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STABLE SOLITON RESOLUTION FOR

EQUIVARIANT WAVE MAPS EXTERIOR TO A BALL

ANDREW LAWRIE

Abstract. In this report we review the proof of the stable soliton resolution

conjecture for equivariant wave maps exterior to a ball in R3 and taking values
in the 3-sphere. This is joint work with Carlos Kenig, Baoping Liu, and

Wilhelm Schlag.

1. Introduction

This report describes recent work of the author with Wilhelm Schlag [15], Carlos
Kenig and W. Schlag [12], and C. Kenig, Baoping Liu, and W. Schlag [10, 11]. We
establish stable soliton resolution for equivariant wave maps

U : R1+3
t,x \(R×B(0, 1))→ S3,

with a Dirichlet condition on the boundary of the unit ball B(0, 1) ⊂ R3 and initial
data of finite energy.

To be precise, consider the Lagrangian action

L(U, ∂tU) =

∫

R1+3
t,x \(R×B(0,1))

1

2

(
− |∂tU |2g +

3∑

j=1

|∂xU |2g
)
dtdx,

where g is the round metric on S3, and where we only consider functions for which
the boundary of the unit cylinder R×B(0, 1) gets mapped to a fixed point on the
3-sphere, i.e, U(t, ∂B(0, 1)) = N , where N ∈ S3 is say, the north pole. Under the
usual `-equivariant assumption, for ` ∈ N, the Euler-Lagrange equation associated
with this action reduces to an equation for the azimuth angle ψ measured from the
north pole on S3, namely

ψtt − ψrr −
2

r
ψr +

`(`+ 1)

2r2
sin(2ψ) = 0.

The Dirichlet boundary condition then becomes ψ(t, 1) = 0 for all t ∈ R and thus
the Cauchy problem under consideration is,

ψtt − ψrr −
2

r
ψr +

`(`+ 1)

2r2
sin(2ψ) = 0, r ≥ 1,

ψ(0, r) = ψ0(r), ψt(0, r) = ψ1(r), and ψ(t, 1) = 0, ∀t,
(1.1)
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and solutions ~ψ(t) := (ψ(t), ψt(t)) to (1.1) will be referred to as `-equivariant exte-
rior wave maps. The conserved energy for (1.1) is given by

E`(ψ,ψt) =

∫ ∞

1

1

2

(
ψ2
t + ψ2

r +
`(`+ 1) sin2 ψ

r2

)
r2 dr.

A simple analysis of the last term in the integrand above yields topological informa-

tion on the wave map if we require the energy to be finite. Indeed, smooth ~ψ(t, r)
on a time interval I = (t0, t1) with finite energy must satisfy ψ(t,∞) = nπ,∀t ∈ I,
where n ∈ Z. Given the fact that ψ measures the azimuth angle from the north
pole, and ψ(t, 1) = 0 for all t ∈ I, this means that the integer |n| measures the
topological degree of the map. Note that the case n ≥ 0 covers the entire range
n ∈ Z by the symmetry ψ 7→ −ψ.

In what follows we will refer to n ≥ 0 as the degree of the map, and we will denote
by E`,n the connected component of the metric space of all initial data (ψ0, ψ1) with
finite energy, obeying the boundary condition ψ0(1) = 0 and of degree n, i.e.,

E`,n =
{

(ψ0, ψ1) | E`(ψ0, ψ1) <∞, ψ0(1) = 0, lim
r→+∞

ψ0(r) = nπ
}
.

There are several appealing features of this model that make it an ideal setting
in which to study soliton resolution. First, by removing the unit ball in R3 and
imposing the Dirichlet boundary condition, we break the scaling symmetry. This
removes the super-criticality at r = 0 of the 3d wave maps problem and effectively
renders the problem subcritical relative to the energy. Global well-posedness in the
energy space is then an immediate consequence. Second, the removal of the unit
ball also gives rise to an infinite family of stationary solutions (Q`,n(r), 0), indexed
by their topological degree n ∈ N; see Section 2.1 for more. In particular, the
solution (Q`,n(r), 0) satisfies

Q`,n(1) = 0, lim
r→∞

Q`,n(r) = nπ.

Moreover, (Q`,n(r), 0) minimizes the energy in E`,n and is the unique stationary
solution in this degree class. Both of these features are in stark contrast to the
same equation on R1+3 which is super-critical relative to the energy, is known to
develop singularities in finite time, and has no nontrivial finite energy stationary
solutions, see for example Shatah [16], and Shatah and Struwe [17].

For a fixed equivariance class ` ∈ N, the natural topology in which to place a
degree n = 0 solution is the energy space H`,0 = Ḣ1

0 × L2(R3
∗) with norm

‖~ψ‖2H0
:=

∫ ∞

1

(ψ2
t + ψ2

r) r2 dr, ~ψ = (ψ,ψt). (1.2)

Here R3
∗ := R3\B(0, 1), and Ḣ1

0 (R3
∗) is the completion of smooth functions on R3

∗
with compact support under the first norm on the right-hand side of (1.2). For
n ≥ 1, denote by Hn := E`,n − (Q`,n, 0) with “norm”

‖~ψ‖Hn
:= ‖~ψ − (Q`,n, 0)‖H0

.

We remark that the boundary condition at r = ∞ is now ~ψ − (Q`,n, 0) → 0 as
r →∞ with this notation.

The exterior model was first introduced in the physics literature in [2], as an
easier alternative to the Skyrmion equation. Recently, (1.1) was proposed by Bi-
zon, Chmaj, and Maliborski in [3] as a model to study the problem of relaxation
to the ground states given by various equivariant harmonic maps. Both [2, 3]
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stress the analogy of the stationary equation with that of the damped pendulum
by demonstrating the existence and uniqueness of the ground state harmonic maps
via a phase-plane analysis. The numerical simulations in [3] indicate that for each
equivariance class ` ≥ 1, and each topological class n ≥ 0, every solution scatters
to the unique harmonic map Q`,n that lies in E`,n, giving evidence that the soliton
resolution conjecture holds true in this exterior model. This conjecture was veri-
fied for 1-equivariant (or co-rotational) exterior wave maps with topological degree
n = 0 by the author, and Schlag in [15], for ` = 1 and all topological degrees n ≥ 0
by Kenig, the author, and Schlag [12], and finally for all remaining equivaraince
classes ` ≥ 2 by Kenig, the author, Liu, and Schlag in [11].

The main result is as follows.

Theorem 1.1 (Stable Soliton Resolution [15, 12, 11]). Let ` ≥ 1 and n ≥ 0 be
arbitrary integers. For any smooth energy data in E`,n the corresponding wave map
~ψ(t) is globally regular and scatters to the harmonic map (Q`,n, 0) as t→ ±∞.

Here “scattering to the harmonic map (Q`,n, 0)” means that for each solution
~ψ(t) to (1.1) we can find solutions ~ϕ±L to the linear equation

ϕtt − ϕrr −
2

r
ϕr +

`(`+ 1)

r2
ϕ = 0, r ≥ 1, ϕ(t, 1) = 0.

so that
~ψ(t) = (Q`,n, 0) + ~ϕ±L (t) + oH0

(1), as t→ ±∞.
In other words, Theorem 1.1 is a verification of the soliton resolution conjecture
for (1.1).

We emphasize that only the scattering statement in Theorem 1.1 is difficult to
prove. We employ the concentration compactness/rigidity method developed by the
Kenig and Merle in [13, 14]. After proving a suitable small data/pertubative theory,
and carrying out the concentration compactness procedure, one reduces the proof
of Theorem 1.1 to a rigidity argument, where the goal is to show that any solution
to (1.1) with a pre-compact trajectory in the energy space must be a harmonic map.
To prove this we use a version of the ‘channels of energy’ argument introduced by
Duyckaerts, Kenig, and Merle in [7, 8]. The proof relies crucially on exterior energy
estimates for the free radial wave equation in dimension d = 2`+ 3 where ` is the
equivariance class. These estimates were established in [4] for dimension d = 3,
in [12] for dimension d = 5, and [10] for all odd dimensions; see Theorem 4.1.

2. Harmonic maps, high dimensional reduction

We briefly cover a few basic properties of the harmonic maps Q`,n, and reduce
the `-equivariant wave map problem to an exterior semi-linear wave equation in
Rd∗ := Rd\B(0, 1), with a Dirichlet boundary condition at r = 1, and with d :=
2`+ 3.

2.1. Exterior harmonic maps. In each energy class E`,n, there is a unique finite
energy exterior harmonic map, which is a minimizer of the energy E`,n and also a
static solution to (1.1), i.e.

∂rrQ`,n +
2

r
∂rQ`,n =

`(`+ 1)

2r2
sin(2Q`,n)

Q`,n(1) = 0, lim
r→∞

Q`,n(r) = nπ
(2.1)
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As in [12] we change variables, setting s := log r, and φ(s) := Q`,n(r). The equa-
tion (2.1) becomes

φss + φs =
`(`+ 1)

2
sin(2φ), φ(0) = 0, φ(∞) = nπ, (2.2)

Noting that (2.2) can be written as an autonomous system in the plane, we can
perform a standard analysis of the phase portrait to deduce the following result.

Lemma 2.1. For all α ∈ R, there exists a unique solution Q`,α ∈ Ḣ1(R3
∗) to (2.1)

with

Q`,α(r) = nπ − α

r`+1
+O(r−3(`+1)) as r →∞ (2.3)

The O(·) is uniquely determined by α and vanishes for α = 0. Moreover, there exist
a unique α0 > 0 such that Qα0(1) = 0, we will denote it as Q`,n.

2.2. Reduction to an exterior wave equation in high dimensions. At this
point we fix an arbitrary equivariance class ` ≥ 1 and topological degree n ≥ 0.
We reduce (1.1) to a semi-linear equation in R2`+3

∗ . To perform this reduction, we
first linearize (1.1) about the unique `-harmonic map of degree n, Q`,n. As we have
fixed ` and n, we will simplify notation by writing Q = Q`,n and we note that when
n = 0 we have Q ≡ 0.

For each solution ~ψ to (1.1) we define ~ϕ by

~ψ := (Q, 0) + ~ϕ.

Using the equations for ~ψ and for Q we see that ~ϕ solves

ϕtt − ϕrr −
2

r
ϕr +

`(`+ 1) cos(2Q)

r2
ϕ = Z(r, ϕ)

ϕ(t, 1) = 0, ϕ(t,∞) = 0 ∀t,
~ϕ(0) = (ψ0 −Q,ψ1),

(2.4)

where here

Z(r, ϕ) :=
`(`+ 1)

2r2
[2ϕ− sin(2ϕ)] cos(2Q) + (1− cos(2ϕ)) sin 2Q

The left-hand-side of (2.4) has more dispersion than a wave equation in 3d due to
the strong repulsive potential

`(`+ 1) cos(2Q)

r2
=
`(`+ 1)

r2
+O(r−2`−4) as r →∞

where we have used the asymptotic behavior of Q from (2.3) in the expansion
above. Indeed, the coefficient `(` + 1) in front of the r−2 term indicates that we
have the the same dispersion as a d = 2` + 3-dimensional wave equation. This is
made precise by the following standard reduction. We define ~u by setting ϕ = r`u.
Then ~u solves the following equation.

utt − urr −
2`+ 2

r
ur + V (r)u = N (r, u), r ≥ 1

u(t, 1) = 0, ∀t ∈ R, ~u(0) = (u0, u1)
(2.5)
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where

V (r) :=
`(`+ 1)(cos 2Q− 1)

r2
, N (r, u) := F (r, u) +G(r, u), (2.6)

F (r, u) :=
`(`+ 1)

r`+2
sin2(r`u) sin 2Q, G(r, u) :=

`(`+ 1)

2r`+2
(2r`u− sin(2r`u)) cos 2Q

The potential V (r) is real-valued, radial, bounded, and smooth. Using the asymp-
totics of Q in (2.3), we see that V has the asymptotics

V (r) = O(r−2`−4), as r →∞ (2.7)

For the nonlinearity N = F +G we have

|F (r, u)| ≤ C0r
−3|u|2, |G(r, u)| ≤ C0r

2`−2|u|3 (2.8)

The constant C0 here depends only on d = 2`+ 3 and Q.
We will consider radial initial data

(u0, u1) ∈ H := Ḣ1
0 × L2(Rd∗),

where

‖(u0, u1)‖2H :=

∫ ∞

1

[(∂ru0(r))2 + u1(r)2] r2`+2 dr

and Ḣ1
0 (Rd∗) is the completion under the first norm on the right-hand side above of

all smooth radial compactly supported functions on Rd∗, with d = 2`+ 3.
From now on, we will work exclusively in the “u-formulation”, (2.5), rather than

with the `-equivariant wave map angle ψ(t, r) as in (1.1). In fact, the Cauchy
problem (1.1) with data (ψ0, ψ1) ∈ E`,n is equivalent to the problem (2.5) with
initial data

H 3 (u0, u1) :=
1

r`
(ψ0 −Q,ψ1).

We thus prove the analogous version of Theorem 1.1 in the “u-formulation.” It is
clear from the definition of ~u(t) that Theorem 1.1 is true if and only if every solution
~u(t) to (2.5) scatters as t → ±∞. Scattering here means that solutions to (2.5)
approach free waves in R × Rd∗ in the space H. A free wave in this context is a
solution to (2.5) with V = N = 0. We prove the following equivalent reformulation
of Theorem 1.1.

Theorem 2.2. For any initial data ~u(0) ∈ H, there exist a unique, global-in-time
solution ~u(t) ∈ H to (2.5). Moreover ~u(t) scatters to free waves as t→ ±∞.

3. Small data theory and Concentration compactness

The proof of Theorem 2.2, and hence of the equivalent statement Theorem 1.1,
proceeds via the concentration compactness/ rigidity method introduced by the
Kenig and Merle in [13, 14]. The argument can be divided into three separate steps,
namely (1) a small data theory, i.e., a proof of Theorem 2.2 for initial data with
small enough H-norm; (2) a concentration compactness argument. If Theorem 2.2
fails, then there exists a critical element, which is a minimal non-scattering solution
with a pre-compact trajectory in H. The critical element is nonzero, by step (1).
The main ingredient here is an analogue of the nonlinear profile decomposition
of Bahouri and Gerard, [1], adapted to (2.5) along with a nonlinear perturbation
theory; and finally (3) a rigidity argument. Here one shows that any solution with
a pre-compact trajectory as in step (2) must be identically ≡ 0. This contradicts
the existence of the critical element from step (2) and completes the proof.
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In this section we outline steps (1) and (2) above.

3.1. Small data theory. The first order of business is to establish a small data
theory for (2.5). The main ingredients here are Strichartz estimates for the linear
inhomogeneous wave equation perturbed by the radial potential V . Indeed, consider

utt − urr −
d− 1

r
ur + V (r)u = N , r ≥ 1

u(t, 1) = 0, ∀t, ~u(0) = (u0, u1) ∈ H.
(3.1)

The conserved energy for (3.1) with N = 0 is

EL(u, ut) =
1

2

∫ ∞

1

(u2t + u2r + V (r)u2) rd−1 dr

As shown in [15, 12] this energy has an important positive definiteness property,
namely,

EL(u, ut) =
1

2
(‖ut‖22 + 〈Hu | u〉), H = −∆ + V

It is shown in [3, 15] that H is a nonnegative self-adjoint operator in L2(Rd∗) (with
a Dirichlet condition at r = 1), and moreover, that the threshold energy zero is

regular; this means that if Hf = 0 where f ∈ H2 ∩ Ḣ1
0 then f = 0. It is standard

to conclude from this spectral information that for some constants 0 < c1 < c2,

c1‖f‖2Ḣ1
0
≤ 〈Hf | f〉 ≤ c2‖f‖2Ḣ1

0
∀ f ∈ Ḣ1

0 (Rd∗)

In the sequel we will sometimes write ‖~u‖2E := EL(~u), which satisfies

‖~u‖E ' ‖~u‖H ∀~u ∈ H(Rd∗) (3.2)

We call a triple (p, q, γ) admissible if

p > 2, q ≥ 2,
1

p
+
d

q
=
d

2
− γ, 1

p
≤ d− 1

2
(
1

2
− 1

q
)

Theorem 3.1 (Strichartz estimates [15]). Let (p, q, γ), (r, s, ρ) be admissible triples,
then any solution u to (3.1) with radial initial data satisfies

‖|∇|−γ∇u‖Lp
tL

q
x(Rd
∗)
. ‖~u(0)‖H + ‖|∇|ρN‖Lr′

t L
s′
x (Rd

∗)
,

where here r′, s′ are the conjugates of r, s.

Remark 1. The case when potential V = 0 is proved in [9]. The case with V as
in (2.6) can be proved by adapting the argument in [15, Proposition 5.1], which
is performed for ` = 1 to dimension d = 2` + 3. In [15] the proof is reduced
to deducing localized energy estimates for (2.5) with V as in (2.6). The local
energy estimates are proved using the distorted Fourier transform relative to the
self-adjoint Schrödinger operator HV = −∆ + V on L2(Rd∗), and rely crucially on
decay properties of the corresponding spectral measure. It is essential here H has
no negative spectrum and that the edge of the continuous spectrum for H is neither
an eigenvalue nor a resonance; see [15, Section 5] for more details.

A standard consequence of the Strichartz estimates is the following small data
scattering theory. For a time interval I, we denote by S(I) the space S(I) :=

L
d+2
d−2

t (I;L
2 d+2

d−2
x (Rd∗)) with norm

‖u‖S(I) := ‖u‖
L

d+2
d−2
t (I;L

2 d+2
d−2

x (Rd
∗))

(3.3)
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Theorem 3.2. The exterior Cauchy problem for (2.5) is globally well-posed in

H := Ḣ1
0 ×L2(Rd∗). Moreover, a solution ~u scatters as t→ ±∞ to free waves, i.e.,

solutions ~u±L ∈ H of

�u±L = 0, r ≥ 1, u±L (t, 1) = 0, ∀t ≥ 0 (3.4)

if and only if
‖u‖S(R±) <∞,

where R+ := [0,∞) and R− := (−∞, 0]. In particular, there exists a constant
δ0 > 0 small so that if ‖~u(0)‖H < δ0, then ~u scatters to free waves as t→ ±∞.

3.2. Concentration compactness. By the concentration compactness method-
ology in [13, 14], we can perform the following reduction: If Theorem 1.1, (and
hence Theorem 2.2), fails, we can construct a critical element, which is a global
non-scattering solution to (2.5) with minimal energy and has a pre-compact trajec-
tory in H. Indeed, following the argument given in [12, Proof of Proposition 3.6]
we deduce the following result.

Proposition 3.3. Suppose that Theorem 2.2 fails. Then there exists a nonzero,
global solution ~u∗(t) ∈ H to (2.5), such that the trajectory

K := {~u∗(t)|t ∈ R}
is pre-compact in H = Ḣ1 × L2(Rd∗). We call ~u∗(t) a critical element.

The key ingredients in the proof of Proposition 3.3 are a Bahouri-Gérard pro-
file decomposition and a nonlinear perturbation theory, see [12, Lemma 3.4 and
Lemma 3.5]. We omit the details and just formulate the concentration compact-
ness principle relative to the linear wave equation with a potential, i.e., (2.5) with
N = 0. We note that any solution to (2.5) with N = 0, which is in S(R) must
scatter to “free” waves.

Lemma 3.4 ([12, Lemma 3.4], [1]). Let {un} be a sequence of radial solutions

to (2.5) with N = 0, which are uniformly bounded in H = Ḣ1
0 × L2(Rd∗). After

passing to a subsequence, there exists a sequence of solutions V jL to (2.5) with N = 0,
which are bounded in H, and sequences of times {tjn} ⊂ R such that for errors wkn,L
defined by

un(t) =
∑

1≤j<k
V jL(t− tjn) + wkn,L(t)

we have for any j < k,

~wkn,L(tjn) ⇀ 0

weakly in H as n→∞, as well as

lim
n→∞

|tjn − tkn| =∞

and the errors wkn vanish asymptotically in the sense that

lim
k→∞

lim sup
n→∞

‖wkn,L‖(L∞t Lp
x∩S)(R×Rd

∗)
= 0 ∀ 2d

d− 2
< p <∞

Finally, one has orthogonality of the free energy with a potential,

‖~un‖2E =
∑

1≤j<k
‖~V jL‖2E + ‖~γkn‖2E + on(1)

as n→∞.
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4. Channels of energy

It remains to show that a nontrivial compact trajectory as in Proposition 3.3
cannot exist. This is referred to as the “rigidity” step in the Kenig-Merle scheme.
Previous incarnations of this part of the argument, e.g., [13, 14], relied on virial or
Morawetz type identities, which are obtained by contracting the stress energy tensor
with appropriate vector fields. However, such dynamical identities are extremely
sensitive to the precise structure of the particular nonlinear wave equation under
consideration, and do not easily generalize more complicated nonlinearities. An
important breakthrough was made by Duyckaerts, Kenig, and Merle, [4, 6, 5, 7, 8],
who developed an alternative approach called the ‘channels of energy’ method for
rigidity arguments.

Here we outline a version of this argument adapted to the present setting. The
key new technical ingredient are exterior energy estimates for the free radial wave
equation in odd dimensions proved for d = 3 in [4], for d = 5 in [12] and for d ≥ 7
in [10].

4.1. Exterior Energy Estimates. We now turn to the main new ingredient from
the linear theory, which is Theorem 4.1. In order to motivate this result, we first
review the analogous statements in dimensions d = 1 and d = 3.

Suppose wtt −wxx = 0 with smooth energy data (w(0), ẇ(0)) = (f, g). Then by
local energy conservation
∫

x>a

1

2
(w2

t +w2
x)(0, x) dx−

∫

x>T+a

1

2
(w2

t +w2
x)(T, x) dx =

1

2

∫ T

0

(wt+wx)2(t, t+a) dt

for any T > 0 and a ∈ R. Since (∂t − ∂x)(wt + wx) = 0, we have that

1

2

∫ T

0

(wt + wx)2(t, t+ a) dt =
1

2

∫ T

0

(wt + wx)2(0, a+ 2t) dt

=
1

4

∫ a+2T

a

(wt + wx)2(0, x) dx =
1

4

∫ a+2T

a

(fx + g)2(x) dx

Consequently,
∫

x>a

1

2
(w2

t + w2
x)(0, x) dx− lim

T→∞

∫

x>T+a

1

2
(w2

t + w2
x)(T, x) dx

=
1

4

∫ ∞

a

(fx + g)2(x) dx

and thus

min
±

[ ∫

x>a

1

2
(f2x + g2)(0, x) dx− lim

T→±∞

∫

x>|T |+a

1

2
(w2

t + w2
x)(T, x) dx

]

≤ 1

4

∫ ∞

a

(f2x + g2)(x) dx

whence

max
±

lim
T→±∞

∫

x>|T |+a

1

2
(w2

t + w2
x)(T, x) dx ≥ 1

4

∫ ∞

a

(f2x + g2)(x) dx (4.1)

Here we used that t 7→ −t leaves f unchanged, but turns g into −g.
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Given �u = 0 radial in three dimensions, w(t, r) = ru(t, r) solves wtt−wrr = 0.
Consequently, (1.1) gives the following estimate from [4, Lemma 4.2], see also [5,
7, 8]: for any a ≥ 0 one has

max
±

lim
T→±∞

∫

r>|T |+a

1

2
((ru)2r + (rut)

2)(T, r) dr

≥ 1

4

∫

r>a

((rf)2r + (rg)2)(r) dr

(4.2)

where u(0) = f , u̇(0) = g. The left-hand side of (4.2) equals

max
±

lim
T→±∞

∫

r>|T |+a

1

2
(u2r + u2t )(T, r) r

2dr (4.3)

by the standard dispersive properties of the wave equation. The right-hand side,
on the other hand, exhibits the following dichotomy: if a = 0, then it equals half
of the full energy

1

4

∫ ∞

0

(f2r + g2)(r) r2dr

However, if a > 0, then integration by parts shows that it equals (ignoring the
constant from the spherical measure in R3)

1

4

∫

r>a

(f2r + g2)(r)r2 dr − 1

4
af2(a) =

1

4
‖π⊥a (f, g)‖2

Ḣ1×L2(r>a)

where π⊥a = Id− πa and πa is the orthogonal projection onto the line

{(cr−1, 0) | c ∈ R} ⊂ Ḣ1 × L2(r > a).

The appearance of this projection is natural, in view of the fact that the Newton
potential r−1 in R3 yields an explicit solution to �u = 0, u(0, r) = r−1, u̇(0, r) = 0:
indeed, one has u(r, t) = r−1 in r > |t| + a for which (4.3) vanishes. Since r−1 6∈
L2(r > 1) no projection appears in the time component. In contrast, the Newton
potential in R5, viz. r−3, does lie in H1(r > a) for any a > 0. This explains why in
R5 we need to project away from a plane rather than a line. In higher dimensions,
the dimension of the space of “bad solutions” generated by such examples grows.

Below we use the notation [x] for the largest integer k ∈ Z, k ≤ x.

Theorem 4.1 ([10, Theorem 2]). In any odd dimension d > 0, every radial energy

solution of �u = 0, u(0) = f, ut(0) = g in R1+d
t,x satisfies the following estimate:

For every R > 0

max
±

lim
t→±∞

∫

r≥|t|+R
|∇t,xu(t, r)|2 rd−1 dr ≥ 1

2
‖π⊥R (f, g)‖2

Ḣ1×L2(r≥R;rd−1dr)
(4.4)

Here

P (R) := span

{
(r2k1−d, 0), (0, r2k2−d) | k1 = 1, 2, · · · [d+ 2

4
]; k2 = 1, 2, · · · [d

4
]

}

and π⊥R denotes the orthogonal projection onto the complement of the plane P (R)

in (Ḣ1 × L2)(r ≥ R; rd−1dr).
The inequality becomes an equality for data of the form (0, g) and (f, 0). More-

over, the left-hand side of (4.4) vanishes exactly for all data in P (R).
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Remark 2. The elementary argument given in the beginning of this subsection
does not seem to generalize to dimensions d ≥ 7. Indeed, the proof of Theorem 4.1
given in [10] is performed on the “Fourier side” and involves computing explicit
asymptotics for the left-hand-side of (4.4).

4.2. Rigidity Argument. With the linear theory in hand, one can now show that
the critical element ~u∗ from Proposition 3.3 does not exist. In particular, one has
the following rigidity theorem.

Theorem 4.2 (Rigidity Theorem [12, 11]). Let ~u(t) ∈ H = Ḣ1×L2(Rd∗) be a global
solution to (2.5) such that the trajectory

K := {~u(t)|t ∈ R}
is pre-compact in H. Then u ≡ 0.

We will use the hypothesis above in the following manner: the pre-compactness
of the trajectory K implies that the H-norm of ~u(t) decays on the exterior cone
{r ≥ R+ |t|} as t→ ±∞.

Corollary 4.3. Given ~u(t) as in Theorem 4.2 and any R ≥ 1, we have

‖~u(t)‖H(r≥R+|t|) → 0 as t→ ±∞. (4.5)

The main idea is now as as follows: We can choose R large enough above so
that the compact solution u has small energy outside the ball of radius R. This
means that we can approximate the nonlinear solution in this exterior region by a
free wave with the same data since the nonlinear terms are perturbative for small
energies. One can then use Theorem 4.1 to deduce the following estimates for ~u(t).

Proposition 4.4. Given a radial global solution ~u(t) to (2.5) with a pre-compact
trajectory, there exists a number R0 > 1 such that for every R > R0, we have the
following estimate uniformly in time t ∈ R.

‖π⊥R~u(t)‖H(r≥R) .R1−d‖πR~u(t)‖H(r≥R)

+R−
d
2 ‖πR~u(t)‖2H(r≥R) +R−1‖πR~u(t)‖3H(r≥R)

(4.6)

Here H(r ≥ R) := Ḣ1×L2(Rd\B(0, R)), πR and π⊥R are defined as in Theorem 4.1.

Roughly, the above says that our compact trajectory stays uniformly close in H
to the subspace P (R) defined in Theorem 4.1. With a delicate, but elementary
argument we can now establish the precise spacial asymptotic behavior of ~u(t). In
particular one shows that ~u(0) has same the spacial decay as 1

r (Q(r)−nπ) where Q
is a solution to the elliptic equation (2.1) as in Lemma 2.1 – note that this is better
decay than what is expected for generic energy data. Indeed, we prove that

u0(r) = ϑr2−d +O(r3−2d) as r →∞
∫ ∞

r

u1(s)s2i−1ds = O(r2i+2−2d) as r →∞, ∀1 ≤ i ≤ k
(4.7)

where ϑ is some constant, and k := [d4 ].
We then argue by contradiction to show that ~u(t) = (0, 0) is the only solution

with pre-compact trajectory K as in Theorem 4.2 and data that decay like (4.7).
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