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Sharp polynomial energy decay for locally undamped waves

Matthieu Léautaud∗ and Nicolas Lerner†

Abstract

In this note, we present the results of the article [LL14], and provide a complete proof in a
simple case. We study the decay rate for the energy of solutions of a damped wave equation
in a situation where the Geometric Control Condition is violated. We assume that the set of
undamped trajectories is a flat torus of positive codimension and that the metric is locally
flat around this set. We further assume that the damping function enjoys locally a prescribed
homogeneity near the undamped set in traversal directions. We prove a sharp decay estimate at
a polynomial rate that depends on the homogeneity of the damping function.

1 Introduction and main results

We consider a smooth connected compact Riemannian manifold (M, g) of dimension n, and denote
by ∆g the associated negative Laplace-Beltrami operator. Given b ∈ L∞(M), we study the decay
rates for the damped wave equation on M :

{
∂2t u−∆gu+ b(x)∂tu = 0 in R+ ×M,
(u, ∂tu)|t=0 = (u0, u1) in M.

(1.1)

The energy of a solution is defined by

E(u(t)) =
1

2
(‖∇gu(t)‖2L2(M) + ‖∂tu(t)‖2L2(M)), (1.2)

and evolves as
d

dt
E(u(t)) = −

∫

M

b|∂tu|2dx.

The energy is thus actually damped when b ≥ 0 a.e. on M , what we assume from now on. We
define the subset of M on which the damping is effective as

ωb :=
⋃
{U ⊂M,U open, essinfU (b) > 0} . (1.3)

Notice that ωb is an open set included in the interior of supp b and thus ωb ⊂ supp b.1 In the usual
case where b is continuous, we have ωb = {b > 0} and ωb = supp b. As soon as ωb 6= ∅ one has
E(u(t)) → 0 as t → +∞ (see for instance [Leb96]). Moreover, a criterion for uniform (and hence
exponential) decay is due to Rauch-Taylor [RT74] (see also [BLR88]): there exist C > 0, γ > 0 such
that for all data,

E(u(t)) ≤ Ce−γtE(u(0)),

if the Geometric Control Condition (GCC) holds: every geodesic starting from S∗M and traveling
with unit speed enters the set ωb in finite time. Reciprocally, if there is a geodesic that never meets
supp(b), then uniform decay does not hold. In the case b ∈ C 0(M), the situation is simpler since
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uniform decay is equivalent to the fact that ωb(= {b > 0}) satisfies (GCC), as remarked by Burq
and Gérard [BG97]2. As a consequence, when (GCC) is not satisfied, we cannot expect a decay of
the energy which is uniform with respect to all data in H1(M)× L2(M). However, Lebeau [Leb96]
proved that there is always a uniform decay rate of the energy, with respect to smoother data, say
in H2(M)×H1(M). This motivates the following definition.

Definition 1.1. Given a ∈ R and a decreasing function f : [a,+∞) → R∗+ such that f(t) → 0 as
t→ +∞, we say that the solutions of (1.1) decay at rate f(t) if there exists C > 0 such that for all
(u0, u1) ∈ H2(M)×H1(M), for all t ≥ a, we have

E(u(t))1/2 ≤ Cf(t)
(
‖u0‖H2(M) + ‖u1‖H1(M)

)
.

Note that decay at a rate f(t) depends only on (M, g) and on the damping function b. Note also
that f(t)2 characterizes the decay of the energy and f(t) that of the associated norm. Lebeau [Leb96]
proved that decay at rate 1/ log t always holds, independently of (M, g) and b as soon as ωb 6= ∅.

As noticed for instance in [BD08], decay at a rate f(t) implies faster decay for “smoother” data:
taking for example b ∈ C∞(M), decay at rate f(t) implies that for all s > 0, there exists Cs > 0
such that for all (u0, u1) ∈ Hs+1(M)×Hs(M), we have

E(u(t))1/2 ≤ Csf(t/s)s(‖u0‖Hs+1(M) + ‖u1‖Hs(M)).

In view of the Rauch-Taylor theorem mentioned above, it is convenient to introduce the subset of
phase-space consisting in points-directions that are never brought into the damping region ωb by the
geodesic flow. Namely, the undamped set is defined by

S = {ρ ∈ S∗M, for all t ∈ R, φt(ρ) ∩ T ∗ωb = ∅},

where φt is the geodesic flow. With this definition, (GCC) is equivalent to S = ∅. In this article, we
are concerned with the damped wave equation in a geometric situation where the undamped set S is
the cotangent space to a flat subtorus of M (of dimension 1 ≤ n′′ ≤ n−1) under two main additional
assumptions: the metric is locally flat around this subtorus; the damping function b only depends
on variables transverse to this torus and enjoys locally a prescribed homogeneity. Such situations
may for instance occur on the torus M = Tn = (R/2πZ)n endowed with the flat metric. One of our
motivations is to understand the best decay rate in the following model problem.

Example 1.2. Let M = T2 = (R/2πZ)2 ≡ [−π, π]2, endowed with the flat metric, let γ > 0, and let
b(x1, x2) = x2γ1 near x1 = 0, positive elsewhere, depending only on x1. The undamped set consists
in two undamped trajectories:

S = {0}x1
× T1

x2
× {0}ξ1 × {±1}ξ2 = S∗({0} × T1).

For the case where b = sin2 x1, Wen Deng communicated to us a direct study in [Den].

Decay rates for the damped wave equation on a flat metric with a lack of (GCC) have already
been studied in [LR05, BH07, Phu07, AL14]. In [AL14] it is proved that, on M = Tn, decay at a
rate t−1/2 always occurs if ωb 6= ∅; on the other hand, the decay cannot be better than t−1 as soon
as (GCC) is strongly violated, i.e. as soon as there exists a neighbourhood N of a geodesic such that
N ∩ supp(b) = ∅. In this paper, we are studying the opposite situation, i.e. the case of a weak lack
of damping on M = Tn: only a positive codimension invariant torus is undamped. In the situation
of Example 1.2, for instance, we may expect (and we shall prove) a decay at a stronger polynomial
rate than t−1.

According to [Leb96, BD08, BT10, AL14], proving a decay rate for solutions of (1.1) reduces to
proving a high-energy estimate for the operators

Pλ = −∆g − λ2 + iλb, λ ∈ R∗, D(Pλ) = H2(M). (1.4)

2This is no longer the case in general if b is not continuous, as proved in [Leb92].
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The latter are for instance obtained by performing a Fourier transform in the time variable of the
damped wave operator ∂2t − ∆g + b(x)∂t, λ being the frequency variable dual to the time t. More
precisely, concerning polynomial decay, the optimal result was proved by [BT10] and can be stated
as follows (see [AL14, Proposition 2.4]).

Proposition 1.3. Given α > 0, the solutions of (1.1) decay at rate t−
1
α if and only if there exist

C, λ0 positive, such that for all u ∈ H2(M), for all λ ≥ λ0, we have

C‖Pλu‖L2(M) ≥ λ1−α‖u‖L2(M). (1.5)

Recall that uniform decay is equivalent to the estimate (1.5) with α = 0.

Let us now state our main results, the first of which is of negative nature.

Theorem 1.4. Assume that there exists 1 ≤ n′′ ≤ n − 1, ε0 > 0, and C1 > 0 such that with
n′ = n− n′′, we have

•
(
BRn′ (0, ε0)× Tn

′′
, |dx′1|2 + · · ·+ |dx′n′ |2 + |dx′′1 |2 + · · ·+ |dx′′n′′ |2

)
⊂ (M, g), (1.6)

• ∇x′′b = 0 in N = BRn′ (0, ε0)× Tn
′′
, (1.7)

• 0 ≤ b(x′) ≤ C1|x′|2γ in N . (1.8)

Then, there exist C0 > 0 and (uk)k∈N ∈ H2(M)N with ‖uk‖L2(M) = 1 such that

‖Pkuk‖L2(M) ≤ C0k
1/(γ+1), for k ∈ N∗.

As a consequence, the best estimate we could expect is

C‖Pλu‖L2(M) ≥ λ1/(γ+1)‖u‖L2(M), (1.9)

i.e. (1.5) with α = 1 − 1/(γ + 1). Moreover, (see also [BD08, Proposition 3]), our Theorem 1.4
prevents decay at a rate o

(
t−(1+1/γ)

)
: the best expected decay rate is t−(1+1/γ). Let us now state

our partial converse of Theorem 1.4: under some additional assumptions on M and b, decay at rate
t−(1+1/γ) indeed holds.

Theorem 1.5. Take 1 ≤ n′′ ≤ n−1 and assume that (M, g) = (M ′×Tn′′ , g′+ |dx′′1 |2 + · · ·+ |dx′′n′′ |2)
where (M ′, g′) is a smooth compact Riemannian manifold of dimension n′ = n−n′′ and (x′′1 , . . . , x

′′
n′′)

denote variables in Tn′′ . Assume that there exist y′ ∈M ′, C1 ≥ 1 and a neighbourhood N ′ of y′ such
that

• g′ = |dx′1|2 + · · ·+ |dx′n′ |2 is flat in N ′, (1.10)

• b ∈ L∞(M), ∇x′′b ∈ L∞(M), and ∇x′′b = 0 in N ′ × Tn
′′

(1.11)

• C−11 |x′ − y′|2γ ≤ b(x′) ≤ C1|x′ − y′|2γ for x′ ∈ N ′, (1.12)

• any geodesic starting from S∗M \ S∗({y′} × Tn
′′
) intersects ωb in finite time. (1.13)

Then, we have the property (1.5) with α = 1− 1/(γ + 1), i.e. decay at rate t−(1+1/γ).

Since the work of Lebeau [Leb96] (see also the introduction of [AL14] and the references therein), it
is quite well established that the main parameters governing the decay rates when (GCC) fails are the
global and local dynamics of the geodesic flow. Our results confirm the idea, raised in [BH07, AL14],
that once the geometry (and hence the dynamics) is fixed, the next relevant feature when regarding
the best decay rate is the rate at which the damping coefficient b vanishes.

In this note, we shall give a complete proof of this result in a particular case containing the main
ideas of the general case. We add two assumptions: b is globally invariant in the direction of Tn′′ ,
and locally exactly homogeneous. These assumptions are only added to focus on the key points of the
proof. The present note hence provides a detailed proof of the following result (which, in particular,
tackles the motivating Example 1.2).
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Theorem 1.6. Assume that (M, g) is as in Theorem 1.5. Assume that there exist y′ ∈ M ′, C > 0
and a neighbourhood N ′ of y′ such that

• g′ = |dx′1|2 + · · ·+ |dx′n′ |2 is flat in N ′, (1.14)

• b = b⊗ 1 does not depend on the variable in Tn
′′
, and b ∈ L∞(M ′), (1.15)

• b(x′) is homogeneous in x′ − y′ of order 2γ for x′ ∈ N ′, (1.16)

• b ≥ C a.e. on M ′ \ N ′ and b > 0 in N ′ \ {y′}. (1.17)

Then, Property (1.5) holds with α = 1− 1/(γ + 1), i.e. decay occurs at rate t−(1+1/γ).

The main ingredients of the proof of both Theorems 1.5 and 1.6 are the following:

• A usual geometric control estimate outside the undamped region {y′} × Tn′′ ;

• A Fourier transform argument near the undamped region to reduce the problem (with one
parameter λ) to an estimate for an operator on M ′ only (depending on two parameters, λ and
the spectral parameter coming from the Fourier transform);

• A scaling argument, taking advantage of the homogeneity of b (and the local flatness of the
metric of M ′), to reduce this two-parameter problem “near a point” to a one parameter problem
on the whole Rn′ ;

• A resolvent estimate on the real line for the rescaled operator acting on Rn′ .

The operator arising after all reductions and scaling arguments takes the form −∆ + iW (x) on
L2(Rn′), where the real positive potential W behaves like |x|2γ at infinity (2γ is the “homogeneity”
of the damping function b near {y′}×Tn′′). The main part of the proof is then to obtain an optimal
resolvent estimate for this operator on the real line, which is of independent interest. In turn, this
estimate provides a bound on the size of the pseudospectrum for this operator, generalizing results of
E. B. Davies [Dav99] and K. Pravda-Starov [PS06] in the case of the 1D complex harmonic oscillator,

− d2

dx2 + eiθx2.
The problem naturally arises with different large parameters (frequencies in the directions of M ′

and of Tn′′ , local thickness around the undamped set) and semiclassical régimes, coming with a
precise scaling. Therefore, although our proofs are very elementary, they contain implicitely sev-
eral steps of microlocalizations, i.e. of cutting the phase space into pieces. As a consequence, all
estimates proved here could be reread (and the results generalized) in the light of the so-called sec-
ond microlocalization. This notion was first developed in the analytic category in M. Kashiwara
& T. Kawai’s article [KK80], followed by G. Lebeau’s paper [Leb85]. J.-M. Bony’s article [Bon86]
and J.-M. Delort’s book [Del92] displayed striking applications to propagation of weak singulari-
ties for non-linear equations, the J.-M. Bony & N. Lerner’s paper [BL89] provided a metrics point
of view. More recently, N. Anantharaman & M. Léautaud’s work on the damped wave equation
[AL14] showed, using techniques of N. Anantharaman & F. Macià [Mac10, AM14], that the second
micolocalization could be useful to tackle estimates related to some non-selfadjoint operators. The
key tools in the last three papers are the 2-microlocal measures, introduced by L. Miller [Mil97],
C. Fermanian-Kammerer and P. Gérard [FK00, FKG02, FK05], which allow to perform (at the level
of defect measures) a second microlocalization for bounded sequences in L2.

Let us now turn to the proof of Theorem 1.6.

2 A sharp estimate for a non-selfadjoint operator on Rd

After a Fourier transformation in the periodic direction and a scaling argument (see the following
sections), our main result is reduced to the following theorem. We define on L2(Rd) (below, we shall
take d = n′) the unbounded operator

Q0 = −∆ + iW (x), (2.1)

where W is a real-valued measurable function and D(Q0) = {u ∈ H2(Rd),Wu ∈ L2(Rd)}.

Matthieu Léautaud and Nicolas Lerner
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Theorem 2.1. Suppose that W is a real-valued measurable function on Rd and that there exist
C1 ≥ 1 and γ > 0 such that we have

C−11 |x|2γ ≤W (x) ≤ C1〈x〉2γ = C1(1 + |x|2)γ . (2.2)

Then, there exists C0 > 0 such that for all µ ∈ R and u ∈ C 2
c (Rd), we have

C0‖(Q0 − µ)u‖L2(Rd) ≥
(
µγ/(2γ+1)1(µ ≥ 1) + |µ|1(µ ≤ −1) + 1

)
‖u‖L2(Rd). (2.3)

The power γ/(2γ + 1) is optimal in this estimate (see [LL14, Lemma C.1]). To prove Theorem 2.1,
we need the following preliminary lemma.

Lemma 2.2. Suppose that W satisfy Assumption (2.2) and let a be a smooth function on R2d,
bounded as well as all its derivatives. Then, there exists C > 0 such that for all u ∈ C 0

c (Rd), we have

‖V awu‖L2(Rd) ≤ C
(
‖u‖L2(Rd) + ‖V u‖L2(Rd)

)
,

where V = W 1/2 and aw stands for the Weyl quantization of the symbol a.

Proof of Lemma 2.2. Using the upper bound in Assumption (2.2) yields

‖V (x)awu‖2L2(Rd) =

∫

Rd
V 2(x)|awu|2dx ≤ C1

∫

Rd
〈x〉2γ |awu|2dx = C1‖〈x〉γawu‖2L2(Rd).

Then, we notice that 〈x〉γ and 〈x〉−γ are admissible weight functions for the metric |dx|2 + |dξ|2 in
the sense of [Ler10, Definition 2.2.15]. As a consequence of symbolic calculus, we have

〈x〉γ]a]〈x〉−γ ∈ S(1, |dx|2 + |dξ|2),

where S(1, |dx|2 + |dξ|2) is the space of smooth functions on R2d which are bounded as well as all
their derivatives. Calderón-Vaillancourt theorem (see e.g. [Ler10, Theorem 1.1.4]) yields

〈x〉γa(x, ξ)w〈x〉−γ ∈ L(L2(Rd)),

which implies ‖〈x〉γawu‖L2(Rd) . ‖〈x〉γu‖L2(Rd). This finally gives

‖V (x)a(x, ξ)wu‖2L2(Rd) . ‖〈x〉γu‖2L2(Rd) . ‖u‖2L2(Rd) + ‖|x|γu‖2L2(Rd)

. ‖u‖2L2(Rd) + ‖V u‖2L2(Rd),

according to the lower bound in Assumption (2.2).

Proof of Theorem 2.1. We start with the case µ ≤ −1. We have then

‖(Q0 − µ)u‖L2(Rd)‖u‖L2(Rd) ≥ Re〈(Q0 − µ)u, u〉L2(Rd) ≥ −µ〈u, u〉L2(Rd) = |µ|‖u‖2L2(Rd),

so that Estimate (2.3) holds for µ ≤ −1.

Next, let us prove that the operator Q0 on L2(Rd) has a compact resolvent. For u ∈ C∞c (Rd),
we have, with V = W 1/2,

2‖Q0u‖L2(Rd)‖u‖L2(Rd) ≥ Re〈Q0u, u〉L2(Rd) + Im〈Q0u, u〉L2(Rd) = ‖∇u‖2L2(Rd) + ‖V u‖2L2(Rd).

Since C∞c (Rd) is dense in L2(Rd), this also holds for all u ∈ D(Q0). As V is non-negative, we have

D(Q0) ⊂ H1
V (Rd) := {u ∈ H1(Rd), V u ∈ L2(Rd)}.

Thanks to (2.2), the injection H1
V (Rd) ↪→ L2(Rd) is compact. Thus D(Q0) injects compactly in

L2(Rd), and the operator Q0 on L2(Rd) has a compact resolvent. This implies in particular that
Sp(Q0) is constituted only by eigenvalues with finite multiplicity.
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Assume now that there exists µ ∈ R∩ Sp(Q0) and let u ∈ D(Q0) be an associated eigenfunction.
Then we have (Q0 − µ)u = 0 and in particular

0 = Im〈(Q0 − µ)u, u〉L2(Rd) = 〈Wu, u〉L2(Rd).

Hence, we have u = 0 in L2(Rd) since W > 0 almost everywhere under assumption (2.2). This yields
a contradiction, proving that R ∩ Sp(Q0) = ∅.

Let µ0 > 0 be given. On the compact set [−1, µ0] the resolvent (Q0−µ)−1 is a continuous (hence
bounded) function since R ∩ Sp(Q0) = ∅. As a consequence, Estimate (2.3) is now proven to hold
for all µ ∈ (−∞, µ0].

We are going now to study the most substantial case where µ > µ0, but we may keep in mind
that we can freely choose the large fixed constant µ0. We set

ν = µ1/2, Qν = Q0 − ν2, (2.4)

and study the asymptotics when ν → +∞. From the above remarks, we have only to prove the
estimate (2.3) for ν ≥ ν0, where ν0 can be chosen arbitrarily large. First of all, we note that

‖Qνu‖L2(Rd)‖u‖L2(Rd) ≥ Im〈Qνu, u〉L2(Rd) = 〈Wu, u〉L2(Rd) ≥ C−11 〈|x|2γu, u〉L2(Rd), (2.5)

which will be used several times during the proof. In particular, this estimate provides the right
scale in the region |x| ≥ ν1/(2γ+1), according to the lower bound in Assumption (2.2). Next, we split
the phase space in two different regions.

The propagative region. Let χ ∈ C∞c (R+; [0, 1]), such χ = 1 on [1/2, 3/2] and χ = 0 on [0, 1/4].
Let ϕ ∈ C∞c (Rd; [0, 1]) such that ϕ(x) = 1

2 if |x| ≤ 1
2 and ϕ(x) = 0 if |x| ≥ 1. We define

ψ(x, ξ) =

∫ 0

−∞
ϕ(x+ τξ)dτ ∈ C∞

(
Rd × (Rd \ {0})

)
,

which is bounded on Rd ×
(
Rd \B(0, 14 )

)
since ϕ is compactly supported. We set

mν(x, ξ) = χ
( |ξ|2
ν2
)
ψ(

x

ν1/(2γ+1)
,
ξ

ν
) ∈ S(1,

|dx|2
ν2/(2γ+1)

+
|dξ|2
ν2

),

where each seminorm of the symbol mν is bounded above independently of ν ≥ 1; in particular, we
get that mw

ν is bounded on L2(Rd) with supν≥1 ‖mw
ν ‖L(L2) < +∞. Next, we have

2 Re〈Qνu, imw
ν u〉L2(Rd) =

〈
i
[
(|ξ|2 − ν2)w,mw

ν

]
u, u

〉
L2(Rd) + 2 Re〈V 2u,mw

ν u〉L2(Rd)

= 〈
{
|ξ|2 − ν2,mν

}w
u, u〉L2(Rd) + 2 Re〈V 2u,mw

ν u〉L2(Rd), (2.6)

since the symbol |ξ|2 − ν2 is quadratic. Moreover, we can compute

1

2

{
|ξ|2 − ν2,mν

}
= ξ · ∂xmν = χ(|ξ|2/ν2)ξ · ∂

∂x

(
ψ(

x

ν1/(2γ+1)
,
ξ

ν
)

)

=

∫ 0

−∞
ν−1/(2γ+1)χ(|ξ|2/ν2)(ξ · dϕ)(xν−1/(2γ+1) + τξν−1)dτ

=

∫ 0

−∞
νν−1/(2γ+1)χ(|ξ|2/ν2)

d

dτ

(
ϕ(xν−1/(2γ+1) + τξν−1)

)
dτ

= ν2γ/(2γ+1)χ(|ξ|2/ν2)ϕ(xν−1/(2γ+1))

since |ξν−1|2 ≥ 1/4 on suppχ(|ξ|2/ν2). Hence, we obtain

{
|ξ|2 − ν2,mν

}
= 2ν2γ/(2γ+1)χ(|ξ|2/ν2)ϕ(xν−1/(2γ+1))

≥
{
ν2γ/(2γ+1) if ||ξ|2ν−2 − 1| ≤ 1/2 and |x|ν−1/(2γ+1) ≤ 1/2,

0 on T ∗Rd.
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Moreover we have,

2ν2γ/(2γ+1)χ(|ξ|2/ν2)ϕ(xν−1/(2γ+1)) ∈ S(ν2γ/(2γ+1),
|dx|2

ν2/(2γ+1)
+
|dξ|2
ν2

).

As a consequence, using the sharp G̊arding inequality in (2.6) yields

C‖Qνu‖L2(Rd)‖u‖L2(Rd) ≥ ν2γ/(2γ+1)
〈(
χ0(|ξ|2ν−2 − 1)χ0(|x|2ν−2/(2γ+1))

)w
u, u

〉
L2(Rd)

− |2 Re〈V 2u,mw
ν u〉L2(Rd)| − Cν−2/(2γ+1)‖u‖2L2(Rd), (2.7)

where, for some ε0 ∈ (0, 1/8),
{
χ0 ∈ C∞c (R; [0, 1]) is such that {χ0 = 1} = [−ε0, ε0], and

{χ0 = 0} = [−2ε0, 2ε0]c, {0 < χ0(t) < 1} = {ε0 < |t| < 2ε0}.
(2.8)

Next, we check the term 2 Re〈V 2u,mw
ν u〉L2(Rd). We have

∣∣2 Re〈V 2u,mw
ν u〉L2(Rd)

∣∣ =
∣∣2 Re〈V u, V mw

ν u〉L2(Rd)
∣∣ ≤ 2‖V u‖L2(Rd)‖V mw

ν u‖L2(Rd).

Recalling that mν ∈ S(1, |dx|2
ν2/(2γ+1) + |dξ|2

ν2 ) ⊂ S(1, |dx|2 + |dξ|2) as ν ≥ 1, we may apply Lemma 2.2
to obtain ∣∣Re〈V 2u,mw

ν u〉L2(Rd)
∣∣ . ‖V u‖L2(Rd)

(
‖u‖L2(Rd) + ‖V u‖L2(Rd)

)
,

where the constant involved is uniform w.r.t. ν. Next, using (2.5), we obtain

∣∣2 Re〈V 2u,mw
ν u〉L2(Rd)

∣∣ . ‖u‖3/2
L2(Rd)‖Qνu‖

1/2

L2(Rd) + ‖Qνu‖L2(Rd)‖u‖L2(Rd)

. ‖u‖2L2(Rd) + ‖Qνu‖L2(Rd)‖u‖L2(Rd). (2.9)

Combining this estimate with (2.7), we have, for ν ≥ ν0 and ν0 large enough,

C‖u‖2L2(Rd) + C‖Qνu‖L2(Rd)‖u‖L2(Rd)

≥ ν2γ/(2γ+1)
〈(
χ0(|ξ|2ν−2 − 1)χ0(|x|2ν−2/(2γ+1))

)w
u, u

〉
L2(Rd)

. (2.10)

The elliptic region. We now check the regions where |ξ|2 � ν2 or |ξ|2 � ν2. Let ε0 ∈ (0, 1/2); we
consider a function θ ∈ C∞(R; [−1, 1]) such that

θ(σ) =





1 for σ ≥ 1 + 2ε0,

{0 < θ < 1} for σ ∈ (1 + ε0, 1 + 2ε0),

0 for 1− ε0 ≤ σ ≤ 1 + ε0,

{−1 < θ < 0} for σ ∈ (1− 2ε0, 1− ε0),

−1 for σ ≤ 1− 2ε0,

(2.11)

and hence
∀σ ∈ R, (σ − 1)θ(σ) ≥ |θ(σ)|(σ + 1)

ε0
2 + ε0

. (2.12)

A consequence of (2.12) is that, with c0 = ε0/(2 + ε0), we have

∀ξ ∈ Rd,∀ν ≥ 1, (|ξ|2 − ν2)θ(|ξ|2ν−2) ≥ c0|θ(|ξ|2ν−2)|
(
|ξ|2 + ν2

)
. (2.13)

We compute

Re〈Qνu, θ(|ξ|2ν−2)wu〉L2(Rd)

=
〈
(|ξ|2 − ν2)wu, θ(|ξ|2ν−2)wu

〉
L2(Rd) + Re

〈
iV 2u, θ(|ξ|2ν−2)wu

〉
L2(Rd)

≥ c0
〈(

(|ξ|2 + ν2)|θ(|ξ|2ν−2)|
)w
u, u

〉
L2(Rd) −

∣∣∣Re
〈
iV 2u, θ(|ξ|2ν−2)wu

〉
L2(Rd)

∣∣∣ .
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Following (2.9), we have
∣∣Re〈iV 2u, θ(|ξ|2ν−2)wu〉L2(Rd)

∣∣ . ‖u‖2L2(Rd) + ‖Qνu‖L2(Rd)‖u‖L2(Rd),

so that we finally obtain, as θ(|ξ|2ν−2)w is bounded on L2(Rd),

C‖u‖2L2(Rd) + C‖Qνu‖L2(Rd)‖u‖L2(Rd) ≥
〈(

(|ξ|2 + ν2)|θ(|ξ|2ν−2)|
)w
u, u

〉
L2(Rd) . (2.14)

Patching the estimates together. Combining (2.5), (2.10) and (2.14), we obtain the following
estimate

C‖u‖2L2(Rd) + C‖Qνu‖L2(Rd)‖u‖L2(Rd) ≥ ‖V u‖2L2(Rd) + ν2
〈(
|θ(|ξ|2ν−2)|

)w
u, u

〉
L2(Rd)

+ ν2γ/(2γ+1)
〈(
χ0(|ξ|2ν−2 − 1)χ0(|x|2ν−2/(2γ+1))

)w
u, u

〉
L2(Rd)

. (2.15)

Since χ0 is given and satisfies (2.8), we define now θ(σ) = sign(σ− 1)
(
1−χ0(σ− 1)

)
. The function θ

is smooth and satisfies (2.11) so that (2.12) holds. We note that

|θ(σ)|+ χ0(σ − 1) = 1,

since |1− χ0(σ − 1)|+ χ0(σ − 1) = 1− χ0(σ − 1) + χ0(σ − 1) = 1. As a consequence, we write

1 = |θ(|ξ|2ν−2)|+ χ0(|ξ|2ν−2 − 1)

= |θ(|ξ|2ν−2)|+ χ0(|x|2ν−2/(2γ+1))χ0(|ξ|2ν−2 − 1) +
(
1− χ0(|x|2ν−2/(2γ+1))

)
χ0(|ξ|2ν−2 − 1),

and hence

ν2γ/(2γ+1) ≤ ν2γ/(2γ+1)|θ(|ξ|2ν−2)|
+ ν2γ/(2γ+1)χ0(|x|2ν−2/(2γ+1))χ0(|ξ|2ν−2 − 1) + ν2γ/(2γ+1)(1− χ0(|x|2ν−2/(2γ+1))).

Since the symbols on both sides of the inequality belong to the class S
(
ν2γ/(2γ+1), |dx|2

ν2/(2γ+1) + |dξ|2
ν2

)
,

we can apply G̊arding’s inequality. Note that the gain in the pseudodifferential calculus for symbols
in this class is given by ν−1/(2γ+1)ν−1 = ν−(2γ+2)/(2γ+1). This gives, for ν ≥ ν0 and ν0 large enough,

ν2γ/(2γ+1)
〈(
χ0(|ξ|2ν−2 − 1)χ0(|x|2ν−2/(2γ+1))

)w
u, u

〉
L2(Rd)

+ ν2γ/(2γ+1)〈
(
|θ(|ξ|2ν−2)|

)w
u, u〉L2(Rd)

+
〈
ν2γ/(2γ+1)(1− χ0(|x|2ν−2/(2γ+1)))u, u

〉
L2(Rd)

≥ 1

2
ν2γ/(2γ+1)‖u‖2L2(Rd).

Next, we note that, because of the properties of χ0, given in (2.8) we find

ν2γ/(2γ+1)(1− χ0(|x|2ν−2/(2γ+1))) ≤ CV (x)2,

according to the lower bound in Assumption (2.2). Using the last two inequalities together with (2.15)
gives

C‖u‖2L2(Rd) + C‖Qνu‖L2(Rd)‖u‖L2(Rd) ≥ ν2γ/(2γ+1)‖u‖2L2(Rd), (2.16)

which concludes the proof of the theorem, dividing by ‖u‖L2(Rd) and taking ν ≥ ν0 with ν0 large
enough.

3 The scaling argument

First, we prove the following lemma, which is a consequence of Theorem 2.1 together with a scaling
argument (using the homogeneity of W ). We define on L2(Rd) (below, we shall take d = n′) the
operator

P̃λ,ω = −∆− ω + iλW. (3.1)
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Lemma 3.1. Let γ > 0 be given and W be an homogeneous function of order 2γ on Rd with
W (x) > 0 for x ∈ Sd−1. Then, there exists C > 0 such that for all u ∈ C 2

c (Rd), for all λ > 0 and
for all ω ∈ R, we have

C‖P̃λ,ωu‖L2(Rd) ≥ λ1/(γ+1)

(
1 + 1R+

(ω)
( ω

λ1/(γ+1)

)γ/(2γ+1)
)
‖u‖L2(Rd).

Remark 3.2. Note that this lemma does not use either λ large, or 0 ≤ ω ≤ λ2, a feature due to the
homogeneity of W .

Proof of Lemma 3.1. First, we remark that for all α > 0, the operator

Tα : L2(Rd) → L2(Rd)
u(x) 7→ α

d
2 u(αx)

is an isometry, with inverse (Tα)−1 = Tα−1 . Using that W is homogeneous of order 2γ, we have

TαP̃λ,ω(Tα)−1 = −α−2∆− ω + iλW (αx) = −α−2∆− ω + iα2γλW (x).

Choosing then α = λ−
1

2(γ+1) , we have α−2 = α2γλ = λ1/(γ+1) so that with Q0 given by (2.1)

TαP̃λ,ω(Tα)−1 = λ1/(γ+1)
(
Q0 − ωλ−1/(γ+1)

)
, α = λ−1/2(γ+1).

Since the assumption on W in Lemma 3.1 implies Assumption (2.2), we can apply Theorem 2.1.
This yields (still with α = λ−1/2(γ+1)),

‖P̃λ,ωu‖L2(Rd) = ‖TαP̃λ,ω(Tα)−1Tαu‖L2(Rd) = λ1/(γ+1)
∥∥∥
(
Q0 − ωλ−1/(γ+1)

)
Tαu

∥∥∥
L2(Rd)

≥ C−10 λ1/(γ+1)

(
1 + 1R+(ω)

( ω

λ1/(γ+1)

)γ/(2γ+1)
)
‖Tαu‖L2(Rd),

concluding the proof of the lemma since Tα is an isometry.

4 The reduction to a problem on M ′ by Fourier transform,
and end of proof of Theorem 1.6

After a Fourier transform in the x′′ variable, Theorem 1.6 reduces to the following result.

Theorem 4.1. Assume (1.15), (1.17) and define the operator acting on L2(M ′)

Pλ,ω = −∆M ′ − ω + iλb, D(Pλ,ω) = H2(M ′). (4.1)

Then, there exist C > 0 and λ0 > 0 such that for all u ∈ H2(M ′), for all λ ≥ λ0 and for all ω ≤ λ2,
we have

‖Pλ,ωu‖L2(M ′) ≥ Cλ1/(γ+1)‖u‖L2(M ′). (4.2)

Proof that Theorem 4.1 ⇒ Theorem 1.6. We perform a Fourier transform in the variable x′′ ∈ Tn′′ ,
and write u(x′, x′′) =

∑
k∈Zn′′ ûk(x′)eik·x

′′
. Then, for u ∈ H2(M), we have with Pλ defined in (1.4)

and Pλ,ω in (4.1),

(Pλu)(x′, x′′) =
∑

k∈Zn′′

(
(−∆M ′ + |k|2 − λ2 + iλb)ûk

)
(x′)eik·x

′′
=
∑

k∈Zn′′

(
Pλ,λ2−|k|2 ûk

)
(x′)eik·x

′′
,

as b = b(x′) does not depend on the x′′-variable. Finally, as a consequence of Theorem 4.1, we have
‖Pλ,λ2−|k|2w‖L2(M ′) ≥ Cλ1/(γ+1)‖w‖L2(M ′) where C > 0 does not depend on k. This yields

‖Pλu‖2L2(M) = (2π)n
′′∑

k∈Z
‖Pλ,λ2−|k|2 ûk‖2L2(M ′) ≥ C2λ2/(γ+1)‖u‖2L2(M),

which proves Theorem 1.6.
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We now want to use Lemma 3.1 in a neighbourhood of {y′}×T1 and to patch estimates together
to complete the proof of Theorem 4.1.

Proof of Theorem 4.1. Let χ0 ∈ C∞c (B(y′, ε0); [0, 1]) such that χ0 = 1 in a neighbourhood of y′ and
set χ1 = 1− χ0 ∈ C∞(M ′). On the one hand, we have, with Pλ,ω given by (4.1),

C‖Pλ,ωχ1u‖L2(M ′) ≥ λ‖χ1u‖L2(M ′), (4.3)

since, according to Assumption (1.17), b is bounded from below on supp(χ1) and hence

λ‖χ1u‖2L2(M ′) ≤ Cλ〈bχ1u, χ1u〉L2(M ′) = C Im〈Pλ,ωχ1u, χ1u〉L2(M ′)

≤ C‖Pλ,ωχ1u‖L2(M ′)‖χ1u‖L2(M ′).

On the other hand, we have

‖Pλ,ωχ0u‖2L2(M ′) = ‖Pλ,ωχ0u‖2L2(B(y′,ε0)).

According to Assumption (1.16), we can extend by homogeneity in the variable x′−y′ the function b
from BRn′ (y

′, ε0) to the whole Rn′ as an homogeneous function W of degree 2γ on Rn′ with W (x′) > 0

for |x′− y′| = 1. Hence, we have Pλ,ωχ0 = P̃λ,ωχ0, where P̃λ,ω is given by (3.1). We may then apply

Lemma 3.1 to the operator P̃λ,ω in Rn′ . This yields, for some C > 0,

C‖Pλ,ωχ0u‖2L2(M ′) = C‖P̃λ,ωχ0u‖2L2(Rn′ )

≥ λ2/(γ+1)

(
1 + 1R+

(ω)
( ω

λ1/(γ+1)

)2γ/(2γ+1)
)
‖χ0u‖2L2(M ′). (4.4)

We now want to estimate the remainder term

‖[Pλ,ω, χ1]u‖L2(M ′) = ‖[Pλ,ω, χ0]u‖L2(M ′) = ‖[−∆M ′ , χ0]u‖L2(M ′)

≤ ‖(∆M ′χ0)u‖L2(M ′) + 2‖∇x′χ0 · ∇x′u‖L2(M ′). (4.5)

For this, we take ψ = ψ(x′) ∈ C∞c (B(0, ε0); [0, 1]) such that ψ = 1 on supp(∇x′χ0) and ψ = 0 in a
neighbourhood of 0. We compute

Re〈Pλ,ωu, ψ2u〉L2(M ′) = Re〈(−∆M ′ − ω)u, ψ2u〉L2(M ′) +

=0︷ ︸︸ ︷
Re〈iλψ2bu, u〉L2(M ′)

= Re〈−∆M ′u, ψ
2u〉L2(M ′) − ω‖ψu‖2L2(M ′), (4.6)

with ∆M ′ = ∆Rn′ on supp(ψ). Moreover, we have

Re〈−∆Rn′u, ψ
2u〉L2(M ′) = 〈∇x′u, ψ2∇x′u〉L2(M ′) + Re〈∇x′u, u∇x′ψ2〉L2(M ′)

= 〈∇x′u, ψ2∇x′u〉L2(M ′) +

n′∑

j=1

Re〈iDxju, u∂xjψ
2〉L2(M ′)

= 〈∇x′u, ψ2∇x′u〉L2(M ′) −
n′∑

j=1

i

2
〈[Dxj , ∂xjψ

2]u, u〉L2(M ′)

= 〈∇x′u, ψ2∇x′u〉L2(M ′) −
1

2
〈(∆Rn′ψ

2)u, u〉L2(M ′),

since the two operators Dxj and ∂xjψ
2 are selfadjoint. We have thus

‖ψ∇x′u‖2L2(M ′) = Re〈
(
−∆Rn′ − ω + iλb

)
u, ψ2u〉L2(M ′) +

=ω‖ψu‖2
L2(M′)︷ ︸︸ ︷

Re〈
(
ω − iλb

)
u, ψ2u〉L2(M ′)

+
1

2
〈(∆Rn′ψ

2)u, u〉L2(M ′),
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and consequently we obtain

‖ψ∇x′u‖2L2(M ′) ≤ ‖Pλ,ωu‖L2(M ′)‖u‖L2(M ′) + C1‖u‖2L2(M ′) + ω‖ψu‖2L2(M ′).

As a result, we can estimate the commutator of (4.5) by

‖[Pλ,ω, χ0]u‖2L2(M ′) ≤ C2

(
‖Pλ,ωu‖L2(M ′)‖u‖L2(M ′) + ‖u‖2L2(M ′) + ω‖ψu‖2L2(M ′)

)
. (4.7)

Now, we have ‖Pλ,ω(χju)‖2L2(M ′) ≤ 2‖[Pλ,ω, χj ]u‖2L2(M ′) + 2‖χjPλ,ωu‖2L2(M ′), so that

2‖Pλ,ωu‖2L2(M ′) ≥ ‖Pλ,ωχ0u‖2L2(M ′) + ‖Pλχ1u‖2L2(M ′) − 4‖[Pλ,ω, χ0]u‖2L2(M ′), (4.8)

which, combined with the estimates (4.3), (4.4) and (4.7), yields

C3

(
‖Pλ,ωu‖2L2(M ′) + ‖u‖2L2(M ′)

)
≥ λ2/(γ+1)

(
1 + 1R+

(ω)
( ω

λ1/(γ+1)

)2γ/(2γ+1)
)
‖χ0u‖2L2(M ′)

+ λ2‖χ1u‖2L2(M ′) − c1ω‖ψu‖2L2(M ′), (4.9)

where c1 is a fixed positive constant.
In the régime ω ≤ 0 (or, more generally, ω ≤ ω0 for any given ω0), this suffices to prove (4.2).

Let us now study the régime ω ≥ 0. We notice that, for ω ≤ λ2, λ ≥ 1 ,

λ2/(γ+1)
(

1 +
( ω

λ1/(γ+1)

)2γ/(2γ+1))
= λ2/(γ+1) + λ

2
γ+1−

2γ
(2γ+1)(γ+1)ω2γ/(2γ+1)

≤ λ2/(γ+1) + λ
2
γ+1−

2γ
(2γ+1)(γ+1)

+ 4γ
2γ+1 = λ2/(γ+1) + λ2 ≤ 2λ2,

and that, for all v ∈ L2(M ′) we have

‖ψv‖2L2(M ′) ≤ C4‖v‖2L2(M ′) = C4‖(χ0 + χ1)v‖2L2(M ′) ≤ 2C4‖χ0v‖2L2(M ′) + 2C4‖χ1v‖2L2(M ′).

This, together with (4.9) then yields

C5

(
‖Pλ,ωu‖2L2(M ′) + ‖u‖2L2(M ′)

)
≥ λ2/(γ+1)f(λ, ω)‖(χ0 + χ1)u‖2L2(M ′) = λ2/(γ+1)f(λ, ω)‖u‖2L2(M ′),

where

f(λ, ω) = 1 +
( ω

λ1/(γ+1)

)2γ/(2γ+1)

− c0 ωλ−
2
γ+1 . (4.10)

with a fixed positive constant c0. According to Lemma 4.2, there exists λ0 > 0 and δ := c
−(2γ+1)
0 > 0,

such that for all λ ≥ λ0 and ω ∈ [0, δλ2], we have f(λ, ω) ≥ 1. As a consequence, (4.2) is satisfied in

this régime. Finally, suppose that δλ2 ≤ ω ≤ λ2, where δ = c
−(2γ+1)
0 . In this régime, the estimate

(4.2) is a direct consequence of the usual (stronger) geometric control estimate (see Lemma 4.3
below).

The above proof relies on the following two lemmata, the first of which is elementary.

Lemma 4.2. ∀c0 > 0,∀λ > 0,∀ω ∈ [0, c
−(2γ+1)
0 λ2], we have f(λ, ω) ≥ 1, where f(λ, ω) is defined

in (4.10).

The next lemma states the estimate associated to the geometric control condition (which is
satisfied by the set M ′ \ {y′} in M ′). It is very classical and we refer e.g. to [RT74, Leb96, AL14],
or [LL14, Lemma 5.1] for a simple self contained proof.

Lemma 4.3. Let δ > 0, and suppose that b satisfies (1.16)-(1.17). Then, there exist λ0 > 0 and
C > 0 such that for all λ ≥ λ0, for all ω ∈ [δλ2, λ2], we have

‖Pλ,ωu‖L2(M ′) & λ‖u‖L2(M ′).

The first author is partially supported by the Agence Nationale de la Recherche under grant
GERASIC ANR-13-BS01-0007-01.

Some time after the article [LL14] was submitted, N. Burq and C. Zuily [BZ15] managed to
weaken some of the assumptions of our Theorem 1.5.
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