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Well-posedness issues

for the Prandtl boundary layer equations

∗David Gérard-Varet, †Nader Masmoudi

Abstract

These notes are an introduction to the recent paper [7], about the well-posedness of
the Prandtl equation. The difficulties and main ideas of the paper are described on a
simpler linearized model.

1 Introduction

The general concern of these notes is the so-called boundary layer in fluid mechanics. It is
related to the dynamics of high Reynolds number flows near a rigid wall. We recall that the
Reynolds number, introduced by Osborne Reynolds [22] is the parameter R = UL/ν, where U
and L are the typical velocity and length scale of the fluid flow, whereas ν is the kinematic
viscosity of the fluid. This parameter appears in the dimensionless form of the Navier-Stokes
equation:

∂tu + u · ∇u +∇p− 1

R
∆u = 0,

div u = 0,
(1.1)

for t > 0, and x in the fluid domain Ω. As usual, u = u(t,x) and p = p(t,x) stand for the
velocity field and pressure. When R� 1, it is tempting to describe the dynamics by the Euler
system, that is with R = ∞. Convergence of the Navier-Stokes solutions to the Euler ones
when R goes to infinity can be shown rigorously in many contexts, as long as the boundaries
of the domain are neglected (Ω = Rd or Ω = Td). However, when Ω has a boundary, this
asymptotics is far from clear. It is not even clear in two dimensions and for smooth data,
although both Navier-Stokes and Euler have in this context global smooth solutions.

The problem comes from boundary conditions. For Euler, the natural one is no penetra-
tion: u · n|∂Ω = 0, with n the normal vector. In particular, the tangential component of the
velocity can be O(1) at the boundary. On the contrary, for Navier-Stokes, the experimentally
relevant boundary condition is no-slip: u|∂Ω = 0. Hence, the transition from R < ∞ to
R =∞ is formally associated to a jump of the tangential velocity. Concretely, as R is larger
and larger, stronger and stronger velocity gradients develop near the boundary, in a thin zone
called a boundary layer. The understanding of the concentration phenomenon in this layer is
a big problem in fluid mechanics. The boundary layer prevents convergence of Navier-Stokes
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solutions to Euler ones in a strong topology, for instance in L∞(H1): see [12]. To determine
if convergence holds in the energy space L∞L2 is a big open issue.

To achieve a better understanding of the boundary layer, Ludwig Prandtl introduced in
1904 a model for the boundary layer [21]. This model has now become very classical, and
can be found in any textbook of fluid mechanics. Let us consider Ω = R2

+, and the small
parameter ε = 1/R. The model of Prandtl is based on the idea of using different asymptotics
for the solution u = uε of (1.1), depending on the flow region under study:

1. Away from the boundary, where no concentration occurs, expansion of the Navier-Stokes
solution is expected to be regular in ε. In particular, one should have

uε ≈ u0 = (u0, v0), pε = p0

where (u0, p0) is the Euler solution (starting from the same initial data).

2. However, in the boundary layer, there should be a fast variation along the normal
variable. Prandtl suggests an asymptotics of the form (with x = (x, y)) :

uε ≈
(
u(t, x, y/

√
ε),
√
εv(t, x, y/

√
ε)
)
, pε ≈ p(t, x, y/

√
ε).

Note that the Prandtl model involves the variable Y = y/
√
ε : the typical size of the

layer is assumed to be
√
ε, which is natural with regards to the parabolic part ∂tu−ε∆u

of (1.1).

Plugging this last Ansatz in (1.1) one finds at leading order the equations

∂tu+ u∂xu+ v∂Y u+ ∂xp− ∂2
Y u = 0,

∂Y p = 0,

∂xu+ ∂Y v = 0,

(1.2)

set for (x, Y ) in R2
+, together with the boundary conditions

u(t, x, 0) = v(t, x, 0) = 0

lim
Y→∞

u(t, x, Y ) = u∞(t, x) := u0(t, x, 0), lim
Y→∞

p(t, x, Y ) = p∞(t, x) := p0(t, x, 0).
(1.3)

Note that the first line corresponds to the no-slip condition at the rigid wall, whereas the
second line expresses a matching between the boundary layer solution (away from the wall)
and the Euler solution (close to the wall). From (1.2b) and (1.3b), one has p(t, x, Y ) = p∞(t, x)
for all Y , and the Prandtl system further simplifies. Denoting y instead of Y , we get

∂tu+ u∂xu+ v∂yu− ∂2
yu = −∂xp∞,

∂xu+ ∂yv = 0,

u(t, x, 0) = v(t, x, 0) = 0, lim
y→∞

u = u∞

(1.4)

with initial data u|t=0 = u0. This is the famous Prandtl system, set for (x, y) in R2
+. Compared

to Navier-Stokes, its key features are the following:

• The pressure is no longer an unknown: it is determined by the Euler evolution, and
therefore is a given source term in the equation for u.
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Figure 1: Typical picture of boundary layer separation.

Figure 2: Velocity field in the boundary layer, under an adverse pressure gradient.

• There is no more evolution equation on v : the normal component is obtained in terms of
u through integration in y of the divergence-free condition. Hence, the Prandtl system
can be seen as a single evolution equation on the scalar unknown u. Note also that only
the normal part of the diffusion term (−∂2

yu) appears in this equation.

Thus, the Prandtl model looks like a tempting alternative to Navier-Stokes in order to describe
fluid flows near a rigid wall. However, the relevance of this model turns out to be a difficult
issue. Indeed, from many experiments on flows around obstacles, it is known that many
instabilities develop near the boundary, and may invalidate the Prandtl model.

One famous instability is the so called boundary layer separation: downstream from the
leading edge of the obstacles, boundary layer flows may detach and penetrate inside the
domain, see figure 1.

Physicists explain this separation by a loss of monotonicity of u in the y variable. More
precisely, it is claimed that under an adverse pressure gradient (∂xp > 0), the boundary layer
flow is slowed down, up to a point where monotonicity breaks down. From there, reverse flow
and detachment modify completely the flow. See figure 1 or [10] for more details.

2 Former mathematical results

The instabilities evoked above make the mathematical analysis of the Prandtl equations very
difficult. We focus here on the well-posedness theory for the Prandtl model (1.4). We shall not
discuss wether or not the approximation of the exact Navier-Stokes solution by the Prandtl
one is justified.

Exp. no XV— Well-posedness issues for the Prandtl boundary layer equations

XV–3



Until recently, there had been only two known settings for well-posedness:

1. The monotonic setting. For data that are monotonic in y (plus technical conditions),
one can prove well-posedness locally in time [19], and even globally under a favorable
pressure gradient (∂xp ≤ 0) [24]. This type of results, mainly due to Oleinik, echoes the
above discussion on boundary layer separation. They were obtained by using a tricky
change of unknowns and variables, called Crocco transform. Recently, this monotonic
setting was re-visited on the usual eulerian form of the Prandtl equation : see [1, 17].
We will come back below to article [17], by the second author and Tak-Kwong Wong.

2. The analytic setting. Without monotonicity, well-posedness was established locally in
time, for initial data that are analytic with respect to x. We refer to [23, 16], and to the
recent extensions [14, 13]. The assumption of analyticity can be understood as follows.
By the divergence-free condition, one obtains v = −

∫ y
0 ∂xu. Thus, the term v ∂yu in

(1.4a) (seen as a functional of u) is first order in x. Moreover, it is not hyperbolic. For
instance, let us consider the linearization of the Prandtl equation around a shear flow
u = (Us(y), 0):

∂tu+ Us∂xu+ U ′sv − ∂2
yu = 0, ∂xu+ ∂yv = 0. (2.1)

If we freeze the coefficients at some y0 and compute the dispersion relation, we obtain
the growth rate

σ(kx, ky) = U ′s(y0)
kx
ky
− k2

y

that increases linearly with the wavenumber kx. This kind of growth rate is typical of
well-posedness limited to the analytic setting.

However, as discussed in [11], this dispersion relation, formally obtained by freezing the
coefficients, is misleading: for instance, the inviscid version of Prandtl (that is removing the
∂2
yu term) is locally well-posed in Ck, through the method of characteristics. In the case of

the full Prandtl system (1.4), the situation is even more complex, and was addressed a few
years ago by the first author and Emmanuel Dormy in article [6]. This article contains a
careful study of the linearized system (2.1), in the case of a non-monotonic base flow Us:

∃a, U ′s(a) = 0, U ′′s (a) 6= 0.

In short, it is shown in [6], see also [3], that the linear system (2.1) admits approximate
solutions with growth rate

σ(kx) ∼ δ
√
kx, δ > 0, kx � 1. (2.2)

Let us stress that such growing solutions come from an interplay between the lack of mono-
tonicity of Us and the diffusion term ∂2

yu. They are therefore coherent with the well-posedness
results obtained in the monotonic case, and for the inviscid Prandtl equation. As a result of
their violent growth, one can prove that the Prandtl equation is ill-posed in Sobolev spaces,
both linearly [6] and non-linearly [8].

Article [6] also contains numerical computations, performed on the linearized system (2.1).
Starting from random initial data, one can compute the evolution, and determine the most
unstable mode. The numerics show that this unstable mode is the one described analytically.
In particular, the worst possible growth rate seems to be given by (2.2). This leaves room for
local well-posedness below analytic regularity.
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3 Gevrey well-posedness

This last remark was the basic motivation of our recent work [7]. Our goal was to confirm
theoretically the instability rate (2.2) observed numerically, both at the linear level (2.1) and
nonlinear level (1.4). In other words, we conjectured that the Prandtl equation is locally

well-posed for data whose Fourier coefficients in x decay like e−σ
√
kx , for some σ > 0.

Note that this setting is intermediate between the analytic setting (∼ e−σk) and the
Sobolev setting (∼ k−s). Namely, it corresponds to Gevrey data in the x variable. In what
follows, we always consider x ∈ T, and y ∈ R+. In particular, the wave number k in x belongs
to Z. We recall the

Definition 1 Let m ≥ 1. The Gevrey space Gm(T) is the set of functions f satisfying:
∃C, τ > 0 such that

|f (j)(x)| ≤ C τ−j(j!)m, ∀j ∈ N, x ∈ T.

For a reminder on Gevrey spaces, we refer to the paper [5] by Foias and Temam as well
as to the papers [15, 4, 20] where these spaces are used. Note that m = 1 corresponds to
analytic functions, whereas for m > 1, Gm(T) contains compactly supported functions. The
connection with the behaviour of the Fourier coefficients is given by

Proposition 1 f ∈ Gm(T) if and only if it exists C, σ > 0 such that |f̂(k)| ≤ Ce−σ|k|1/m for
all k.

Following the end of the last paragraph, one expects the Prandtl system (1.4) to be well-
posed in a functional space of type G2 in variable x. This conjecture is still open, but article
[7] provides a close result : roughly, we establish that the Prandtl system is well-posed in a
space of type G7/4 in x.

To state a more precise but simpler result, we shall limit ourselves to the case where
u∞ = p∞ = 0. We shall consider data u0 = u0(x, y) that are of Gevrey class 7/4 in x, and
Sobolev class with polynomial weight in y. One could as well consider exponential weights.
Specifically, we define

Hs
γ := {u = u(y), (1 + y)γ+k u(k) ∈ L2(R+) ∀ k ≤ s}, L2

γ := H0
γ ,

and then

G7/4
τ (T, Hs

γ) := {u = u(x, y), sup
x,k
‖τk(k!)−m∂kxu(x, ·)‖Hs

γ
< +∞}. (3.1)

We take the initial data to satisfy

u0 ∈ G7/4
τ0 (T, Hs+1

γ−1), ω0 := ∂yu0 ∈ G7/4
τ0 (T, Hs

γ) (3.2)

for some τ0. We make two more assumptions. The first one is technical, and related to the
behavior of the data at infinity. Roughly, it states that the data ω0 behaves like (1 + y)−σ for
some σ:
(H1) For y � 1, for all x, for all α ∈ N2 with |α| ≤ 2,

|ω0(x, y)| ≥ δ

(1 + y)σ
, |∂αω0(x, y)| ≤ 1

δ(1 + y)σ+α2
.
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The second assumption expresses that we allow for non-monotonic data. More precisely,
we assume that for each value of x, u0(x, ·) has one (non-degenerate) critical point:
(H2) ω0(x, y) = 0 iff y = a0(x), a0 > 0, ∂yω0(x, a0(x)) 6= 0.

We can now state our main

Theorem 1 Let τ0 > 0, s � 1 even, σ ≥ γ + 1
2 � 1. Let u0 satisfying (3.2), u0|y=0 = 0, as

well as (H1), (H2). There exists T > 0, 0 < τ ≤ τ0 and a unique solution

u ∈ L∞
(
0, T ;G7/4

τ (T; Hs+1
γ−1)

)
, ω = ∂yu ∈ L∞

(
0, T ;G7/4

τ (T; Hs
γ)
)
,

of (1.4), with initial data u0.

This theorem expresses short time existence and uniqueness of a Gevrey solution. Note that
the exponent τ in the definition of the functional space (3.1) deteriorates between time 0,
for which τ = τ0, and positive times, for which τ < τ0. This decrease is natural in view
of the exponential instability process taking place in the Prandtl evolution, namely the one
described above, with growth rate (2.2).

Let us point out that the assumption (H2), namely the presence of a single curve y = a0(x)
where ω0(x, y) = 0 could be relaxed, for instance we can assume the presence of a finite number
of non degenerate critical points for each value of x. An interesting extension of our result
(and also of [6]) would be to consider data that are monotonic in y for x < x0, and with a
curve of non-degenerate critical points for x ≥ x0 (more like in figure 1). See [13] for a result
in a similar spirit.

4 Ideas of proof

To understand our proof of Theorem 1, it is better to consider the simple linearized equation
(2.1). We suppose that Us is smooth, and obeys assumptions analogue to (H1)-(H2) :

• Us(y) ∼ − 1

(1 + y)σ
at infinity.

• U ′s(a) = 0 for a unique a > 0, and U ′′(a) > 0.

Now, as equation (2.1) has constant coefficients in x, we can use the Fourier transform. More
precisely, we write

u(t, x, y) = eikxû(t, y), v(t, x, y) = ikeikxv̂(t, y).

We obtain, after removing the hats :

{
(∂t + ikUs)u + ikU ′sv − ∂2

yu = 0,

u+ ∂yv = 0.
(PL)

As often in fluid mechanics, it is also useful to write down the equation on vorticity. In this
degenerate Prandtl context, vorticity is just ω = ∂yu, and satisfies

(∂t + ikUs)ω + ikvU ′′s − ∂2
yω = 0. (PLω)

David Gérard-Varet and Nader Masmoudi

XV–6



For such linearized equations, the point is to show local well-posedness in G
7/4
τ (T, L2

γ):
higher Sobolev regularity does not add much trouble. By Proposition 1, this amounts to
proving an estimate of the following type:

‖ω(t)‖L2
γ
≤ C eσk

4/7t, for some C, σ > 0. (4.1)

The main problem is that standard L2 energy estimates do not help: for instance, multiplying
(PL) by u and integrating, one gets the annoying term ik

∫
U ′svu. This factor k is reminiscent

of a first order term in x, and as the integral does not vanish, the L2 norm could a priori
grow like eσkt, which is much worse than (4.1). This difficulty appears for equation (PLω) as
well.

Hence, the kinetic energy is not adapted to this system. The point in paper [7] is to use
smarter energy functionals, that allow to get rid of the bad term in v (with factor k). These
functionals are inspired from two tricky formal estimates, that we now present.

1. The first one is related to the vorticity equation (PLω) : instead of multiplying by ω, we
multiply by ω

U ′′s
. We integrate, take the real part, and derive in this way the equality:

1

2

d

dt

∫

R+

|ω|2
U ′′s

+

∫

R+

|∂yω|2
U ′′s

= kIm
∫

R+

vω + . . .

where the dots refer to commutators. There, one can realize that
∫

R+

v ω̄ = −
∫

R+

∂yv ū =

∫

R+

|u|2,

so that the bad term in v vanishes from the previous equality. If there was a uniform

convexity property U ′′ ≥ α > 0, Eω =
∫
R+

|ω|2
U ′′ would define a positive energy, so that

the cancellation would yield a good control : see [9] or [18] for a use of this idea in
another context. However, in our boundary layer setting, this convexity assumption
does not hold.

2. We then introduce another tricky energy estimate, inspired from [17]. Precisely, we

multiply (PL) by U ′′s
U ′s

and substract it from equation (PLω). Again, with this simple

linear combination, one gets rid of the bad term in v (and bad factor k). One is left
with an equation on a new quantity

g = ω − U ′′s
U ′s
u = U ′s∂y

u

U ′s

that reads
(∂t + ikUs)g − ∂2

yg = . . .

where the dots still refer to commutators. Roughly, in the monotonic case (U ′s > 0), one
can show that g is a good quantity, with Eg = ‖g‖2L2

γ
controlling ‖ω‖L2

γ
. This can be

used to show well-posedness in the monotonic case, see [17]. But for our non-monotonic
data, it is still not enough.

With regards to the previous items and our assumptions, a natural idea is to combine the
above energies. Close to the non-degenerate critical point, U is convex, and one can use an
energy like Eω. Away from the critical point, U is monotonic and one can rely on an energy
like Eg. This idea is central in paper [7]. Concretely, we introduce:
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• E1 =

∫

R+

χ(· − a)

U ′′s
|ω|2, for χ a truncation near 0.

• E2 := ‖g̃‖2L2
γ
, g̃ = (ψU ′s + (1− ψ)) g, ψ is a truncation, ψ = 1 on [0, a+ 1].

One can show that
c(E1 + E2) ≤ ‖ω‖L2

γ
≤ C(E1 + E2)

so that these energies are relevant ones. Moreover, in view of the above computations, one
can even expect to get rid of all powers of k in the estimates for E1 and E2 !

However, such expectation is too optimistic, as it would contradict ill-posedness of Prandtl
in Sobolev spaces. Indeed, due to the various commutators involved in the calculations, powers
of k re-emerge in the analysis. If treated too crudely, they yield again a growth like eσkt. This
difficulty is overcome in [7], in the context of the full Prandtl equation. When translated to the
linear equation (2.1), the point is the following: one must carefully estimate the commutators,
and derive inequalities of the form:

∂tE1 . k E
1/2
1 E

1/2
2 + . . .

∂tE2 . E
1/3
1 E

2/3
2 + . . .

(4.2)

If E2 was replaced by E1 in the first equation, one would obtain again an energy growth rate
that scales like k. But the crucial point is that E1 and E2 are mixed in these inequalities. In
particular, the right-hand side of the first inequality on E1 contains E2, whereas the second
inequality on E2 does not involve any factor k. Thus, one can somehow interpolate between
the two inequalities : considering the anisotropic energy E = E1 + k6/7E2, one gets

∂tE ≤ k4/7E.

From there, (4.1) follows. Of course, the most substantial part of the work consists in the
commutator estimates, that is deriving inequalities (4.2).

Besides these general ideas, the proof of Theorem 1 involves technical difficulties. Notably,
one has to adapt the above reasoning to the nonlinear Prandtl equation. For instance, there
is no more base flow (Us, 0): it is replaced by the solution itself, so that the energy functionals
become non-quadratic. Also, one can not use so easily the Fourier transform, as the coefficients
of the equation depend on x. We refer to [2] for a recent application of Gevrey spaces using
the “Fourier” space characterization. Here, the x dependence requires the introduction of
Gevrey type norms in the ”physical” space. We refer to [7] for all necessary details.
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