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RECENT RESULTS ON STATIONARY CRITICAL KIRCHHOFF

SYSTEMS IN CLOSED MANIFOLDS

EMMANUEL HEBEY AND PIERRE-DAMIEN THIZY

Abstract. We report on results we recently obtained in Hebey and Thizy [11,
12] for critical stationary Kirchhoff systems in closed manifolds. Let (Mn, g)

be a closed n-manifold, n ≥ 3. The critical Kirchhoff systems we consider are

written as
(
a + b

p∑

j=1

∫

M
|∇uj |2dvg

)
∆gui +

p∑

j=1

Aijuj = |U |2?−2 ui

for all i = 1, . . . , p, where ∆g is the Laplace-Beltrami operator, A is a C1-map

from M into the space Mp
s (R) of symmetric p×p matrices with real entries, the

Aij ’s are the components of A, U = (u1, . . . , up), |U | : M → R is the Euclidean

norm of U , 2? = 2n
n−2

is the critical Sobolev exponent, and we require that

ui ≥ 0 in M for all i = 1, . . . , p. We discuss the two following issues in
this text: the question of the existence of nontrivial solutions to our systems,

together with the dual question of getting nonexistence results in parallel to

our existence results, and the question of the stability of our systems which
measures how much the equations are robust with respect to variations of their

natural parameters a, b, and A.

The Kirchhoff equation was proposed in 1883 by Kirchhoff [13] as an extension
of the classical D’Alembert’s wave equation for the vibration of elastic strings. It
was written as

ρ
∂2u

∂t2
−
(
P0

h
+

E

2L

∫ L

0

|∂u
∂x
|2dx

)
∂2u

∂x2
= 0 ,

where L is the length of the string, h is the area of the cross-section, E is the young
modulus (elastic modulus) of the material, ρ is the mass density, and P0 is the
initial tension. Almost one century later, Jacques Louis Lions [16] returned to the
equation and proposed a general Kirchhoff equation in arbitrary dimension with
external force term which was written as

∂2u

∂t2
+
(
a+ b

∫

Ω

|∇u|2dx
)

∆u = f(x, u) ,

where ∆ = −∑ ∂2

∂x2
i

is the Laplace-Beltrami Euclidean Laplacian. We investigate

in this paper the stationary version of this equation, in the case of closed manifolds,
and when f is a pure power nonlinearity. We choose the pure power nonlinearity
to be critical, and shift to the more involved case of a multi-valued version of
the equation. The combination of the nonlocal aspects inherent to the Kirchhoff
equation and of the multi-valued character of systems lead to surprising effects such
as the energy and bubbling control we can get for the equations, or such as the
nonexistence results we can prove when p ≥ 3 and which exhibit the importance
of the cooperativeness assumption in the existence results we obtain by passing
through the subcritical equations and using the compactness theory attached to
bubbling control we just mentioned.The 3-dimensional case of our equations has
been investigated in Hebey and Thizy [11]. The n-dimensional case, n ≥ 4, was
investigated in Hebey and Thizy [12].
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In what follows we let (Mn, g) be a closed Riemannian n-manifold with n ≥ 3,
p ∈ N? be a nonzero integer, a, b > 0 be positive real numbers, and A : M →Mp

s (R)
be a C1-map from M into the space Mp

s (R) of symmetric p × p matrices with
real entries. The Kirchhoff system of p equations we investigate in this paper is
written as

(
a+ b

p∑

j=1

∫

M

|∇uj |2dvg
)

∆gui +

p∑

j=1

Aijuj = |U |2
?−2

ui (0.1)

for all i = 1, . . . , p, where ∆g = −divg∇ is the Laplace-Beltrami operator, the Aij ’s
are the components of A, U = (u1, . . . , up), |U | : M → R is given by

|U | =

√√√√
p∑

j=1

u2
j ,

2? = 2n
n−2 is the critical Sobolev exponent, and we require that ui ≥ 0 in M for

all i = 1, . . . , p. We address several questions in this paper such as the question
of the existence or nonexistence of solutions, and the question of the compactness
associated to (0.1). As a general remark, elliptic regularity theory applies so that
any H1-solution to a system like (0.1) is also a strong solution of class C2 of the
system. Because of this remark, solutions in this text are strong C2-solutions.

1. Bounded energy

Let a, b > 0 be positive real numbers, and A : M → Mp
s (R) be a C1-map. We

consider perturbations of our Kirchhoff system (0.1) where we allow asymptotically-
critical subcritical nonlinearities. These are written as

(
aα + bα

p∑

j=1

∫

M

|∇uj |2dvg
)

∆gui +

p∑

j=1

Aαijuj = |U |pα−2
ui (1.1)

for all i = 1, . . . , p, where (pα)α is a sequence of numbers in (2, 2?] such that pα → 2?

as α→ +∞, (aα)α and (bα)α are two sequences of positive real numbers converging
to a and b, and (Aα)α is a sequence of C1-maps Aα : M → Mp

s (R) converging C1

to A. A sequence (Uα)α of p-maps is naturally said to be a sequence of nonnegative
solutions of (1.1) if Uα has nonnegative components and solves the α-equation (1.1)
for all α. We let the H1-norm of a p-map U be given by ‖U‖H1 =

∑
i ‖ui‖H1 , where

the ui’s are the components of U , and ‖ · ‖H1 is the usual H1-norm for functions
given by ‖u‖2H1 =

∫
M

(|∇u|2+u2)dvg. One of the main effect of the nonlinear aspect
of the Kirchhoff equations is that it produces bounded energy. This statement, see
Theorem 1.1 below, is true in almost all dimensions. We let

S =
n(n− 2)ω

2/n
n

4
(1.2)

be the sharp constant in the Euclidean Sobolev inequality S‖u‖2
L2? ≤ ‖∇u‖2L2 ,

where ωn is the volume of the unit n-sphere.

Theorem 1.1 (Bounded Energy; Hebey and Thizy [11, 12]). Let (Mn, g) be a
closed Riemannian n-manifold with n ≥ 3, p ∈ N? be a nonzero integer, a, b > 0 be
positive real numbers, and A : M → Mp

s (R) be a C1-map from M into the space
Mp
s (R) of symmetric p×p matrices with real entries. When n = 4 we assume either

that the scalar curvature Sg of g is positive or that bS2?/2 > 1, where S is as in
(1.2). Then there exists C > 0 such that

‖Uα‖H1 ≤ C (1.3)
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for all α, all sequences (Uα)α of nonnegative solutions of (1.1), and all perturbed
systems (1.1), where (aα)α and (bα)α converge to a and b, (pα)α is a sequence of
numbers in (2, 2?] converging to 2? and (Aα)α converges C1 to A.

The 4-dimensional case in Theorem 1.1 turns out to be very special. The two
following remarks from Hebey and Thizy [12] comment on this special case. Re-
mark 1.1 shows that the condition bS2?/2 > 1 can be generalized when we restrict
ourselves to purely critical perturbations (for which, by definition, pα = 2? for all
α). Remark 1.2 shows that the two extra 4-dimensional conditions requiring that
either Sg > 0 in M , or bS2?/2 > 1, are necessary. The notation λN? for λ ∈ R
refers to the set consisting of the λn’s for n ≥ 1 integer.

Remark 1.1 (Bounded energy for almost all b). Let (M4, g) be a closed Riemann-
ian 4-manifold, p ∈ N? be a nonzero integer, a, b > 0 be positive real numbers, and
A : M → Mp

s (R) be a C1-map. Assume that 1
b 6∈ S2?/2N, where S is as in (1.2).

Then there exists C > 0 such that

‖Uα‖H1 ≤ C
for all α, all sequences (Uα)α of nonnegative solutions of (1.1), and all perturbed
systems (1.1) in the purely critical case for which pα = 2? for all α, where (aα)α
and (bα)α converge to a and b, and (Aα)α converges C1 to A.

Concerning the sharpness of the 4-dimensional conditions we also get that the
following holds true. The result here is built on the Pistoia and Vétois [18] bubble
construction for Schrödinger equations.

Remark 1.2 (Sharpness of the 4-dimensional conditions). Let (M4, g) be a closed
Riemannian 4-manifold and a > 0 be a positive real number. Assume that the
scalar curvature Sg of g is nonpositive in M . Then, there exist A : M → Mp

s (R)
a C1-map, (aα)α and (bα)α sequences of positive real numbers converging to a and
b = S−2?/2, where S is as in (1.2), (Aα)α a sequence converging C1 to A, (pα)α
a sequence of real numbers in (2, 2?] converging to 2? as α → +∞, and (Uα)α a
sequence of nonnegative solutions of (1.1) such that ‖Uα‖H1 → +∞ as α→ +∞.

Remark 1.2 clearly shows that we cannot expect to have (1.3) if we do not
contradict the assumptions Sg ≤ 0 and bS2 = 1. For the moment it is still an open
question to know whether or not we can get a similar remark in the purely critical
case of (1.1).

2. Bubbling Control and stability

Bounded energy is a necessary condition for applying the H1-theory for blow-
up. When dealing with sequences (Uα)α of solutions of (1.1) of bounded energy,
and more generally with Palais-Smale sequences, the H1-theory as developed by
Struwe [21] applies. For such sequences, see Druet, Hebey and Vétois [8] or Thizy
[22], there holds that, up to passing to a subsequence,

Uα = U∞ +

k∑

i=1

ciK
1/(pα−2)
α Biα +Rα (2.1)

for some k ∈ N, where U∞ : M → Rp is the weak limit in H1 (or the strong limit
in L2) of the Uα’s, Kα is given by Kα = aα + bα

∑p
i=1

∫
M
|∇ui,α|2dvg, Rα → 0 in

H1 as α→ +∞, and the (Biα)α’s are vector bubbles given by

Biα(x) =


 µi,α

µ2
i,α +

dg(xi,α,x)2

n(n−2)




(n−2)/2

Λi (2.2)
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for all x ∈ M and all α, where (xi,α)α is a converging sequence of points in M ,
(µi,α)α is a sequence of positive real numbers converging to 0, Λi is a unit vector
in Rp with nonnegative components, and dg is the Riemannian distance. In this
H1-decomposition (2.1), the ci’s are positive real numbers in [1,+∞) which satisfy
that ci = 1 in the purely critical case. The vector bubbles (2.2) are built on
the Druet, Hebey and Vétois [8] extension to systems of the classification result in
Caffarelli, Gidas and Spruck [3]. We define N (Uα) to be the maximum integer k we
can have in (2.1) for a subsequence of a H1-bounded sequence (Uα)α of nonnegative
solutions of (1.1). Another very surprising effect of the nonlocal aspect of the
Kirchhoff equations is that we do get a control on N (Uα). By definition an operator
like ∆g + 1

aA is said to be coercive (or positive) if its energy controls the square of

the H1-norm. We say that −A is cooperative if Aij ≤ 0 for all i 6= j in {1, . . . , p}.
The following theorem holds true.

Theorem 2.1 (Bubbling Control; Hebey and Thizy [11, 12]). Let (Mn, g) be a
closed Riemannian n-manifold with n ≥ 3, p ∈ N? be a nonzero integer, a, b > 0 be
positive real numbers, and A : M → Mp

s (R) be a C1-map from M into the space
Mp
s (R) of symmetric p× p matrices with real entries. Then:

(Bd1) if n = 3, ∆g + 1
aA is coercive, −A is cooperative, and A ≤ CΛgIdp in M

in the sense of bilinear forms for some positive constant C > 0 and some positive
function Λg : M → (0,+∞) with the property that ∆g + Λg has positive mass, then

a+ bS3/2
√
CN (Uα) ≤ C for all α,

(Bd2) if n ≥ 4, then bN (Uα)Sn/2a(n−4)/2 ≤ 2
n−2

(
n−4
n−2

)(n−4)/2

for all α, where

we adopt the convention that the right hand side in this equation is 1 if n = 4,

(Bd3) if n ≥ 4, Sg > 0 in M , and A ≤ n−2
4(n−1)CSg in M in the sense of bilinear

forms for some positive constant C > 0, where Sg is the scalar curvature of g, then

abSn/2a(n−4)/2N (Uα) ≤ (C − a)+ for all α,

where N (Uα) is the maximum number of bubbles we can have in the H1-decom-
position (2.1) of sequences of nonnegative solutions of (1.1), S is the sharp Sobolev
constant as in (1.2), Sg is the scalar curvature of g, and the above three statements
hold true for all sequences (aα)α and (bα)α of positive real numbers converging to a
and b, all sequences (Aα)α of C1-maps Aα : M → Mp

s (R) converging C1 to A,
all sequences (pα)α of real numbers in (2, 2?] converging to 2?, and all H1-bounded
sequences (Uα)α of nonnegative solutions of (1.1).

Given (aα)α and (bα)α two sequences of positive real numbers, and (Aα)α a
sequence of C1-maps Aα : M → Mp

s (R), we now consider the purely critical per-
turbations

(
aα + bα

p∑

j=1

∫

M

|∇uj |2dvg
)

∆gui +

p∑

j=1

Aαijuj = |U |2
?−2

ui (2.3)

for all i = 1, . . . , p, where Aα = (Aαij)i,j=1,...,p. Following the terminology in
Hebey [10], we say that (0.1) is:

(i) bounded and stable if for any sequences (aα)α and (bα)α converging to a
and b, any sequence (Aα)α of C1-maps Aα : M →Mp

s (R) converging C1 to A, and
any sequence (Uα)α of nonnegative solutions of (2.3), a subsequence of the Uα’s
converge in C2 to a nonnegative solution U of (0.1).

(ii) analytically stable if the bounded stability convergence holds for the less
general category of sequences (Uα)α of solutions of (2.3) which are bounded in H1.

Emmanuel Hebey and Pierre-Damien Thizy
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In the setting of stationary Schrödinger equations, see Hebey [10], there are equa-
tions which are analytically stable but not bounded and stable. In the present
setting, as a direct consequence of Theorem 1.1, and if we forget about the special
case of dimension 4, the two notions of bounded stability and analytic stability
coincide. This is one of the main feature of these Kirchhoff equations. We define
the constant C?(a, b) by

C?(a, b) = a+
1

2
b2S3 +

1

2
bS3/2

√
4a+ b2S3 if n = 3 ,

C?(a, b) =
(n− 2)a

4(n− 1)

(
1 + bSn/2a(n−4)/2

)
if n ≥ 4 ,

(2.4)

where S is the sharp constant given by (1.2). As a by product of Theorems 1.1
and 2.1, we do get that (St1), (St2) and (St4) in the following stability theorem
hold true. Point (St3) follows from independent different arguments.

Theorem 2.2 (Stability; Hebey and Thizy [11, 12]). Let (Mn, g) be a closed Rie-
mannian n-manifold with n ≥ 3, p ∈ N? be a nonzero integer, a, b > 0 be positive
real numbers, and A : M →Mp

s (R) be a C1-map from M into the space Mp
s (R) of

symmetric p× p matrices with real entries. The following propositions hold true:

(St1) if n = 3, ∆g + 1
aA is coercive, −A is cooperative, and A(x) <

C?(a, b)Λg(x)Idp for all x ∈ M , in the sense of bilinear forms, where Λg :
M → (0,+∞) is such that ∆g + Λg has positive mass, then (0.1) is bounded and
stable,

(St2) if a and b satisfy that bSn/2a(n−4)/2 > 2
n−2

(
n−4
n−2

)(n−4)/2

when n ≥ 5, and

that bS2?/2 > 1 when n = 4, then (0.1) is bounded and stable,

(St3) if n ≥ 4, A(x) is definite positive for all x, and Sg ≤ 0 in M , then the
Kirchhoff system (0.1) is analytically stable when n = 4, and bounded and stable
when n ≥ 5 and n 6= 6.

(St4) if n ≥ 4, Sg > 0 in M , and A(x) < C?(a, b)Sg(x)Idp for all x ∈M , in the
sense of bilinear forms, then the Kirchhoff system (0.1) is bounded and stable,

where, in the above statements, Idp is the identity p × p matrix, C?(a, b) is given
by (2.4), and Sg is the scalar curvature of g.

3. The diagonal geometric case

We assume in this section that A is given by the geometric diagonal model

A ≡ n− 2

4(n− 1)
SgIdp (3.1)

which extends to the vector case the geometric potential of the conformal Lapla-
cian. Assuming that Sg > 0 everywhere in M , and that n = 4 or 5, building on
Theorem 1.1 and the theory developed in Druet and Hebey [6], we state below a
surprising theorem where only very specific values of a and b can lead to the insta-
bility of (0.1). As above, the notation λN? for λ ∈ R refers to the set consisting of
the λn’s for n ≥ 1 integer. The main result in this section is stated as follows.

Theorem 3.1 (Stability for almost all a and b; Hebey and Thizy [12]). Let (Mn, g)
be a closed Riemannian n-manifold with positive scalar curvature of dimension
n = 4 or 5, p ∈ N? be a nonzero integer, a, b > 0 be positive real numbers, and
A : M →Mp

s (R) be given by the geometric diagonal model (3.1). Assume that

1− a
b
6∈ Sn/2N? ,
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where S is the sharp constant in the Sobolev inequality as in (1.2). Then the
Kirchhoff system (0.1) is bounded and stable.

The result is even slightly more precise and we get informations on the case
where 1−a

b = k0S
n/2 for k0 ≥ 1 integer. In that case, there might be that there

are sequences (aα)α and (bα)α of real numbers converging to a and b, sequences
(Aα)α of C1-maps Aα : M → Mp

s (R) converging C1 to A, and sequences (Uα)α of
nonnegative solutions of (2.3) which blow up as α→ +∞. By Theorem 1.1 they all
have bounded energy. As an additional information that we get from the proof of
Theorem 3.1, there holds that the sole number of bubbles that such sequences can
have in their H1-decompositions (2.1) is k = k0. Also we easily get from the blow-
up examples in Esposito-Pistoia-Vétois [9] that such sequences do exist in various
contexts when 1−a

b = Sn/2 (i.e. k0 = 1). Many other examples can be constructed
in higher dimensions. A non exhaustive list of blow-up solutions associated with
stationary Schrödinger equations is given by Brendle [1], Brendle and Marques [2],
Chen, Wei and Yan [4], Druet and Hebey [5], Esposito, Pistoia and Vétois [9],
Hebey [10], Hebey and Vaugon [14], and Robert and Vétois [20].

4. Existence and nonexistence results

In order to end the presentation of our results we briefly discuss the question
of the existence and nonexistence of solutions of (0.1). By hand constructions,
based on the stationary Schrödinger equation, can be developed. A more general
approach, based on the above compactness results, can be developed as well. First
we very briefly comment on the by hand constructions. These are interesting since
they provide several results related to the existence of blowing-up sequences of so-
lutions for the Kirchhoff systems. More precisely, by building on the 1-dimensional
Schrödinger theory, we easily get existence of nonnegative nontrivial solutions for
systems like (0.1). Suppose for instance that n = 4. Let v > 0 solve the equation

∆gv + hv = v2?−1 (4.1)

in M . Let b > 0 be such that b
∫
M
|∇v|2dvg < 1. Then the multi-valued map

U =
(

1√
pu, . . . ,

1√
pu
)

solves (0.1) as soon as A and u satisfy

p∑

j=1

Aij =

(
a+

ab
∫
M
|∇v|2dvg

1− b
∫
M
|∇v|2dvg

)
h ,

u =

√
a+

ab
∫
M
|∇v|2dvg

1− b
∫
M
|∇v|2dvg

v .

(4.2)

In these examples, of course, A and U are very special. More general A are handled
in the result below. The result follows from both variational arguments based on
the mountain pass lemma that we develop in the subcritical case, leading to the
existence of solutions to the subcritical systems, and then from the compactness
associated to Theorem 2.1 in order to make the subcritical solutions converge to
critical ones.

Theorem 4.1 (Existence; Hebey and Thizy [11, 12]). Let (Mn, g) be a closed
Riemannian n-manifold with n ≥ 3, p ∈ N? be a nonzero integer, a, b > 0 be positive
real numbers, and A : M → Mp

s (R) be a C1-map from M into the space Mp
s (R)

of symmetric p × p matrices with real entries such that ∆g + 1
aA is coercive and

−A is cooperative. The Kirchhoff system (0.1) possesses a nonnegative nontrivial
solution in each of the following cases:

Emmanuel Hebey and Pierre-Damien Thizy
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(Ex1) n = 3, and A(x) < C?(a, b)Λg(x)Idp for all x ∈M , in the sense of bilinear
forms, where Λg : M → (0,+∞) is such that ∆g + Λg has positive mass,

(Ex2) a and b satisfy that bSn/2a(n−4)/2 > 2
n−2

(
n−4
n−2

)(n−4)/2

when n ≥ 5, and

that bS2?/2 > 1 when n = 4,

(Ex3) n ≥ 4, Sg > 0 in M , and A(x) < C?(a, b)Sg(x)Idp for all x ∈ M , in the
sense of bilinear forms,

where Idp is the identity p×p matrix, C?(a, b) is given by (2.4), and Sg is the scalar
curvature of g.

The system nature of our equations make that we can also prove nonexistence
results. In the following we let A ∈ Mp

s (R) and assume that A is positive defi-
nite with no nonnegative nontrivial eigenvectors. An example of such a matrix is
given by

A =
1

42




80 22 −26
22 110 −4
−26 −4 62


 (4.3)

which has 1, 2, 3 as eigenvalues, and has (−4, 1,−5), (−1, 1, 1), and (−2,−3, 1) as
corresponding eigenvectors. We need here p ≥ 3. The following nonexistence result
can be proved. A higher dimensional version of the theorem can be seen in Hebey
and Thizy [12].

Theorem 4.2 (Nonexistence; Hebey and Thizy [11]). Let (M3, g) be a closed Rie-
mannian 3-manifold, p ∈ N? be a nonzero integer, and A ∈ Mp

s (R) be such that A
is positive definite but does not possess nonnegative nontrivial eigenvectors. Then
there exists K � 1 such that for any positive real numbers a and b satisfying that
a+ b ≥ K, (0.1) does not possess nonnegative nontrivial solutions.

Theorem 4.2 acts in contrast to Theorem 4.1. The tow conditions a + b ≥ K
and A < C?(a, b)ΛgIdp both improve as a and b increase. Then a key point in
Theorem 4.2 is that we do not assume that −A is cooperative. By the Perron-
Frobenius theorem, if A ∈Mp

s (R) is definite positive and −A is cooperative, then A
has a positive eigenvalue with a nonnegative eigenvector.

5. The black boxes

The above results are mainly built on three theorems for stationary critical
Schrödinger systems. The first theorem is in the spirit of Druet, Hebey and
Vétois [8], but we need there to get a more general statement where we allow
asymptotically-critical subcritical nonlinearities. Concerning that extension it
should be noted that passing from critical to asymptotically-critical subcritical
nonlinearities can be invasive, as shown by the discussion below. The (n, p) = (3, 1)
case of our first theorem goes back to Li and Zhu [15]. The second and third
theorems we need are already available in the literature and were proved in Druet
and Hebey [6].

The three theorems we just mentioned in the above discussion are concerned
with the stationary critical Schrödinger system

∆gui +

p∑

j=1

Aijuj = |U |2
?−2

ui , (5.1)

where A : M →Mp
s (R) is a C1-map. Then we can consider asymptotically-critical

subcritical perturbations, or purely critical perturbations of (5.1). In the case of the
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first theorem of this section we consider perturbations of (5.1) in the asymptotically-
critical subcritical regime. These are given by

∆gui +

p∑

j=1

Aαijuj = |U |pα−2
ui , (5.2)

where (Aα)α is a sequence of C1-maps Aα : M →Mp
s (R) converging C1 to A, and

the pα’s are such that pα ∈ (2, 2?] for all α and pα → 2? as α→ +∞. Theorem 5.1
below is related to the notion of bounded stability. Its proof goes through a delicate
one bubble blow-up analysis of (5.2).

Theorem 5.1 (Bounded Stability). Let (Mn, g) be a closed Riemannian n-
manifold, n ≥ 3, p ≥ 1 be an integer, and A : M →Mp

s (R) be a C1-map satisfying
that

A <
n− 2

4(n− 1)
ΦIdp (5.3)

in M in the sense of bilinear forms, where Φ ≡ Λg if n = 3, Φ ≡ Sg if n ≥ 4, Sg
is the scalar curvature of g, and Λg is such that ∆g + Λg has positive mass. When
n = 3, we also assume that ∆g + A is coercive and that −A is cooperative. Then,
for any θ ∈ (0, 1), there exists C > 0 such that ‖Uα‖C2,θ ≤ C for all sequences
(Aα)α of C1-maps Aα : M → Mp

s (R) converging C1 to A, all sequences (pα)α in
(2, 2?] converging to 2?, and all sequences (Uα)α of nonnegative solutions of (5.2).
In particular, for any sequence (Aα)α of C1-maps converging C1 to A, any sequence
(pα)α in (2, 2?] converging to 2?, and any sequence (Uα)α of nonnegative solutions
of (5.2), a subsequence of the Uα’s converge in C2 to a solution U∞ of (5.1).

Of course, (5.3) implies that the potentials in Theorem 5.1 are small with respect
to the geometry of the ambient manifold. The second result we need was proved
in Druet and Hebey [6]. It deals with sequences of solutions which are bounded
in H1, it restricts itself to the purely critical case, but it allows large potentials.
The restriction to bounded energy in Theorem 5.2 can be shown to be necessary by
the examples in Chen, Wei and Yan [4]. We briefly comment here on the restriction
to the purely critical case in Theorem 5.2. We consider perturbations of (5.1) in
the sole pure critical regime given by

∆gui +

p∑

j=1

Aαijuj = |U |2
?−2

ui , (5.4)

where (Aα)α is a sequence of C1-maps Aα : M →Mp
s (R) converging C1 to A. The

restriction to (5.4) might seem odd, or even artificial. It turns out that it is also
necessary. Indeed, by the blow-up examples in Micheletti, Pistoia and Vétois [17],
Pistoia and Vétois [18], and Robert and Vétois [19], letting Uα be of the form

Uα =

(
1√
p
uα, . . . ,

1√
p
uα

)
,

and the Aα’s satisfy
∑p
j=1A

α
ij = hα for all α, where uα and hα are given by the

above references, we get several examples of positively curved manifolds, and of
equations like (5.2) with pα < 2? for all α and pα → 2? as α → +∞, such that
Aα → A in C1 and

A >
n− 2

4(n− 1)
SgIdp

in M in the sense of bilinear forms, and such that the equations (5.2) possess se-
quences (Uα)α of positive p-maps which blow up as α→ +∞. In this situation, the
assumptions (H) and (H ′) in Theorem 5.2 are satisfied. However, blow-up occurs.
This clearly shows that the restriction to the purely critical case in Theorem 5.2 is
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also necessary. In what follows we let the matrix potential AL : M → Mp
s (R) be

given by

AL(x) = A(x)− n− 2

4(n− 1)
Sg(x)Idp

for all x ∈ M , where Sg is the scalar curvature of g, and Idp is the identity p × p
matrix. Theorem 5.2 is stated as follows.

Theorem 5.2 (Druet and Hebey [6]). Let (Mn, g) be a closed Riemannian
n-manifold, n ≥ 4, p ≥ 1 be an integer, and A : M → Ms

p (R) be a C1-map
satisfying that

(H) Ker (∆g +A)
⋂
L2 (M,Vect+(Rp)) = {0},

(H ′) for any x ∈M , and any k ∈ {1, . . . , p}, there does not exist an orthonormal
family (e1, . . . , ek) of isotropic vectors for AL(x) with nonnegative components such
that AL(x).(Vk) ⊂ Vk, where Vk = Span(e1, . . . , ek) is the k-dimensional subspace
of Rp with basis (e1, . . . , ek).

Then, for any θ ∈ (0, 1), and any Λ > 0, there exists C > 0 such that ‖Uα‖C2,θ ≤ C
for all sequences (Aα)α of C1-maps Aα : M → Mp

s (R) converging C1 to A, and
all sequences (Uα)α of nonnegative solutions of (5.4) such that ‖Uα‖H1 ≤ Λ for
all α. In particular, for any sequence (Aα)α of C1-maps converging C1 to A, and
any H1-bounded sequence (Uα)α of nonnegative solutions of (5.4), a subsequence
of the Uα’s converge in C2 to a solution U∞ of (5.1).

The blow-up analysis behind Theorem 5.2 is a multi-bubble analysis. We start
with the H1-decomposition and get at once the entire collection of blow-up points.
The C0-theory in Druet, Hebey and Robert [7] (see also Druet and Hebey [6]) makes
that we control our sequence (Uα)α of solutions in terms of the leading parts in their
H1-developments (like if the rest in the H1-theory was zero). In particular we get
sharp pointwise asymptotics for the Uα’s. We conclude using an exterior Pohozaev
identity and controlling Druet’s notion of the range of interaction of bubbles. We
use here a slightly weaker version of Theorem 5.2 where we ask that ∆g + A is
coercive, which implies (H), and that AL does not possess isotropic vectors, which
implies (H ′). In the process of proving Theorem 5.2 it is established in Druet and
Hebey [6], see also Hebey [10], that the pointwise limit of blowing-up sequences of
nonnegative solutions of equations like (5.4) which are bounded in H1 has to be
zero when n = 4, 5.

Theorem 5.3 (Druet and Hebey [6]). Let (Mn, g) be a closed Riemannian n-
manifold of dimension n = 4, 5, p ≥ 1 be an integer, (Aα)α be a sequence of C1-
maps Aα : M →Ms

p (R) converging in C1, and (Uα)α be a bounded sequence in H1

of nonnegative solutions of (5.4). If the Uα’s blow up, namely if ‖Uα‖L∞ → +∞
as α→ +∞, then, up to passing to a subsequence, Uα → 0 a.e. in M .

Theorem 5.3 plays an important role in the proof of Theorem 3.1. Of course the
pointwise limit in Theorem 5.3 coincides with the weak limit in H1 or the strong
limit in L2. Theorem 5.3 is also true when n = 3 but, as shown in Druet and
Hebey [6], it stops to hold true when n = 6.
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