We are interested by the global dynamics of the equation in a nonperturbative regime, i.e.
without size restriction on the data. We start by giving a few examples of solutions.

2. EXAMPLES OF SOLUTIONS

2.1. Scattering solutions. Let T+(u) be the maximal time of existence of u. By defini-
tion, u scatters to a linear solution when T+(u) = +∞ and there exists a solution uL of
∂2t uL −∆uL = 0 such that

lim
t→+∞

‖~u(t)− ~uL(t)‖H = 0

In the defocusing case (when there is a minus sign in front of the nonlinearity in (NLW)),
all solutions scatter: see Grillakis [17, 18], Shatah and Struwe [35, 36], Kapitanski [24],

Séminaire Laurent-Schwartz — EDP et applications
Institut des hautes études scientifiques, 2015-2016
Exposé no VIII, 1-9

VIII–1



Ginibre and Velo [16], Nakanishi [34], Bahouri and Shatah [2], Bahouri and Gérard [1],
Tao [38].

In the focusing case, we have the following properties:
• Scattering for solutions with small initial data in the energy space.
• Existence of wave operators: if uL is a solution of the linear wave equation, there

exists a solution u of the nonlinear wave equation (NLW) such that T+(u) = +∞
and

lim
t→+∞

‖~u(t)− ~uL(t)‖H = 0.

• Stability: the set of scattering solutions is open in the energy topology.

2.2. Type I blow-up. A solution u of (NLW) is said to be a type I blow-up solution when
T+(u) <∞ and

lim
t→T+(u)

‖~u(t)‖H = +∞.

Note that this condition is not automatic for solution blowing-up in finite time: we will see
that there also exist solutions such that T+(u) is finite that remain bounded in the energy
space close to T+(u).

Examples of type I blow-up solution can be constructed using the ODE y′′ = |y| 4
N−2 y,

that has solution blowing-up in finite time. Consider:

Y (t) =

(
N(N − 2)

4

)N−2
4 1

(T − t)N−2
2

,

and let L > T . Then by finite speed of propagation, any radial, finite energy solution of
(NLW) such that

|x| < L =⇒ (u0, u1)(x) = (Y (0), Y ′(0))

blows up in finite time, and one can prove that the blow-up is of type I.
The type I blow-up is conjectured to be stable, but there are not much theoretical results

in this direction for equation (NLW). Much more is known for pseudo-conformally sub-
critical wave equations (polynomial nonlinearity |u|p−1u in space dimension N = 1, or,
N ≥ 2 with p < N+3

N−1 ): see the works of Merle and Zaag e.g. [32, 33].
In the energy-critical case there are numerical evidences that generic blow-up solutions

behave like y0(t) see Bizoń, Chmaj and Tabor [3]. The stability of y0 in light cones, in
the energy topology was proved by Donninger [8]; see also previous results in stronger
topology by Donninger and Schörkhuber [11].

We next give examples of bounded, non-scattering solutions.

2.3. Solitons. Solitons, or solitary waves, are well-localized solution of a dispersive equa-
tion travelling at a constant speed. In the case of equation (NLW), all solitons are con-
structed from stationary solutions:

(E) −∆Q = |Q| 4
N−2Q, Q ∈ Ḣ1(RN ).

There is a unique (up to scaling and sign change) radial solution of (E), which is also the
least energy solution of (E) and is called the ground-state. It is given by the formula:

W =
1

(
1 + |x|2

N(N−2)

)N
2 −1

.

The energy ofW is a threshold for the dynamics see Kenig-Merle [25]. We refer to Krieger,
Nakanishi and Schlag [27] for the dynamics around W .

Thomas Duyckaerts

VIII–2



There also exist solutions of (E) with arbitrary large energies. See the works of W.Y.
Ding [7], and Del Pino, Musso, Pacard and Pistoia [6].

Applying a Lorentz transform to any solution of (E), one obtains a soliton of the fol-
lowing form:

Qp(t, x) = Q

((
− t√

1− p2
+

1

p2

(
1√

1− p2
− 1

)
p · x

)
p + x

)

where p ∈ RN with p = |p| < 1. Note that Qp travels at speed p:

Qp(t, x) = Qp(0, x− tp).

The energy of Qp is given by:

E( ~Qp(0)) =
1√

1− p2
E(Q, 0).

The speed of a soliton is strictly smaller than 1 (and its distance to 1 is controled by the
energy), whereas solutions of the linear equation travel at speed exactly 1.

2.4. Global, non-scattering solutions close toW . There are many examples of solutions
that are global and non-scattering, but are not equal to solitons.

The easiest way to construct such an example is to use the unstable direction aroundW :
the linearized operator at W

LW = −∆− N + 2

N − 2
|W | 4

N−2

admits exactly one negative eigenvalue, −ω2. Denoting by Y a corresponding eigenfunc-
tion, one can construct a one parameter family of solution with energy E(W, 0) such that

Wa(t) = W + ae−ωtY +O(e−2ωt), t→ +∞.
where a ∈ R: see Duyckaerts and Merle [14].

More generally, there exist global solutions of the form:

~u(t) =

(
1

λ(t)
N−2

2

W

(
x

λ(t)

)
, 0

)
+ ~vL(t) + o(1) inH, as t→ +∞,

vL is a small solution of the linear wave equation and
• λ(t) = 1 Krieger and Schlag [28].
• λ(t) = tα, α ∈ R, α small Donninger and Krieger [10].

Open questions: are there solutions with other stationary profile than W ? What are the
vL(t) admissible?

2.5. Type II blow-up solutions. A type II blow-up solution is a solution of (NLW) such
that T+(u) <∞ and

lim sup
t→T+(u)

‖~u(t)‖H <∞.

All known examples are of the form

~u(t) =

(
1

λ(t)
N−2

2

W

( ·
λ(t)

)
, 0

)
+ (v0, v1), t→ T+,

where (v0, v1) ∈ H and:
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• N = 3, λ(t) = (T+ − t)α and α > 1 (Krieger, Schlag and Tataru [29], Krieger
and Schlag [30]). The instability of these solutions was proved by Krieger and
Nahas [26].

• N = 5, λ(t) = (T+ − t)α and α > 9, Jendrej [21].
• N = 4, λ(t) ≈ (T+ − t)e−

√
| log(T+−t)| and (v0, v1) is smooth (Hillairet and

Raphaël [20]).
• N = 5, λ(t) ≈ (T+− t)4, (v0, v1) is any smooth solution with v0(0) > 0 (Jendrej

[21]).
• N = 3, λ(t) = (T+− t)α exp(ε0 sin(log(t))), α > 4 (Donninger, Huang, Krieger

and Schlag [9]).

2.6. Multi-solitons. There also exist global solutions that behave asymptotically as a sum
of decoupled solitons. Two examples are known:

• A radial solution, constructed by Jendrej [22], such that

~u(t, x) =

(
W (x) +

1

λ(t)2
W

(
x

λ(t)

)
, 0

)
+ o(1) inH, as t→ +∞,

where N = 6, λ(t) =
√

4/5e−
√

5/4t.
• Multi-solitons with more profiles, constructed by Martel and Merle [31]:

~u(t, x) =

J∑

j=1

ιj

λ
3
2
j

~Wpj

(
t

λj
,
x− xj
λj

)
+ o(1), t→ +∞,

where N = 5, ιj ∈ {±1}, λj > 0, xj ∈ R5, |pj | < 1 (collinears if J ≥ 3) and

j 6= k =⇒ pj 6= pk.

Open question: does their exists analogous examples in the finite time-blow-up case? (see
Côte and Zaag [5] for subcritical equations in one space dimension).

3. SOLITON RESOLUTION

In view of the preceding examples, one can make the following conjecture:

Conjecture 1. Let u be a non scattering solution such that T+(u) = +∞. Then there
exists J ≥ 1, a linear wave vL, solitary waves Qjpj

, j = 1 . . . J , and parameters xj(t) ∈
RN , λj(t) > 0, such that

(1) u(t) = vL(t) +

J∑

j=1

1

λ
N−2

2
j (t)

Qjpj

(
0,
x− xj(t)
λj(t)

)
+ r(t)

where
• lim
t→+∞

‖~r(t)‖H = 0

• ∀j, lim
t→+∞

xj(t)

t
= pj , lim

t→+∞
λj(t)

t
= 0

• ∀j, k, j 6= k =⇒ lim
t→+∞

|xj(t)− xk(t)|
λj(t)

+
λj(t)

λk(t)
+
λk(t)

λj(t)
= +∞.

An analogous conjecture can be formulated for type II blow-up solutions.
Let us mention that the conjecture might hold in a slightly weaker form, for example

taking into accounts other transformations of the solitons that the one appearing in (1)
(space translation and scaling). Until recently, this type of result was only known for
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sufficiently smooth and decaying solutions of completely integrable equations: see for
example Eckhaus and Schuur [15] for KdV. In this note, I will present two results for
equation (NLW), which is not a completely integrable equation: the full resolution into
solitons for radial solutions in space dimension 3, due to Duyckaerts, Kenig and Merle,
and a weaker version due to Duyckaerts, Jia, Kenig and Merle in a more general context.

3.1. Radial case, space dimension 3. The following theorem is proved in [13].

Theorem 1. Assume N = 3. Let u be a radial solution of (NLW) such that T+(u) = +∞.
Then there exists J ≥ 0 and:

• vL such that ∂2t vL −∆vL = 0,
• signs ιj ∈ {±1}, j = 1 . . . J ,
• parameters λj(t), 0 < λ1(t)� λ2(t)� . . .� λJ(t)� t,

such that:

(2) u(t) = vL(t) +

J∑

j=1

ιj

λ
1
2
j (t)

W

(
x

λj(t)

)
+ r(t),

where:

lim
t→+∞

‖~r(t)‖H = 0.

There is an analogous result for type II blow-up solutions.
The proof of Theorem 1 uses

• Finite speed of propagation.
• Concentration compactness arguments adapted to (NLW) (profile decomposition

of Bahouri and Gérard [1]).
• A bound from below of the exterior energy for radial, nonstationary solutions of

(NLW).

Let us insist on this last point, which is the main new ingredient of the proof. The following
proposition might be seen as a characterization of the stationary solution W :

Proposition 1. Assume N = 3. Let u be a global, radial, nonstationary solution of
(NLW). Then there exist r0 > 0 and η > 0 such that the following hold for all t ≥ 0 or for
all t ≤ 0:

(3)
∫ +∞

|t|+r0

(
|∂tu(t, x)|2 + |∇u(t, x)|2

)
dx ≥ η,

It is possible to prove, using in a crucial way the finite speed of propagation, that no pro-
file in a profile decomposition of a sequence ~u(tn) can satisfy the condition (3) (channels
of energy method).

The proof of Proposition 1 is based on exterior energy estimates for radial solutions of
the linear wave equation. It is specific to radial solutions, since it uses the fact that a radial
linear wave travels at speed one in one of the two inward or outward directions. There
is absolutely no hope to use the same strategy in a nonradial setting, although the idea to
consider the energy outside wave cone is not completely useless in the nonradial context
(see below).
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3.2. General case. The next theorem is due to Jia, Kenig, Merle and myself (see [12] and
also the work of Jia [23] for a weaker version in the finite time blow-up case).

Theorem 2. Assume N = 3, 4, 5. Let u be a solution such that T+(u) = +∞ and

lim sup
t→+∞

‖~u(t)‖H <∞.

Then there exist tn → +∞, J ≥ 0, a linear wave vL, solitary waves Qjpj
, j = 1 . . . J , and

parameters xj,n ∈ RN , λj,n > 0, such that

(4) ~u(tn) = ~vL(tn)

+

J∑

j=1


 1

λ
N−2

2
j,n

Qjpj

(
0,
x− xj,n
λj,n

)
,

1

λ
N−2

2
j,n

Qjpj

(
0,
x− xj,n
λj,n

)
+ (r0,n, r1,n),

where
• lim
n→+∞

‖(r0,n, r1,n)‖H = 0

• ∀j, lim
n→+∞

xj,n
tn

= pj , lim
n→+∞

λj,n
tn

= 0

• ∀j, k, j 6= k =⇒ lim
n→+∞

|xj,n − xk,n|
λj,n

+
λj,n
λk,n

+
λk,n
λj,n

= +∞.

There is an analogous theorem for Type II Blow-up solutions.
Let us mention that the restriction of the dimension N ≤ 5 is of mere convenience.

We refer to Bulut, Czubak, Li, Pavlović and Zhang [4] for the technical tools needed to
generalize Theorem 2 to higher dimensions.

The new ingredients in the proof of Theorem 2 are a monotonicity formula of Morawetz
type, from [23], which is very much similar to the one used for energy-critical wave maps
(see Grillakis [19], Tao [39], Sterbenz and Tataru [37]), and an exterior energy bound
for very specific solutions of (NLW) (thus much less general than the one appearing in
Proposition 1). The Morawetz-type estimate is as follows:

Lemma 1. Let u be a non-scattering such that T+(u) = +∞ and

lim sup
t→∞

‖~u(t)‖H <∞.

then, translating u in time if necessary, there exists C > 0 such that, for 0 < 10t1 < t2,
∫ t2

t1

∫

|x|<t

(
∂tu+

x

t
· ∇u+

(
N

2
− 1

)
u

t

)2

dx
dt

t
≤ C log

(
t2
t1

) N
N+1

.

Note that the term
∫
|x|<t

(
∂tu+ x

t · ∇u+
(
N
2 − 1

)
u
t

)2
dx is bounded, up to a con-

stant, by ‖~u(t)‖H. Using the fact that u is bounded in the energy space, we would get a
bound of the form

∫ t2

t1

∫

|x|<t

(
∂tu+

x

t
· ∇u+

(
N

2
− 1

)
u

t

)2

dx
dt

t
≤ C log

(
t2
t1

)
.

The lemma is a gain compared to this trivial bound when t2/t1 is large. As a corollary,
there exists tn → +∞ such that

lim
n→∞

∫

|x|<tn

(
∂tu(tn) +

x

tn
· ∇u(tn) +

(
N

2
− 1

)
u(tn)

tn

)2

dx = 0.
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The proof of the lemma consists in multiplying equation (NLW) by

((1 + ε2)t2 − |x|2)−1/2
(
x∇u+ t∂tu+

(
N

2
− 1

)
u

)
,

where ε is a small number, depending on t1 and t2, to be specified. The conclusion of the
lemma is obtained after integration by parts in the domain:

{
t1 ≤ t ≤ t2, |x| ≤ t

}
,

and a careful estimates of the boundary terms. A new difficulty compared to the wave
maps problem is given by the boundary terms on the submanifold {|x| = t}. In the wave
maps equations, this terms have a favorable sign and can be ignored. It is not the case
when dealing when equation (NLW), where the boundary term given by the nonlinearity,
essentially

(*)
∫
|x|=t

t1≤t≤t2

|u| 2N
N−2 dσ(t, x)

does not come with the good sign. To override this difficult, one proves (using small data
theory, finite speed of propagation and Strichartz estimates) that the following Strichartz
norm outside a wave cone is finite for large R:



∫ +∞

0

(∫

|x|≥R+|t|
|u|2N+2

N−2 dx

)1/2

dt




N−2
N+2

.

As a consequence, using the inequality
∣∣∣∇t,x|u|

2N
N−2

∣∣∣ . |u|
N+2
N−2 |∇t,xu|,

we see that
∇t,x|u|

2N
N−2 ∈ L1 ({(t, x), t ≥ 0, |x| ≥ t+R}) ,

and thus, by a standard trace theorem, and after a suitable time translation:

|u| 2N
N−2 ∈ L1 ({t = |x|}) ,

hence the control of the boundary term (*).
Using Lemma 1 and a classical monotonicity formula, one can prove (after a delicate

analysis) that the expansion (4) holds for a well-chosen sequence of times tn, with a weaker
convergence to zero of the remainder, namely, for all c < 1,:

(5) ‖rL,n‖
L

N+2
N−2
t L

2 N+2
N−2

x

+ ‖(∇r0n, r1n)‖L2({x: |x|<ctn, or |x|>tn})

+

∥∥∥∥r1n +
x

tn
· ∇r0n

∥∥∥∥
L2(|x|≤tn)

+ ‖∇T r0n‖L2(RN ) → 0,

where ∇T is the tangential part of the spatial derivative ∇, and rL,n is the solution of the
linear wave equation with initial data (r0,n, r1,n). To conclude the proof, we need to show
that the stronger convergence property:

(6) lim
n→∞

‖(∇r0n, r1n)‖L2(RN ) = 0.

This is done using again channels of energy. More precisely we prove, as a consequence
of a classical virial identity, that for any sequence of solution of (NLW) with initial data
(r0,n, r1,n) satisfying (5) but not (6) there exists a subsequence that satisfies an exterior
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energy estimate similar to (3). Using similar argument than in the 3d, radial case we then
obtain a contradiction.
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