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GLOBAL POISSONIAN BEHAVIOR OF THE

EIGENVALUES AND LOCALIZATION CENTERS OF

RANDOM OPERATORS IN THE LOCALIZED PHASE

FRÉDÉRIC KLOPP

Abstract. In the present note, we review some recent results on the
spectral statistics of random operators in the localized phase obtained
in [12]. For a general class of random operators, we show that the family
of the unfolded eigenvalues in the localization region considered jointly
with the associated localization centers is asymptotically ergodic. This
can be considered as a generalization of [10]. The benefit of the present
approach is that one can vary the scaling of the unfolded eigenvalues
covariantly with that of the localization centers. The convergence result
then holds for all the scales that are asymptotically larger than the
localization scale. We also provide a similar result that is localized
in energy. Full proofs of the results presented here will be published
elsewhere ([12]).

Résumé. Dans cette note, nous passerons en revue les résultats récents
sur l’ergodicité asymptotique des valeurs propres et des centres de lo-
calisation des opérateurs aléatoires dans la phase localisées, obtenus
dans [12]. Ces résultats généralisent ceux de [10] en prenant en compte
les centres de localisation. Plus précisémenet, on démontre que, pour
une classe générale d’opérateurs aléatoires, dans la région de localisa-
tion, les couples constitués des valeurs propres “dépliées” et du centre
de localisation associé sont asymptotiquement ergodiques. On démontre
également un résultat similaire lorsqu’on se restreint à de petits inter-
valles d’énergie.

1. Introduction

On `2(Zd), consider the random Anderson model

Hω = −∆ + λVω

where

• −∆ is the free discrete Laplace operator

(1.1) (−∆u)n =
∑

|m−n|=1

um for u = (un)n∈Zd ∈ `2(Zd);

• Vω is the random potential

(1.2) (Vωu)n = ωnun for u = (un)n∈Zd ∈ `2(Zd).
We assume that the random variables (ωn)n∈Zd are independent
identically distributed and that their common distribution admits
a compactly supported bounded density, say g.
• The coupling constant λ is chosen positive.
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Let N be the integrated density of states of Hω (see e.g. [8]); it is a proba-
bility distribution on the essential spectrum, say, Σ of Hω.
For L ∈ N, let Λ = ΛL = [0, L]d be a large box and |Λ| := #Λ = (L + 1)d

be its cardinality. Let Hω(Λ) be the operator Hω restricted to Λ with pe-
riodic boundary conditions. The notation |Λ| → +∞ is a shorthand for
considering Λ = ΛL in the limit L → +∞. Let us denote the eigenval-
ues of Hω(Λ) ordered increasingly and repeated according to multiplicity by
E1(ω,Λ) ≤ E2(ω,Λ) ≤ · · · ≤ E|Λ|(ω,Λ).
For t ∈ [0, 1], consider the following point process

(1.3) Ξ(ω, t,Λ) =

|Λ|∑

n=1

δ|Λ|[N(En(ω,Λ))−t].

In [10], we have proved the asymptotic ergodicity of the unfolded eigenvalues
in the large coupling regime, that is,

Theorem 1.1 ([10]). For sufficiently large coupling constant λ, ω-almost
surely, when |Λ| → +∞, the probability law of the point process Ξ(ω, ·,Λ)
under the uniform distribution 1[0,1](t)dt converges to the law of the Poisson
point process on the real line with intensity 1.

In the present note, we present an extension of this result to the localization
centers. To each eigenvalue En(ω,Λ), one can associate a localization center,
say, xn(ω,Λ): it is essentially defined by the fact that, if ϕn(ω,Λ) is a
normalized eigenfunction of Hω(Λ) associate to En(ω,Λ), then, for any ρ >
1, for L sufficiently large, one has

(1.4) ‖ϕn(ω,Λ)‖`2({|x−xn(ω,Λ)|≥logρ |Λ|}) ≤ e− logρ |Λ|/2.

So eigenfunctions (and ,thus, eigenvalues) are only sensitive to the local
environment values near its localization center. For large coupling constants
λ, it is known that, with a good probability, such localization centers exist
for all eigenfunctions (see e.g. [8] or section 2.2 and the discussion therein).
Note that relation (1.4) does not define the point xn(ϕ,Λ) uniquely; ne-
vertheless, one can show that all such points are “close” to each other in
the sense that they are all contained in a ball of radius of order log |Λ|; this

should be compared to the side length of the cube |Λ|1/d.
Fix α > 1 and an increasing sequence of scales ` = (`Λ)Λ and Λ = ΛL such
that, one has

(1.5) logα L ≤ `Λ ≤ L.
Assume moreover that the following limit exists

(1.6) lim
L→+∞

L−1`Λ =: c ∈ [0, 1].

Let gE : [0, 1] → R+ and gX : [0, 1]d → R+ be two probability densities.
For a fixed configuration ω, consider the point process

(1.7) Ξ2
Λ(e, x; `, ω) =

N∑

j=1

δ`dΛ[ej(ω,Λ)−e] ⊗ δ(xj(ω,Λ)−Lx)/`Λ .

under the distribution of density gE ⊗ gX over [0, 1]1+d.
Our main result on the Anderson model is
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Theorem 1.2. For sufficiently large coupling constant λ, ω-almost surely,
the probability law of the point process Ξ2

Λ(·, ·; `, ω) under the distribution
gE(e)gX(x) de dx converges to the law of the Poisson point process with in-
tensity 1 on R1+d if c = 0 and on R× [−1/c, 1/c]d if c > 0.

Actually, Theorem 1.2 is a prototype of the general result we present below.
Essentially, we prove that the claim in Theorem 1.2 holds in the localization
region for any random Hamiltonian satisfying a Wegner and a Minami esti-
mate (see assumptions (W) and (M) in section 2.1). To do so, we use the
analysis made in [7, 10].
Let us note that, in Theorem 1.2, the minimal size of the coupling constant
for the result to hold is independent of the sequence of scale (`Λ)Λ; λ need
only to be chosen large enough so that the whole spectrum of Hω be local-
ized (see e.g.[8] and references therein).
To conclude this introduction, let us note that Theorem 1.1 follows from
Theorem 1.2 when `Λ = L and by integration in the variable x in the case
when the distribution is uniform i.e. gE ⊗ gX = 1[0,1]1+d .
It is interesting to note that the limiting law does not depend on the laws
under which one considers the random process Ξ2

Λ(·, ·; `, ω) (as long as those
have a density). This can be understood as follows. Actually, the conver-
gence of the process holds even if one restricts the process to a local energy
interval (see Theorem 2.3). In this case, the process only feels the local
behavior of the distribution gE ⊗ gX under which it is considered. As one
assumes the existence of a density, this local behavior is essentially that of
the uniform distribution except for the normalization factor given by the
density.

2. The results

Consider Hω = H0 + Vω, a Zd-ergodic random Schrödinger operator on
H = L2(Rd) or `2(Zd) (see e.g. [14, 15]). Typically, the background poten-
tial H0 is the Laplacian −∆, possibly perturbed by a periodic potential.
Magnetic fields can be considered as well; in particular, the Landau Hamil-
tonian is also admissible as a background Hamiltonian (see the discussions
in the introductions of [7, 10] for more details). For the sake of simplicity,
we assume that Vω is almost surely bounded; hence, almost surely, Hω have
the same domain H2(Rd) or `2(Zd).

2.1. The setting and the assumptions. For Λ, a cube in either Rd or
Zd, we let Hω(Λ) be the self-adjoint operator Hω restricted to Λ with pe-
riodic boundary conditions. As in [7], our analysis stays valid for Dirichlet
boundary conditions.
Furthermore, we shall denote by 1J(H) the spectral projector of the opera-
tor H on the energy interval J . E(·) denotes the expectation with respect
to ω.
Our first assumption will be an independence assumption for local Hamil-
tonians that are far away from each other, that is,

(IAD): There exists R0 > 0 such that for any two cubes Λ and Λ′ such
that dist(Λ,Λ′) > R0, the random Hamiltonians Hω(Λ) and Hω(Λ′)
are stochastically independent.

Exp. no IX— Global Poissonian behavior in the localized phase
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Let Σ be the almost sure spectrum of Hω (see e.g. [14]). Pick I a relatively
compact open subset of Σ. Assume the following holds:

(W): a Wegner estimate holds in I, i.e. there exists C > 0 such that,
for J ⊂ I, and Λ, a cube in Rd or Zd, one has

(2.1) E [tr(1J(Hω(Λ)))] ≤ C|J | |Λ|.
(M): a Minami estimate holds in I, i.e. there exists C > 0 and ρ > 0

such that, for J ⊂ I, and Λ, a cube in Rd or Zd, one has

(2.2) E [tr(1J(Hω(Λ))) · [tr(1J(Hω(Λ)))− 1]] ≤ C(|J | |Λ|)1+ρ.

Remark 2.1. We refer to [10, Remark 1.2] for a description of the validity
of assumptions (W) and (M). Let us just say here that (W) has been proved
to hold for a wide range of models (see e.g. [9, 16]) whereas (M) is known
only for a few models (see e.g. [2, 3, 6, 11] and the discussions and references
therein).

The integrated density of states is defined as

(2.3) N(E) := lim
|Λ|→+∞

#{e.v. of Hω(Λ) less than E}
|Λ| .

By (W), N(E) is the distribution function of a measure that is absolutely
continuous with respect to to the Lebesgue measure on R. Let ν be the
density of state of Hω i.e. the distributional derivative of N . In the sequel,
for a set I, we will often write N(I) for the mass the measure ν(E)dE puts
on I i.e.

(2.4) N(I) =

∫

I
ν(E)dE.

Let us now describe what we call the localized regime in the introduction.
For L ≥ 1, ΛL denotes the cube [0, L]d in either Rd or Zd. In the sequel,
we write Λ for ΛL i.e. Λ = ΛL and when we write |Λ| → +∞, we mean
L→ +∞.
Let HΛ be `2(Λ ∩ Zd) in the discrete case and L2(Λ) in the continuous one.
For a vector ϕ ∈ H, we define
(2.5)

‖ϕ‖x =

{
‖1Λ(x)ϕ‖2 where Λ(x) = {y; |y − x| ≤ 1/2} if H = L2(Rd),

|ϕ(x)| if H = `2(Zd).

Let I be a compact interval. We assume that I lies in the region of complete
localization (see e.g. [4, 5]) for which we use the following finite volume
version. We assume that

(Loc): for all ξ ∈ (0, 1), one has

(2.6) sup
L>0

sup
suppf⊂I
|f |≤1

E


∑

γ∈Zd
e|γ|

ξ ‖1Λ(0)f(Hω(ΛL))1Λ(γ)‖2


 < +∞.

For L ∈ N, recall that Λ = ΛL and that Hω(Λ) is the operator Hω restricted
to Λ with periodic boundary conditions. The notation |Λ| → +∞ is a short-
hand for considering Λ = ΛL in the limit L→ +∞.
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Finally, let E1(ω,Λ) ≤ E2(ω,Λ) ≤ · · · ≤ EN (ω,Λ) ≤ · · · denote the eigen-
values of Hω(Λ) ordered increasingly and repeated according to multiplicity.

2.2. The localization centers. To define the localization centers, we state
two results that are proved in [7].

Lemma 2.1 ([7]). Under assumptions (W) and (Loc), for any p > 0, there
exists q > 0 such that, for L sufficiently large, with probability larger than
1− L−p, if

(1) ϕn,ω is a normalized eigenvector of Hω(ΛL) associated to En,ω ∈ I,
(2) xn(ω) ∈ ΛL is a maximum of x 7→ ‖ϕn,ω‖x in ΛL,

then, for x ∈ ΛL, one has

‖ϕn,ω‖x ≤ Lqe−|x−xn(ω)|ξ .

If for an eigenfunction ϕ we define the set of localization centers as C(ϕ) =
{x ∈ Λ; ‖ϕ‖x = max

γ∈Λ
‖ϕ‖γ}, then, one easily proves

Lemma 2.2 ([7]). Pick I such that (Loc) holds in I for Hω. For any
ξ ∈ (0, 1) and p > 0, there exists Cp > 0, such that, for L sufficiently large,
with probability larger than 1 − L−p, if Ej(ω,Λ) ∈ I then the diameter of

C(ϕj(ω,Λ)) is less than Cp log1/ξ |Λ|.

To define the localization center uniquely, we order C(ϕj(ω,Λ)) lexicograph-
ically and take the largest element.
If, in addition to (W) and (Loc), one assumes (M), then the eigenvalues of
Hω(Λ) are almost surely simple. Thus, one can associate localization centers
to an eigenvalue. To fix notation, for any j, let xj(ω,Λ) be the localization
center associated to the eigenvalue Ej(ω,Λ) (or the eigenfunction ϕj(ω,Λ)).

2.3. The results. We state our results in two cases. In the first case de-
scribed in section 2.4, we consider a macroscopic energy interval i.e. the
energy interval in which we study the eigenvalues is a fixed compact inter-
val where all the above assumptions hold. In the second case described in
section 2.5, the energy interval shrinks to a point but not too fast so as to
contain enough eigenvalues that is asymptotically infinitely many eigenval-
ues.

For J = [a, b] a compact interval such that N(b) − N(a) = N(J) > 0. For
Hω(Λ), we define the renormalized (or unfolded) energy levels in J to be

(2.7) ej(ω,Λ) = NJ(Ej(ω,Λ))

where we have set

(2.8) NJ(·) :=
N(·)−N(a)

N(b)−N(a)
.

NJ is the integrated density of states renormalized so as to be the distribu-
tion function of a probability measure on J .
To each renormalized energy ej(ω,Λ) = NJ(Ej(ω,Λ)), we associate the lo-
calization center xj(ω,Λ) associated to Ej(ω,Λ) in section 2.2.
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2.4. Macroscopic energy intervals. Fix α ∈ (0, 1] and an increasing se-
quence of scales ` = (`Λ)Λ satisfying (1.5) for some α > 1 and (1.6).
Let gE : [0, 1]→ R+ and gX : [0, 1]d → R+ be two probability densities.
For J = [a, b] a compact interval such that N(b)−N(a) = N(J) > 0 and a
fixed configuration ω, consider the point process Ξ2

J(e, x;ω, `,Λ) defined by

(2.9) Ξ2
J(e, x;ω, `,Λ) =

N∑

j=1

δN(J)`dΛ[ej(ω,Λ)−e] ⊗ δ(xj(ω,Λ)−Lx)/`Λ .

under the distribution of density gE ⊗ gX over [0, 1]× [0, 1]d in (e, x).

Remark 2.2. Note that, in the introduction, in the case of the discrete
Anderson model, as N(+∞)−N(−∞) = 1, it is unnecessary to rescale the
density of states if one considers the whole spectrum. This explains the
difference between (2.9) and (1.7).

Our main result is

Theorem 2.1. Assume (IAD), (W), (M) and (Loc) hold. Assume that
J ⊂ I, the localization region, is such that N(J) > 0.
Then, ω-almost surely, the probability law of the point process Ξ2

J(·, ·;ω, `,Λ)
under the distribution of density gE⊗gX converges to the law of the Poisson
point process with intensity 1 on R1+d if c = 0 and on R × [−1/c, 1/c]d if
c > 0.

First, let us note that Theorem 1.1 of [10] is an immediate consequence of
Theorem 2.1. Indeed, it is obtained for the scale `Λ = L by integrating
Ξ2
J(·, ·;ω, `,Λ) in x if one picks gE ⊗ gX = 1[0,1] ⊗ 1[0,1]d .

It is well known that, for the discrete Anderson model at large coupling, the
assumptions (W), (M) and (Loc) are satisfied on the whole spectrum (see
e.g. [1, 8, 2]); thus, Theorem 1.2 is a consequence of Theorem 2.1.

As in [10], one can also study the statistics of the levels themselves i.e. before
unfolding. One obtains

Theorem 2.2. Assume (IAD), (W), (M) and (Loc) hold. Assume that
J = [a, b] ⊂ I is a compact interval in the localization region satisfying
N(J) > 0.
Define

• the probability density νJ :=
1

N(J)
ν(E)1J(E) where ν =

dN

dE
is the

density of states of Hω;
• the point process

(2.10) Ξ̃2
J(E, x;ω, `,Λ) =

∑

En(ω,Λ)∈J
δν(E)`dΛ[En(ω,Λ)−E] ⊗ δ(xj(ω,Λ)−Lx)/`Λ .

Then, ω-almost surely, the probability law of the point process Ξ̃2
J(·, ·;ω, `,Λ)

under the distribution of density νJ(E)⊗ gX(x) converges to the law of the
Poisson point process on Rd+1 with intensity 1.

Theorem 2.2 is deduced from Theorem 2.1 in the same way as Theorem 1.2
is deduced from [10, Theorem 1.1].
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2.5. Microscopic energy intervals. One can also prove a version of Theo-
rem 2.1 that is local in energy. In this case, one needs the density of states
not to be too small on the energy interval under consideration; indeed, it is
clear that a result of the type of Theorem 2.1 can only hold if the number
of eigenvalues under consideration grows to ∞ when |Λ| goes to ∞.
This is not the only restriction one meets for a result local in energy. For
the same reasons as in the studies done in [7, 10], one needs that the weight
the IDS N gives the energy interval under consideration be not too small
compared with the length of this interval; the reason for this is the non
optimality of the assumption (W) (see [6]).
One proves

Theorem 2.3. Assume (IAD), (W), (M) and (Loc) hold. Pick E0 ∈ I.
Fix (IΛ)Λ a decreasing sequence of intervals such that sup

IΛ

|x| →
|Λ|→+∞

0.

Let us assume that

(2.11) if `′ = o(L) then
|N(E0 + IΛL+`′ )|
|N(E0 + IΛL)| →

L→+∞
1.

Then, there exists τ = τ(ρ) such that, if, for Λ large, one has

|N(E0 + IΛ)| · |IΛ|−1−ρ̃ ≥ 1 and |Λ|δ · |N(E0 + IΛ)| →
|Λ|→+∞

+∞(2.12)

for some δ ∈ (0, 1) and ρ̃ > 0 satisfying

δ ρ̃

1 + ρ̃
< τ(2.13)

then, ω-almost surely, the law of the point process Ξ2
E0+IΛ

(·, ·;ω, `,Λ) un-

der the distribution of density gE ⊗ gX on [0, 1]d+1 converges to the law
of the Poisson point process with intensity 1 on R1+d if c = 0 and on
R× [−1/c, 1/c]d if c > 0.

The exponent τ = τ(g) can be computed explicitly. The first condition
in (2.12) requires that N is not too flat at E0. How flat it may be depends
on the exponent ρ̃, thus, in part on the value of τ if δ is not less that τ .
Indeed, if δ < τ , then (2.13) is satisfied for any ρ̃ > 0 and actually, we can
take ρ̃ = +∞ i.e. drop the first condition in (2.12); note that this is what
happens in the case of macroscopic intervals. If δ ≥ τ , a condition on the
flatness of N kicks in.
Condition (2.11) is necessary as we don’t impose anything else on how the
density of states of the intervals E0 + IΛ be have; they could oscillate which
could presumably ruin convergence.
As a consequence of Theorem 2.3, using the results of [13], one can prove a
counterpart of Theorem 2.2 for “large” enough neighborhoods of the point;
here, “large” does not mean that the neighborhood needs to be large: it
merely needs not to shrink too fast to 0 (see (2.12)).

3. A precise description of the eigenvalues and localization
centers in the localized regime

In this section, we state a number of results that are crucial for our
derivation of Theorems 1.2, 2.1 and 2.3. Some of these results are taken
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from [7]; others are extensions thereof and are proved in [12].
These results explain the nature of Theorems 2.1 and 2.3. They are also of
interest on their own as they give a precise description of the eigenvalues
and localization centers. We shall not explain how to use them to derive the
results described in section 2.

3.1. I.I.D approximations to the eigenvalues. The second ingredient
of our proof is a description of most of the eigenvalues of Hω(Λ) in some
small interval, say, IΛ in terms of i.i.d. random variables. These random
variables are the eigenvalues of the restrictions of Hω(Λ) to much smaller
disjoint cubes, the distribution of which we computed in Lemma 3.2. This
description of the eigenvalues of Hω(Λ) holds with a large probability.

3.1.1. Localization estimates and localization centers. We first recall a result
of [7] defining and describing localization centers, namely,

Lemma 3.1 ([7]). Under assumptions (W) and (Loc), for any p > 0 and ξ ∈
(0, 1), there exists q > 0 such that, for L ≥ 1 large enough, with probability
larger than 1− L−p, if

(1) ϕn,ω is a normalized eigenvector of Hω(ΛL) associated to En,ω ∈ I,
(2) xn(ω) ∈ ΛL is a maximum of x 7→ ‖ϕn,ω‖x in ΛL,

then, for x ∈ ΛL, one has

‖ϕn,ω‖x ≤ Lqe−|x−xn(ω)|ξ

where ‖ · ‖x is defined in (2.5).
Define C(ϕ) = {x ∈ Λ; ‖ϕ‖x = max

γ∈Λ
‖ϕ‖γ} to be the set of localization

centers for ϕ. Then, the diameter of C(ϕj(ω,Λ)) is less than q(log |Λ|)1/ξ.

We define localization centers in a unique way by ordering the set C(ϕ)
lexicographically and take the supremum.

3.1.2. An approximation theorem for eigenvalues. The approximation theo-
rem [7, Theorerm 1.15] for the eigenvalues of Hω(Λ) that was used in [10] to
prove the asymptotic ergodicity of the eigenvalues is not precise enough to
obtain Theorems 1.2, 2.1 and 2.3. More precisely, the assumptions of [7, The-
orerm 1.15] impose restrictions on the length scales (`Λ)Λ that do not cover
all the regimes where it is natural to expect Theorems 1.2, 2.1 and 2.3 to
hold, that is, length scales `Λ that are asymptotically larger than the size of
the localization cube i.e `Λ � logL if assumption (Loc) holds with ξ = 1 and

`Λ � (logL)1/ξ for some ξ < 1 if assumption (Loc) holds with any ξ ∈ (0, 1).

The assumptions of [7, Theorerm 1.15] impose that `Λ � (logL)d/ξ.

Pick ξ ∈ (0, 1], R > 1 large and ρ′ ∈ (0, ρ) where ρ is defined in (M). For a

cube Λ, consider an interval IΛ = [aΛ, bΛ] ⊂ I. Set `′Λ = (R log |Λ|)
1
ξ . Let

α = (αΛ)Λ be a positive sequence such that αΛ → 0 when |Λ| → +∞. We
say that the sequence (IΛ)Λ is (ξ,R, α)-admissible if, for any Λ, one has

(3.1) |Λ|N(IΛ) ≥ 1, N(IΛ)|IΛ| ≥ αΛ, N(IΛ)(`′Λ)d ≤ 1.

In the spirit of [7, Theorerm 1.15], one proves
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Theorem 3.1 ([12]). Assume (IAD), (W), (M) and (Loc) hold. Let Λ = ΛL
be the cube of center 0 and side length L.

Pick β ∈ (0, 1) and a sequence of intervals that is (ξ,R, α)-admissible, say,

(IΛ)Λ such that `′Λ � ˜̀
Λ � L and N(IΛ)αβΛ

˜̀d
Λ → 0 as |Λ| → ∞.

There exists a decomposition of ΛL into disjoint cubes of the form Λ`Λ(γj) :=

γj + [0, `Λ]d, where `Λ = ˜̀
Λ(1 +O(˜̀

Λ/|ΛL|)) = ˜̀
Λ(1 + o(1)) such that

(1) ∪jΛ`Λ(γj) ⊂ ΛL,
(2) dist (Λ`Λ(γj),Λ`Λ(γk)) ≥ `′Λ if j 6= k,
(3) dist (Λ`Λ(γj), ∂ΛL) ≥ `′Λ,
(4) if `Λ � `′′ ≤ L then |Λ`′′ \ [Λ`′′ ∩ ∪jΛ`Λ(γj)]| . |Λ`′′ |`′Λ/`′′,

such that, for any p > 0, for L sufficiently large (depending only on (ξ,R, α, p)
but not on the admissible sequence of intervals), there exists a set of config-
urations ZΛ such that

• ZΛ is large, namely,

(3.2) P(ZΛ) ≥ 1− |Λ|−p − exp
(
−c|IΛ|1+ρ|Λ|`dρΛ )

)
− exp

(
−c|Λ||IΛ|`′Λ`−1

Λ

)

• for ω ∈ ZΛ, there exists |Λ|`−dΛ (1 + o(1)) disjoint boxes Λ`Λ(γj) sat-
isfying the properties:
(1) the Hamiltonian Hω(Λ`Λ(γj)) has at most one eigenvalue in IΛ,

say, En(ω,Λ`Λ(γj));
(2) Λ`Λ(γj) contains at most one center of localization, say xkj (ω,L),

of an eigenvalue of Hω(Λ) in IΛ, say Ekj (ω,Λ);
(3) Λ`Λ(γj) contains a center xkj (ω,Λ) if and only if

σ(Hω(Λ`Λ(γj))) ∩ IΛ 6= ∅;
in which case, one has

(3.3) |Ekj (ω,Λ)− En(ω,Λ`Λ(γj))|
≤ |Λ|−R and dist(xkj (ω,L),ΛL \ Λ`Λ(γj)) ≥ `′Λ

where we recall that `′Λ = (R log |Λ|)
1
ξ ;

• the number of eigenvalues of Hω(Λ) that are not described above is
bounded by

(3.4) CN(IΛ)|Λ|
(

[N(IΛ)`dΛ]ρα−1−ρ
Λ + α−1

Λ `′Λ`
−1
Λ

)
;

this number is o(N(IΛ)|Λ|) provided

(3.5) α−1
Λ `′Λ � `Λ � α

(1+ρ)/ρ
Λ N(IΛ)−

1
d .

We note that the assumptions on (IΛ)Λ in Theorem 3.1 imply that |IΛ| → 0
and N(IΛ) must go to 0 faster than logarithmically in |Λ| (see the right hand
side of (3.5)).

Let us now briefly explain how the length scale `Λ � ˜̀
Λ will be chosen in

our analysis. We will pick the intervals IΛ so that (log |Λ|)−α+ . N(IΛ) .
(log |Λ|)−α− for some large positive α− < α+, and `Λ � N(IΛ)−ν . The
effect of taking α− large is to reduce the checking of the validity of (3.5)
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to checking that ρ′
1+ρ′ <

ρ−ρ′
d(1+ρ)(1+ρ′) which follow from the assumption ρ′ ∈

[0, ρ/(1 + (ρ+ 1)d)). The exponent ν is then chosen so that

(3.6)
ρ′

1 + ρ′
< ν <

ρ− ρ′
d(1 + ρ)(1 + ρ′)

.

Note that the right hand side inequality in (3.5) implies that N(IΛ)
1

1+ρ′ ˜̀d
Λ →

0 as (ρ− ρ′)/(1 + ρ) < 1. With these choices, the bound (3.4) then becomes
bounded by N(IΛ)|Λ|(log |Λ|)−β for some β > 0.

3.2. Distribution of the unfolded eigenvalues. We now describe the
distribution of the unfolded eigenvalues for the operator Hω in a small cube.
Consider a cube Λ = Λ` centered at 0 of side length `. Pick an interval
IΛ = [aΛ, bΛ] ⊂ I (i.e. IΛ is contained in the localization region) for `
sufficiently large.
Consider the following random variables:

• X = X(Λ, IΛ) is the Bernoulli random variable

X = 1Hω(Λ) has exactly one eigenvalue in IΛ with localization center in Λ`−`′

• Ẽ = Ẽ(Λ, IΛ) is this eigenvalue conditioned on X = 1.

Let Ξ̃ be the distribution function of Ẽ. We know

Lemma 3.2 ([7]). Assume (W), (M) and (Loc) hold.
For ν ∈ (0, 1), one has

(3.7) |P(X = 1)−N(IΛ)|Λ||

≤ C
(
|Λ|1+ρ|IΛ|1+ρ + |IΛ|−Ce−`

ν/C +N(IΛ)|Λ|`′`−1 + `de−(`′)ν
)

By (W), the distribution function Ξ̃ is Lipschitz continuous. Moreover, set-
ting N(x, y) := (N(aΛ + x|IΛ|)−N(aΛ + y|IΛ|))|Λ|, one has

(3.8)
∣∣∣(Ξ̃(x)− Ξ̃(y))P (X = 1)−N(x, y,Λ)

∣∣∣

≤ C
(
|x− y|1+ρ|Λ|1+ρ|IΛ|1+ρ + (|IΛ||x− y|)−Ce−`

ν/C

+N(x, y,Λ)`′`−1 + `de−(`′)ν
)
.

This result is useful only when N(IΛ)|Λ| � (|IΛ||Λ|)1+ρ. Thus, by (W), it
requires that |IΛ||Λ| → 0 as |Λ| → +∞. So, we apply this result to intervals
much smaller (here, we measure intervals with the density of states) than
the typical spacing between eigenvalues.

3.3. A large deviation principle for the eigenvalue counting func-
tion. Define the random numbers

(3.9) N(IΛ,Λ, ω) := #{j; Ej(ω,Λ) ∈ IΛ}.
Write IΛ = [aΛ, bΛ] and recall that N(IΛ) = N(bΛ) − N(aΛ) where N is
the integrated density of states. Using Theorem 3.1 and standard large
deviation estimates for i.i.d. random variables, one shows that N(IΛ,Λ, ω)
satisfies a large deviation principle, namely,
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Theorem 3.2 ([7]). Assume (IAD), (W), (M) and (Loc) hold. For any
ρ̃ ∈ (0, ρ) (ρ is defined in Assumption (M)) and ν ∈ (0, 1), there exists δ > 0
such that, if (IΛ)Λ is a sequence of compact intervals in the localization
region I satisfying

• N(IΛ) (log |Λ|)1/δ → 0 as |Λ| → +∞
• N(IΛ) |Λ|1−ν → +∞ as |Λ| → +∞
• N(IΛ) |IΛ|−1−ρ̃ → +∞ as |Λ| → +∞,

then, for |Λ| sufficiently large (depending on ρ̃ and ν but not on the specific
sequence (IΛ)Λ), one has

(3.10) P
(
|N(IΛ,Λ, ω)−N(IΛ)|Λ|| ≥ N(IΛ)|Λ|(log |Λ|)−δ

)
≤ e−(N(IΛ)|Λ|)δ .

Note that as J 7→ N(J) is a measure, thus, additive, for J ⊂ I the region
of localization, one may split J into intervals (Jk)k such that N(Jk) �
(log |Λ|)−1/δ′ , δ′ ∈ (0, δ), and sum the estimates given by Theorem 1.2 on
each Jk to obtain that

P
(
|N(J,Λ, ω)−N(J)|Λ|| ≥ N(J)|Λ|(log |Λ|)−δ

)

. N(J)(log |Λ|)1/δ′e−|Λ|
δ(log |Λ|)−δ/δ′ .

This gives a useful large deviation estimate for intervals of macroscopic size.
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