
Séminaire Laurent Schwartz
EDP et applications

Année 2015-2016

Tadahiro Oh and Nikolay Tzvetkov
On the transport of Gaussian measures under the flow of Hamiltonian PDEs
Séminaire Laurent Schwartz — EDP et applications (2015-2016), Exposé no VI, 9 p.

<http://slsedp.cedram.org/item?id=SLSEDP_2015-2016____A6_0>

© Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz,
École polytechnique, 2015-2016.

Cet article est mis à disposition selon les termes de la licence
Creative Commons attribution – pas de modification 3.0 France.
http://creativecommons.org/licenses/by-nd/3.0/fr/

Institut des hautes études scientifiques
Le Bois-Marie • Route de Chartres
F-91440 BURES-SUR-YVETTE
http://www.ihes.fr/

Centre de mathématiques Laurent Schwartz
UMR 7640 CNRS/École polytechnique
F-91128 PALAISEAU CEDEX
http://www.math.polytechnique.fr/

cedram
Exposé mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://slsedp.cedram.org/item?id=SLSEDP_2015-2016____A6_0
http://creativecommons.org/licenses/by-nd/3.0/fr/
http://www.ihes.fr/
http://www.math.polytechnique.fr/
http://www.cedram.org/
http://www.cedram.org/


ON THE TRANSPORT OF GAUSSIAN MEASURES UNDER

THE FLOW OF HAMILTONIAN PDES

TADAHIRO OH AND NIKOLAY TZVETKOV

Abstract. This manuscript is based on a talk given by the second author at the seminar

Laurent Schwartz, École Polytechnique, Paris, on December 15, 2015.

1. Introduction

1.1. Gaussian measures on Sobolev spaces. On a finite dimensional Hilbert space, the

standard Gaussian measure µ is defined by

dµ = Z−1e−
1
2
‖x‖2dx.

By drawing an analogy, one can consider Gaussian measures on Sobolev spaces Hs(T),

s ∈ R. Given s ∈ R, let µs be the Gaussian measure, formally defined by

dµs(u) = Z−1
s e−

1
2
‖u‖2Hsdu = Z−1

s

∏

n∈Z
e−

1
2
〈n〉2s|ûn|2dûn.

This expression may suggest that µs is a probability measure on Hs(T). In order to make

sense of µs, however, we need to enlarge the space Hs(T).

In fact, we can define µs in a rigorous manner by viewing it as the induced probability

measure under the map:

ω ∈ Ω 7−→ uω(x) =
∑

n∈Z

gn(ω)

〈n〉s e
inx,

where {gn}n∈Z is a sequence of independent standard complex-valued Gaussian random

variables and 〈 · 〉 = (1 + | · |2)
1
2 . It is easy to see that uω ∈ L2(Ω;Hσ(T)) if and only if

σ < s − 1
2 . Therefore, for the same range of σ, µs is a Gaussian probability measure on

Hσ(T) (but µs(H
s− 1

2 (T)) = 0). The triplet (Hs, Hσ, µs) forms an abstract Wiener space.

Note that we have the Brownian loop when s = 1.

In the following, we discuss transport properties of the Gaussian measure µs under

various transformations. In particular, we study the transport properties of µs under several

Hamiltonian PDE dynamics.

Before proceeding further, recall the following definition of quasi-invariant measures.

Given a measure space (X,µ), we say that µ is quasi-invariant under a transformation

T : X → X if the transported measure T∗µ = µ ◦ T−1 and µ are equivalent, i.e. mutually

absolutely continuous with respect to each other.

1.2. The Cameron-Martin theorem (1944). Let σ < s − 1
2 and fix u ∈ Hσ(T). Con-

sider the following translation map:

Tu : h 7−→ h+ u, h ∈ Hσ(T). (1.1)

Question: How does the transport of µs behave under this translation map?
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Theorem 1.1 (Cameron-Martin [2]). The Gaussian measure µs is quasi-invariant under

(1.1) if and only if u ∈ Hs(T).

We briefly go over the proof of this theorem in the following. First, suppose that u ∈
Hs(T). Note that

‖u+ h‖2Hs = ‖u‖2Hs + ‖h‖2Hs + 2(u, h)s,

where (·, ·)s denotes the scalar product on Hs(T) given by (u, h)s = Re
´

T uh dx. Then, the

absolute continuity of the image measure with respect to the original Gaussian measure µs
follows once we show that (u, h)s is finite µs-almost surely.

The proof of the µs-almost sure finiteness of the scalar product (u, h)s reduces to check

that for each {cn}n∈Z ∈ `2, we have
∑

n∈Z
cngn(ω) <∞, a.s. in ω, (1.2)

which can be easily seen to be true.

Next, suppose that u /∈ Hs(T). Then, by Banach-Steinhaus theorem, there exists v ∈
Hs(T) such that (u, v)s =∞. Define

A := {w : (w, v)s <∞}.
Then, arguing as before, it follows from (1.2) that µs(A) = 1. Denote by ρs the image

measure of µs under the map Tu : h 7→ h+ u. Let

B = {w − u,w ∈ A}.
On the one hand, we have ρs(A) = µs(B). On the other hand, we have (h, v)s = ∞ for

every h ∈ B. In particular, we have B ⊂ Ac and hence µs(B) = 0. This in turn implies

that ρs(A) = 0. Therefore, the image measure ρs = µs ◦ T−1
u and the original Gaussian

measure µs are mutually singular.

1.3. Ramer’s generalization of the Cameron-Martin theorem (1974). Fix again

σ < s− 1
2 . Consider the following nonlinear generalization of (1.1):

h 7−→ h+ F (h) . (1.3)

Note that while (1.1) is a translation by a deterministic element u, F (h) in (1.3) may be

nonlinear and depend on h. We have the following statement on the transport of µs under

(1.3).

Theorem 1.2 (Ramer [9]). The Gaussian measure µs is quasi-invariant under (1.3) if, for

every x ∈ Hσ(T),

DF (x) : Hs −→ Hs

is a Hilbert-Schmidt map.

In the above statement, we only stated a crucial condition for quasi-invariance. See [9]

for the precise statement. For s > 1, an example of a map satisfying the assumption of

Ramer’s theorem is

F (h) = (1− ∂2
x)−

α
2 (h2), α > 1.
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1.4. Cruzeiro’s generalization of the Cameron-Martin theorem (1983). In [3],

Cruzeiro considered a general evolution equation of the form:

∂tu = X(u), (1.4)

where X is an infinite dimensional vector field. In particular, she proved the quasi-

invariance of µs under the flow of (1.4) if we suppose the following exponential moment

assumption:
ˆ

Hσ(T)
ediv(X(u))dµs(u) <∞ . (1.5)

Problem: How do we check (1.5) for concrete examples?

In the following, we consider several Hamiltonian PDE dynamics and study quasi-invariance

properties of µs. Very roughly speaking, our results aim to verify assumptions of type (1.5)

“in practice”.

2. Quasi-invariance of µs for “integrable” PDEs

We first consider the KdV equation on T = R/(2πZ):

∂tu+ ∂3
xu+ ∂x(u2) = 0, (x, t) ∈ T× R.

Let s ≥ 0 be an integer. Then, the quasi-invariance of (the real valued version of) µs under

the KdV flow follows from (i) Zhidkov [15] when s ≥ 2, (ii) Bourgain [1] when s = 1, and

(iii) Quastel-Valkó [8] and Oh [6] when s = 0.

For s ≥ 1, a similar result holds for the “integrable” cubic NLS on T (cf. Zhidkov [14] for

s ≥ 2 and Bourgain [1] for s = 1):

i∂tu+ ∂2
xu+ |u|2u = 0

and the Benjamin-Ono (BO) equation on T (cf. Tzvetkov-Visciglia [11, 12] for s ≥ 2 and

for Deng-Tzvetkov-Visciglia [4] s = 1):

∂tu+H∂2
xu+ ∂x(u2) = 0,

where H denotes the Hilbert transform. The s = 0 case seems to be completely out of

reach of the present techniques both for NLS and BO.

The key point for “integrable” equations is that one has infinitely many conservation

laws of the following form:

Es(u) =
1

2
‖u‖2Hs + lower order terms, s = 0, 1, 2, 3, . . .

Then, the work mentioned above shows that the weighted Gaussian measure ρs formally

defined by

dρs(u) = Z−1
s χ(u)e−

1
2
Es(u)du,

is absolutely continuous with respect to µs and invariant under the flow of the correspond-

ing equation. Here, χ(u) is a suitable cut-off depending the previous conservation laws

E0, . . . , Es−1. Using the invariance of ρs (and varying the cut-off χ), one may conclude

that µs is quasi-invariant.

Question : What about the non-integrable equations?
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3. BBM type models

A first example of a non-integrable equation related to KdV is the BBM equation:

∂tu+ ∂xu− ∂t∂2
xu+ ∂x(u2) = 0, (x, t) ∈ T× R.

Theorem 3.1 ([10]). Let s ≥ 1 be an integer. Then, (the real valued version of) the

Gaussian measure µs is quasi-invariant under the flow of the BBM equation.

A similar result holds for the generalized (lower dispersion) BBM model:

∂tu+ ∂xu+ ∂t|Dx|γu+ ∂x(u2) = 0, (x, t) ∈ T× R, (3.1)

provided γ > 4/3 (γ = 1 corresponds to the Benjamin-Ono BBM model). Observe that

only 1/3-smoothing is needed to obtain the quasi-invariance, while the Cameron-Martin’s

result would require 1/2-smoothing. Intuitively, in the context of (3.1), γ = 2 corresponds

to the borderline case for Ramer’s result and γ = 3/2 is the Cameron-Martin threshold.

4. The cubic fourth order NLS

In the following, we consider the fourth order NLS:

i∂tu = ∂4
xu+ |u|2u, (x, t) ∈ T× R. (4.1)

The Cauchy problem (4.1) is globally well-posed in Hσ(T) for σ ≥ 0 and strongly ill-posed

for σ < 0. Here is the main result of this exposé.

Theorem 4.1 ([7]). Let s > 3/4. Then, the Gaussian measure µs is quasi-invariant under

the flow of (4.1).

We expect that the main line of our proof works in the (optimal) range s > 1/2. One

would, however, require some important additional ideas.

In sharp contrast with the BBM models, there is no apparent smoothing in the equation

(4.1). One can, however, exhibit smoothing effects after using some gauge and normal form

transformations.

4.1. The gauge transform. The invariance of µs under the gauge transformation we

define below is a key ingredient in our analysis. Given t ∈ R, we define a gauge transfor-

mation Gt on L2(T) by setting

Gt[f ] := eπ
−1it

´

T |f(y)|2dyf.

The gauge transform Gt is invertible with inverse G−t.
Let u ∈ C(R;L2(T)) be a solution to the fourth order NLS (4.1). Define ũ by

ũ(t) := Gt[u(t)].

Then, it follows from the the mass conservation that ũ is a solution to the following renor-

malized fourth order NLS:

i∂tũ = ∂4
xũ+

(
|ũ|2 − π−1

ˆ

T
|ũ|2dx

)
ũ.

The last equation behaves better than the fourth order NLS (4.1) with respect to resonant

interactions.
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4.2. Filtering the free evolution. Define the interaction representation v of ũ by

v(t) = S(−t)ũ(t), S(t) = e−it∂
4
x .

For simplicity of notations, we use vn to denote the Fourier coefficient of v. Then, we obtain

the following equation for {vn}n∈Z:

∂tvn = −i
∑

Γ(n)

e−iφ(n̄)tvn1vn2vn3 + i|vn|2vn, (4.2)

where the phase function φ(n̄) and the plane Γ(n) are given by

φ(n̄) = n4
1 − n4

2 + n4
3 − n4,

Γ(n) = {(n1, n2, n3) ∈ Z3 : n = n1 − n2 + n3 and n1, n3 6= n}.
On Γ(n), we have the following key factorization of φ(n̄):

φ(n̄) = (n1 − n2)(n1 − n)
(
n2

1 + n2
2 + n2

3 + n2 + 2(n1 + n3)2
)
.

4.3. Global analysis. We shall perform our PDE analysis on the equation (4.2) for

{vn}n∈Z. Let us denote by Ψ(t) the solution map of (4.2), sending initial data at time 0 to

solutions at time t. Then, by letting Φ(t) denote the flow map of fourth order NLS (4.1)

(the one we study), we have

Φ(t) = G−t ◦ S(t) ◦Ψ(t).

Therefore, we can reduce the quasi-invariance issue for Φ(t) to the study of Ψ(t) thanks to

the following important proposition.

Proposition 4.2. Let s > 1/2. For every t ∈ R, the Gaussian measure µs is invariant

under the transformations S(t) and Gt.

The invariance under S(t) follows from the invariance of complex Gaussian random

variables under rotations. The invariance under Gt is more intricate. One has the following

elementary, yet remarkable statement.

Lemma 4.3. Given a complex-valued mean-zero Gaussian random variable g with vari-

ance σ, i.e. g ∈ NC(0, σ), let Tg = eit|g|
2
g for some t ∈ R. Then, Tg ∈ NC(0, σ).

With this statement in hand, one may exploit the independence and once again the

invariance of complex Gaussian random variables under rotations to complete the proof of

the invariance of µs under Gt.
Let us remark that when s = 1, one may deduce the invariance of µ1 under Gt by invoking

the properties of the Brownian loop under conformal mappings. See for example [5].

4.4. The case s > 1. We first sketch the proof of Theorem 4.1 when s > 1. In this case,

by performing a direct normal form analysis on the equation (4.2) for {vn}n∈Z, we show

that Ψ(t) satisfy the assumptions of the Ramer result (Theorem 1.2).

By writing (4.2) in an integral form, we have

vn(t) = vn(0)− i
ˆ t

0

∑

Γ(n)

e−iφ(n̄)t′vn1vn2vn3(t′)dt′ + i

ˆ t

0
|vn|2vn(t′)dt′ .
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Let N (v)(n, t) and R(v)(n, t) be the second and the third terms on the right hand-side,

respectively. For s > 1/2, we have the bound

‖N (v)(t)‖Hs+2 . ‖v(0)‖3Hs + ‖v(t)‖3Hs + |t| sup
t′∈[0,t]

‖v(t′)‖5Hs . (4.3)

Moreover, for s ≥ 0, we have

‖R(v)(t)‖H3s . |t| sup
t′∈[0,t]

‖v(t)‖3Hs .

In order to obtain the bound (4.3) for N (v)(t), we perform integration by parts and write

N (v)(n, t) =
∑

Γ(n)

e−iφ(n̄)t′

φ(n̄)
vn1(t′)vn2(t′)vn3(t′)

∣∣∣∣
t

t′=0

−
∑

Γ(n)

ˆ t

0

e−iφ(n̄)t′

φ(n̄)
∂t(vn1vn2vn3)(t′)dt′.

Then, we use the equation (4.2) to express ∂t(vn1vn2vn3) as quinti-linear terms in v.

We point out that the regularity restriction s > 1 comes from the bound on the lineariza-

tion of the resonant term

i|vn|2vn,
requiring s+ 1

2+ ≤ 3
(
s− (1

2+)
)
, i.e. s > 1.

5. The case s ∈ (3/4, 1]

In this section, we sketch the argument for s ∈ (3/4, 1]. In this case, we use modified

energies (in the spirit of the so-called I-method) instead of direct analysis of the equation.

By the equation (4.2) for {vn}n∈Z, we have

d

dt
‖v(t)‖2Hs = −2 Re i

∑

n∈Z

∑

Γ(n)

e−iφ(n̄)t〈n〉2svn1vn2vn3vn.

We can write the right-hand side as the difference of

2 Re
d

dt

[∑

n∈Z

∑

Γ(n)

e−iφ(n̄)t

φ(n̄)
〈n〉2svn1vn2vn3vn

]
(5.1)

and

2 Re
∑

n∈Z

∑

Γ(n)

e−iφ(n̄)t

φ(n̄)
〈n〉2s∂t(vn1vn2vn3vn).

This leads us to define a modified energy Et(v) as

Et(v) = ‖v‖2Hs +Rt(v),

where Rt(v) is defined according to (5.1), namely

Rt(v) = −2 Re
∑

n∈Z

∑

Γ(n)

e−iφ(n̄)t

φ(n̄)
〈n〉2svn1vn2vn3vn.
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5.1. Local analysis: the energy estimate. Consider the following truncated form of

(4.2):

∂tvn = 1|n|≤N

{
− i

∑

ΓN (n)

e−iφ(n̄)tvn1vn2vn3 + i|vn|2vn
}
, (5.2)

where ΓN (n) is defined by

ΓN (n) = Γ(n) ∩ {(n1, n2, n3) ∈ Z3 : |nj | ≤ N}.
Then, we have the following crucial energy estimate on the modified energy Et, uniformly

in N ∈ N and t ∈ R.

Proposition 5.1. Let s > 3/4 and let P≤N be the projection onto the frequencies

{|n| ≤ N}. Then, for any sufficiently small ε > 0, there exist θ > 0 and C > 0 such

that ∣∣∣∣
d

dt
Et(P≤Nv)

∣∣∣∣ ≤ C‖v‖4+θ
L2 ‖v‖2−θ

Hs− 1
2−ε

for all N ∈ N, t ∈ R, and any solution v to (5.2).

The proof of this proposition relies on some elementary number theory (divisor counting

argument). The restriction s > 3/4 appears in estimating ∂tvn in `∞n via (5.2). Indeed,

the regularity restriction s > 3/4 in Theorem 4.1 comes from this proposition. In order to

go further, one needs to make additional normal form reductions and obtain an improved

energy estimate.

5.2. The modified measures. Given N ∈ N, r > 0, and t ∈ R, define FN,r,t(v) and

Fr,t(v) by

FN,r,t(v) = 1{‖v‖L2≤r}e
− 1

2
Rt(P≤Nv) and Fr,t(v) = 1{‖v‖L2≤r}e

− 1
2
Rt(v).

We would like to construct probability measures ρs,N,r and ρs,r of the form:

dρs,N,r = Z−1
s,N,rFN,r,tdµs and dρs,r = Z−1

s,rFr,tdµs.

The next statement shows that it is indeed possible.

Proposition 5.2. Let s > 1
2 , r > 0, and t ∈ R. Then, FN,r,t(v) ∈ Lp(µs) for any p ≥ 1

with a uniform bound in N , depending only on p ≥ 1 and r > 0. Moreover, for any finite

p ≥ 1, FN,r,t(v) converges to Fr,t(v) in Lp(µs) as N →∞.

The proof of this proposition is very close to the construction of the Gibbs measures for

NLS by Bourgain [1].

5.3. Global analysis: a change of variable formula. Let ΨN (t, τ) be the solution map

of the truncated equation (5.2), sending data at time τ to solutions at time t. By definition,

we have

ρs,N,r(ΨN (t, τ)(A)) = Z−1
s,N,r

ˆ

ΨN (t,τ)(A)
1{‖v‖L2≤r}e

− 1
2
Rt(P≤Nv)dµs(v)

for any measurable set A ⊂ L2(T). The following change-of-variable formula plays an

important role in our analysis.
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Proposition 5.3. Let s > 1
2 , N ∈ N, and r > 0. Then, we have

ρs,N,r(ΨN (t, τ)(A)) = Ẑ−1
s,N,r

ˆ

A
1{‖v‖L2≤r}e

− 1
2
Et(P≤NΨN (t,τ)(v))dLN ⊗ dµ⊥s,N

for any t, τ ∈ R and any measurable set A ⊂ L2(T).

In order to prove this proposition, we write

dρs,N,r = Ẑ−1
s,N,r1{‖v‖L2≤r}e

− 1
2
Et(P≤Nv)dLN ⊗ dµ⊥s,N ,

where dLN =
∏
|n|≤N dûn denotes the Lebesgue measure on C2N+1. Then, we need to check

that the corresponding vector field is “divergence free” (inherited from the Hamiltonian

structure of (5.2)).

5.4. The measure evolution property. Combining the local and global analysis per-

formed in the previous subsections, we can establish the following growth bound on the

weighted Gaussian measure ρs,N,r.

Proposition 5.4. Let s > 3
4 . There exists 0 ≤ β < 1 such that, given r > 0, there exists

C > 0 such that

d

dt
ρs,N,r(ΨN (t, 0)(A)) ≤ Cpβ

{
ρs,N,r(ΨN (t, 0)(A))

}1− 1
p

for any p ≥ 2, any N ∈ N, any t ∈ R, and any measurable set A ⊂ L2(T).

As in the work [11] on invariant measures for the Benjamin-Ono equation, we write

d

dt
ρs,N,r(ΨN (t, 0)(A))

∣∣∣∣
t=t0

=
d

dt
ρs,N,r

(
ΨN (t0 + t, t0)(ΨN (t0, 0)(A))

)∣∣∣∣
t=0

.

Then, we can apply the change-of-variable formula (Proposition 5.3), the energy estimate

(Proposition 5.1), and some basic Gaussian estimates to conclude the proof.

By applying a Yudovich-type argument [13], this measure evolution property implies the

following statement.

Proposition 5.5. Let s > 3
4 . Then, given t ∈ R, r > 0, and δ > 0, there exists C =

C(t, r, δ) > 0 such that

ρs,N,r(ΨN (t, 0)(A)) ≤ C(ρs,N,r(A))1−δ

for any N ∈ N and any measurable set A ⊂ L2(T).

Finally, by establishing an approximation property of (4.2) by the truncated flow (5.2)

(local PDE analysis) and applying some soft measure theoretic argument, we can take the

limits as N →∞ and r →∞, yielding the desired statement. This concludes the sketch of

the proof of Theorem 4.1.

6. Final remarks

(1) The argument presented above establishes mutual absolute continuity of the transported

measure Φ(t)∗µs and the original Gaussian measure µs. Our argument, however, does not

tell us much about the Radon-Nikodym derivative of Φ(t)∗µs with respect to µs. It would be

interesting to study more about the the resulting Radon-Nikodym derivatives. In particular,
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can we establish quantitative versions of the quasi-invariance to prove new bounds on the

growth of higher Sobolev norms of solutions in a probabilistic manner?

(2) So far, the quasi-invariance of the Gaussian measures is known for a handful of Hamil-

tonian PDEs. It would be of interest to decide how much of the obtained results can be

extended to other Hamiltonian PDEs. Moreover, it would be very intriguing to find a

situation where we can prove that the transported measure is singular with respect to the

initial Gaussian measure and describe its measure evolution. For example, what can we

say about the (non-integrable) quintic NLS on T:

i∂tu+ ∂2
xu+ |u|4u = 0?
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