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Multiscale analysis of wave propagation in

random media. Application to correlation-based

imaging

Josselin Garnier∗

Abstract

We consider sensor array imaging with the purpose to image reflectors
embedded in a medium. Array imaging consists in two steps. In the first
step waves emitted by an array of sources probe the medium to be imaged
and are recorded by an array of receivers. In the second step the recorded
signals are processed to form an image of the medium. Array imaging
in a scattering medium is limited because coherent signals recorded at
the receiver array and coming from a reflector to be imaged are weak
and dominated by incoherent signals coming from multiple scattering by
the medium. If, however, an auxiliary passive (receiver) array can be
placed between the reflector to be imaged and the scattering medium
then the cross correlations of the incoherent signals on this array can also
be used to image the reflector. This situation is important in particular
in oil reservoir monitoring when auxiliary receivers can be implemented
in wells and its study requires a multiscale analysis of wave propagation
in random media. In this review we describe the results obtained in two
recent papers using multiscale analysis of wave propagation in random
media. In [J. Garnier and G. Papanicolaou, Inverse Problems 28 (2012),
075002] we show that if (i) the source array is infinite, (ii) the scattering
medium is modeled by either an isotropic random medium in the paraxial
regime or a randomly layered medium, and (iii) the medium between
the auxiliary array and the object to be imaged is homogeneous, then
imaging with cross correlations completely eliminates the effects of the
random medium. It is as if we imaged with an active array, instead of a
passive one, near the object. In [J. Garnier and G. Papanicolaou, SIAM J.
Imaging Sci. 7 (2014), 1210] we analyze the resolution of the image when
both the source array and the passive receiver array are finite. We show
that for isotropic random media in the paraxial regime, imaging not only
is not affected by the inhomogeneities but the resolution can in fact be
enhanced. This is because the random medium can increase the diversity
of the illumination. We also show analytically that this does not happen
in a randomly layered medium, and there may be some loss of resolution
in this case.
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Université Paris Diderot, 75205 Paris Cedex 13, France garnier@math.univ-paris-diderot.

fr

Séminaire Laurent-Schwartz — EDP et applications
Institut des hautes études scientifiques, 2013-2014
Exposé no XIII, 1-19

XIII–1



1 Introduction

In conventional active array imaging (see Figure 1, left), the sources are on an
array located at (~xs)

Ns
s=1, the receivers are at (~xr)

Nr
r=1, and the two arrays are in

the same plane. The array response matrix is given by

{
p(t, ~xr; ~xs), t ∈ R, r = 1, . . . , Nr, s = 1, . . . , Ns

}
(1)

and consists of the signals recorded by the rth receiver when the sth source emits
a short pulse. An image is formed by migrating the array response matrix. The
Kirchhoff migration imaging function [3] at a search point ~yS in the image
domain is given by

I(~yS) =
1

NsNr

Nr∑

r=1

Ns∑

s=1

p
( |~xs − ~yS |+ |~yS − ~xr|

c0
, ~xr; ~xs

)
. (2)

Here |~x − ~y|/c0 is a computed travel time between the points ~x and ~y, corre-
sponding to a homogeneous medium with constant propagation speed c0. The
images produced by Kirchhoff migration, that is, the peaks of the imaging func-
tion I(~yS), can be analyzed easily if the background medium is homogeneous
with propagation speed c0. For a point-like reflector the imaging function has
the form of a peak whose radii in the different spatial directions define the res-
olution of the image. The range resolution is c0/B, where B is the bandwidth
of the probing pulse, and the cross range resolution is λ0L/a, where λ0 is the
central wavelength of the pulse, L is the distance from the array to the reflec-
tor, and a is the size of the array. These are the well-known Rayleigh resolution
formulas [13]. When, however, the medium is inhomogeneous then migration
may not work well because of multiple scattering by the medium. In weakly
scattering media the images can be stabilized statistically by using coherent
interferometry [8, 9, 5, 6], which is a special correlation-based imaging method.
Statistical stability here means high signal-to-noise ratio for the imaging func-
tion. In strongly scattering media we may be able to obtain an image by using
special signal processing methods [7] but often we cannot get any image at all
because the coherent signals from the reflector received at the array are very
weak compared to the incoherent backscatter from the scattering medium.

Let us consider the possibility of imaging with an auxiliary passive array,

with sensors located at (~xq)
Nq

q=1, and with the scattering medium between it
and the surface source-receiver array (see Figure 1, right). This situation is
important in particular in oil reservoir monitoring when auxiliary receivers can
be implemented in wells [1]. The signals recorded by the auxiliary array form
the data matrix

{
p(t, ~xq; ~xs), t ∈ R, q = 1, . . . , Nq, s = 1, . . . , Ns

}
. (3)

Kirchhoff migration of this data matrix does not give good images, because there
is no recorded coherent signal [20]. Our goal in this review paper is to show
how we can use the auxiliary passive array data to get an image, and how the
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~xs ~xr

~y

~xs

~xq

~y

Figure 1: Sensor array imaging of a reflector located at ~y through a scattering
medium. Left: Conventional imaging, ~xs is a source, ~xr is a receiver. Right:
Use of an auxiliary passive array for imaging through a scattering medium, ~xs
is a source, ~xq is a receiver located beyond the scattering medium.

effects of the strong scattering between the passive array and the active source
array can be mitigated. This will require to carry out a multiscale analysis of
wave propagation in randomly scattering media.

We first give a heuristic argument based on a formal analogy with an already
known situation. We may think of the strong scattering as producing signals
that appear to come from spatially dispersed, statistically independent noise
sources. Imaging with ambient noise sources was analyzed in [18]. By analogy
with having illumination from Ns uncorrelated point sources at (~xs)

Ns
s=1 emitting

stationary random signals, we expect that, even in the case of active impulsive
sources, the matrix of cross correlations at the auxiliary array

C
(
τ, ~xq, ~xq′

)
=

Ns∑

s=1

∫

R
p(t, ~xq; ~xs)p(t+ τ, ~xq′ ; ~xs)dt (4)

will behave roughly as if it is the full active array response matrix of the auxiliary
array, that is, the matrix of signals that would be obtained if the array consisted
of Nq sources and receivers [2, 10, 17, 19]. This means that it can be used for
imaging with Kirchhoff migration:

IC(~yS) =
1

N2
q

Nq∑

q,q′=1

C
( |~xq − ~yS |+ |~yS − ~xq′ |

c0
, ~xq, ~xq′

)
. (5)

Motivated by this analogy with ambient noise imaging, the imaging function (5)
has been the subject of our investigation in [20, 21].

In [20] we study the case when the source array has full aperture and we
show analytically the striking result that the resolution of the image (5) is given
by the Rayleigh resolution formulas as if the medium was homogeneous. This
result is not obvious, because scattering by inhomogeneities of waves emitted
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by the impulsive sources at the surface produces signals on the auxiliary passive
array that are very different from those coming from spatially uncorrelated noise
sources. This is especially true when addressing randomly layered media, in
which scattering does not change the transverse wave vectors. Nevertheless, it
has been anticipated and observed in exploration geophysics contexts [1, 27, 30]
that imaging with the cross correlations of the auxiliary array is very effective
and produces images that are nearly as good as in a homogeneous medium. In
[20] we show this for randomly layered media in the asymptotic regime studied
in detail in [15] and for isotropic random media in the paraxial regime [28, 29,
24, 11, 23].

The resolution analysis carried out in [21] in the case when the source array
has partial aperture and that we reproduce in this review is based on the asymp-
totic expressions of the moments of the Green’s function in two limiting regimes.
These expressions are not new and were used previously to analyze time-reversal
experiments (see [25, 26] in the random paraxial regime and [16, 14, 15] in the
randomly layered regime). The enhanced resolution due to multiple scattering
is known in the context of time reversal, but the imaging context considered
in this review is very different. In time reversal, the recorded signals are time-
reversed and re-emitted into the medium by the time-reversal array; therefore
the waves propagate physically in the real medium and they can benefit from
the multipathing induced by scattering. In classical imaging, the waves received
at the array are backpropagated analytically or computationally in a synthetic
homogeneous medium since the medium fluctuations are not known. In this
case the scattering effects (in particular the random phases) cannot be removed
or mitigated during the backpropagation. It turns out that the backpropagation
of the cross correlation matrix of the array data in the synthetic medium can
benefit from the multiply scattered wave components, provided that multiple
scattering has good isotropic properties. This insight in the context of imaging
is new.

In the previous paragraph we emphasized that this review is about imaging,
in which backpropagation is carried out numerically in a synthetic homogeneous
medium, and not about time reversal, in which backpropagation is carried out
physically in the real medium. However there is a relation between the two
problems when cross correlations are used for imaging. Indeed, the cross cor-
relation (4) has an interpretation in terms of a time-reversal experiment: If we
consider that the sources at (~xs)

Ns
s=1 are point-like and if we use the reciprocity

property of the Green’s function, then the cross correlation can be written as

C
(
τ, ~xq, ~xq′

)
=

Ns∑

s=1

∫

R
p(τ − t, ~xq′ ; ~xs)p(−t, ~xs; ~xq)dt. (6)

This is the field observed at ~xq′ during a time-reversal experiment in the sit-
uation in which i) an original source at ~xq emits a short pulse and ii) a time-

reversal array at (~xs)
Ns
s=1 records the waves, time-reverses them, and re-emits

them into the medium. This time-reversal interpretation of the cross correlation
(4) explains why the tools used to analyze time reversal in the random paraxial
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regime or in the randomly layered regime are also appropriate to analyze cross
correlation imaging.

We now formulate the direct scattering problem more precisely. The space
coordinates are denoted by ~x = (x, z) ∈ R2 × R. The waves are emitted by a
point source located at ~xs which belongs to an array of sources (~xs)s=1,...,Ns

located in the plane z = 0. The waves are recorded by an array of receivers
(~xq)q=1,...,Nq located in the plane z = L (see Figure 2). The recorded signals
form the data matrix (3). The scalar wave field (t, ~x) 7→ p(t, ~x; ~xs) satisfies the
wave equation

1

c(~x)2

∂2p

∂t2
−∆p = F (t, ~x; ~xs), (7)

where c(~x) is the speed of propagation in the medium and the forcing term
(t, ~x) 7→ F (t, ~x; ~xs) models the source. It is point-like, located at ~xs = (xs, 0),
and it emits a pulse:

F (t, ~x; ~xs) = f(t)δ(z)δ(x− xs). (8)

We consider in this review a randomly scattering medium that occupies the
section z ∈ (0, L) and is sandwiched between two homogeneous half-spaces:

1

c(~x)2
=

1

c20

(
1 + µ(~x)

)
, ~x ∈ R2 × (0, L), (9)

where µ(~x) is a zero-mean stationary random process modeling the random
heterogeneities present in the medium.

We consider scattering by a reflector above the random medium placed at
~y = (y, Ly), Ly > L. The reflector is modeled by a local change of the speed of
propagation of the form

1

c(~x)2
=

1

c20

(
1 +

σref

|Ωref |
1Ωref

(~x− ~y)
)
, ~x ∈ R2 × (L,∞), (10)

where Ωref is a small domain and σref is the reflectivity of the reflector.
The recorded signals form the data matrix (3). The goal is to extract the

location of the reflector from the data. The imaging function (5) that migrates
the cross correlation of the recorded signals (4) is studied in [20] in the case
in which the source array has full aperture, which means that it extends over
the whole surface z = 0. In this case, both in the weakly scattering paraxial
regime and in strongly scattering layered media, the correlation-based imaging
function (5) produces images as if the medium between the sources and the
receiver array was homogeneous and the receiver array was an active one made
up of both sources and receivers. This imaging method turns out to be very
efficient as it completely cancels the effect of random scattering.

In [21] the case in which the source array has finite aperture is addressed,
which means that the sources do not extend over the whole surface z = 0.
In this case it turns out that random scattering affects the resolution of the
image, which is not the same with and without random scattering. The effect
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Ly

L

0

z

x~xs

~xq

~y

Figure 2: Sensor array imaging of a reflector through a scattering medium in
the region z ∈ (0, L). ~xs is a source, ~xq is a receiver, and ~y is the reflector.

of random scattering depends on its angular properties and it may enhance or
reduce the isotropy of the illumination, which in turn enhances or reduces the
resolution of the imaging function (5). In [21] the weakly scattering paraxial
regime, for which random scattering is good for correlation-based imaging, and
the strongly scattering layered regime, for which random scattering is bad for
correlation-based imaging, are analyzed. We reproduce in Section 2 the main
results, and we give some more insight into the weakly scattering paraxial regime
in Section 3.

2 Overview of the Results

We can give a simple explanation for why the imaging function (5) gives a good
image provided that some ideal conditions are fulfilled. If the sources are point-
like, generate Dirac-like pulses, and densely surround the region of interest Ω
inside of which the reflector and the receiver array are, then we have (up to a
multiplicative constant)

Ĉ(ω, ~xq, ~xq′) =

∫

∂Ω

Ĝ(ω, ~xq; ~xs)Ĝ(ω, ~xq′ ; ~xs)dσ(~xs), (11)

where Ĝ(ω, ~xq; ~xs) is the time-harmonic Green’s function for the wave equa-
tion (7) including the reflector:

ω2

c(~x)2
Ĝ(ω, ~x; ~xs) + ∆Ĝ(ω, ~x; ~xs) = −δ(~x− ~xs).

In this review the Fourier transform of a function f(t) is defined by

f̂(ω) =

∫

R
f(t)eiωtdt. (12)

Josselin Garnier
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By the Helmholtz-Kirchhoff identity [18, 30], we find that, provided Ω is a ball
with large radius,

Ĉ(ω, ~xq, ~xq′) =
ω

c0
Im
(
Ĝ(ω, ~xq; ~xq′)

)
. (13)

This shows that the cross correlation of the signals at two receivers ~xq and ~xq′

looks like the signal recorded at ~xq when ~xq′ is a source. Therefore, Kirch-
hoff Migration of the cross correlation matrix should give a good image. The
use of the Helmholtz-Kirchhoff identity gives the desired result, but it obscures
the important role of scattering when the source array has finite aperture. We
show in this review that it is not required to have a source array that com-
pletely surrounds the region of interest to get a good image with the imaging
function (5), but this result requires a deeper mathematical analysis than the
often-used Helmholtz-Kirchhoff identity.

Let us first consider the situation shown in Figure 2, when the source array
has full aperture and covers the surface z = 0, the angular illumination of
the reflector is ultra-wide and the illumination cone covers the receiver array.
This situation is analyzed in detail in [20]. In this case the correlation-based
imaging function (5) completely cancels the effect of random scattering and
the results are equivalent whatever the form of the scattering medium. The
cross-range resolution of the imaging function is given by the classical Rayleigh
resolution formula λ0(Ly − L)/a, where a is the receiver array diameter. The
range resolution is limited by the source bandwidth B and given by c0/B.

The results are quite different when the source array has finite aperture
and diameter b. In this case scattering turns out to play a critical role, as it
may enhance or reduce the angular diversity of illumination of the reflector.
This was already noticed in time reversal [12, 4, 15]: When waves emitted by a
point source and recorded by an array are time-reversed and re-emitted into the
medium, the time-reversed waves refocus at the original source location, and
refocusing is enhanced in a scattering medium compared to a homogeneous one.
This is because of the multipathing induced by scattering which enhances the
refocusing cone. However this is the first time in which this result is clearly seen
in an imaging context, in which the backpropagation step is carried out numeri-
cally in a fictitious homogeneous medium, and not in the physical medium. This
requires the backpropagation of the cross-correlations of the recorded signals,
and not the signals themselves.

We first address the case of a medium with isotropic three-dimensional weak
fluctuations µ(~x) of the index of refraction. When the conditions for the paraxial
approximation are fulfilled (see Section 3.1), backscattering can be neglected and
wave propagation is governed by a Schrödinger-type equation with a random
potential that has the form of a zero-mean Gaussian field whose covariance
function is given by

E
[
B(x, z)B(x′, z′)

]
= γ0(x− x′)

(
z ∧ z′

)
, (14)

with

γ0(x) =

∫ ∞

−∞
E[µ(0, 0)µ(x, z)]dz. (15)
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a

aef f

b

bef f

Ly − L

L
a

aef f

b

bef f

Ly − L

L

Figure 3: If the medium is homogeneous (left picture), the illumination cone
is determined by the physical source array diameter beff = b. In the random
paraxial regime (right picture), the angular diversity of the waves that illuminate
the reflector is increased by scattering and the effective illumination cone is
enhanced and corresponds to an effective source array diameter beff > b.

We show in Section 3, by using multiscale analysis, that the cone of incoher-
ent waves that illuminates the reflector is enhanced compared to the cone of
coherent waves that illuminates the reflector through a homogeneous medium
(see Figure 3), and this angular cone corresponds to an effective source array
diameter beff given by

b2eff = b2 +
γ̄2L

3

3
, (16)

where we have assumed that the covariance function γ0 can be expanded as
γ0(x) = γ0(0) − γ̄2|x|2 + o(|x|2) for |x| � 1. This in turn corresponds to an
effective receiver array diameter aeff (defined as the intersection of the illumi-
nation cone with the receiver array) given by:

aeff = beff
Ly − L
Ly

. (17)

As a result, the cross-range resolution of the imaging function is given by the
effective Rayleigh resolution formula λ0(Ly−L)/aeff , which exhibits a resolution
enhancement since aeff is larger in a random medium than in a homogeneous
one. The range resolution is still given by c0/B. The detailed analysis is in
Subsection 3.4.

We next analyze the case of a medium with one-dimensional (layered) fluc-
tuations µ(z) of the index of refraction. In this case it is known [15] that the
scattering regime is characterized by strong backscattering and wave localiza-
tion, with the localization length given by:

Lloc =
4c20
γω2

0

, (18)

Josselin Garnier
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where ω0 is the noise source central frequency and

γ =

∫ ∞

−∞
E[ν(z′)ν(z′ + z)]dz (19)

is the integrated covariance of the fluctuations of the index of refraction. We
show in [21] that the cone of incoherent waves that illuminates the reflector
is reduced compared to the cone of coherent waves that illuminates the reflec-
tor through a homogeneous medium (see Figure 4), because scattering does
not change the transverse wavevector, and this angular cone corresponds to an
effective source array diameter beff given approximately by

b2eff =
4L2

yLloc

L
, (20)

where we have assumed that b2 � LLloc. This again corresponds to an effective
receiver array diameter aeff given by:

aeff = beff
Ly − L
Ly

. (21)

As a result the cross-range resolution of the imaging function is given by the
effective Rayleigh resolution formula λ0(Ly − L)/aeff , which exhibits a resolu-
tion reduction since aeff is smaller in a randomly layered medium than in a
homogeneous medium. Furthermore, as wave scattering is strongly frequency-
dependent, the effective bandwidth is reduced as well

Beff =
B√

1 + B2L
4ω2

0Lloc

, (22)

and the range resolution is given by c0/Beff .
The comparative analysis of the random paraxial regime and the randomly

layered regime clearly exhibits the role of scattering in correlation-based imaging
for configurations with auxiliary receiver arrays. With a source array with full
aperture, scattering plays no role as the illumination of the reflector is ultra-wide
whatever the scattering regime. When the source array is limited, if scattering
is isotropic, then it enhances the angular diversity of the illumination of the
reflector and the resolution of the correlation-based imaging function. If it
is anisotropic, then it reduces the angular diversity of the illumination of the
reflector and the resolution of the correlation-based imaging function.

We note, however, that a large physical source array and/or broadband
sources are necessary to ensure the statistical stability of the imaging function.
This has been addressed in detail in different contexts in [6, 22].

3 Analysis in the Paraxial Regime

3.1 The Paraxial Scaling Regime

In this section we analyze a scaling regime in which scattering is isotropic and
weak, which allows us to use the random paraxial wave model to describe wave
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a

aef f

b

bef f

Ly − L

L
a

aef f

b

bef f

Ly − L

L

Figure 4: If the medium is homogeneous (left picture), the illumination cone is
determined by the physical source array diameter beff = b. If the medium is ran-
domly layered (right picture), the angular diversity of the waves that illuminate
the reflector is reduced by scattering (only the waves with wavevectors close
to the vectical direction can reach the reflector after multiple scattering events
that conserve the wavevectors in the layered case) and the effective illumination
cone is reduced and corresponds to an effective source array diameter beff < b.

propagation in the scattering region. In this approximation, backscattering
is negligible but there is significant lateral scattering as the wave advances.
Even though scattering is weak, its effects accumulate over long propagation
distances and it can be a limiting factor in imaging and communications if not
mitigated in some way. Wave propagation in random media in the paraxial
regime has been used extensively in underwater sound propagation as well as in
the microwave and optical contexts in the atmosphere [29, 28]. We formulate
the regime of paraxial wave propagation in random media with a scaling of
parameters that allows detailed and effective mathematical analysis [23]. It is
described as follows.

1) We assume that the correlation length lc of the medium is much smaller
than the typical propagation distance L. We denote by ε2 the ratio between the
correlation length and the typical propagation distance:

lc
L
∼ ε2. (23)

2) We assume that the transverse width R0 of the source (array) and the
correlation length of the medium lc are of the same order. This means that the
ratio R0/L is of order ε2. This scaling is motivated by the fact that, in this
regime, there is a non-trivial interaction between the fluctuations of the medium
and the wave.

3) We assume that the typical wavelength λ is much smaller than the prop-
agation distance L, more precisely, we assume that the ratio λ/L is of order ε4:

λ

L
∼ ε4. (24)

Josselin Garnier
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This high-frequency scaling λ � R0 � L is the classical paraxial regime in
which the beam generated by the source propagates along a privileged direction
and spreads out by diffractive effects, which are of order one provided Lλ/R2

0 is
of order one.

4) We assume that the typical amplitude of the random fluctuations of the
medium is small. More precisely, we assume that the relative amplitude of the
fluctuations is of order ε3. This scaling has been chosen so as to obtain an
effective regime of order one when ε goes to zero. That is, if the magnitude
of the fluctuations is smaller than ε3, then the wave would propagate as if the
medium was homogeneous, while if the order of magnitude is larger, then the
wave would not be able to penetrate the random medium. The scaling that
we consider here corresponds to the physically most interesting situation where
random effects play a significant role, quantifiable within the paraxial regime.

3.2 The Random Paraxial Wave Equation

We consider the time-harmonic form of the scalar wave equation

(∂2
z + ∆⊥)p̂+

ω2

c20

(
1 + µ(x, z)

)
p̂ = 0. (25)

Here µ is a random process that models the three-dimensional spatial fluctua-
tions of the medium properties. It is assumed to be a zero-mean and stationary
process with mixing properties in the z-direction. In the high-frequency regime
described above,

ω → ω

ε4
, µ(x, z)→ ε3µ

( x
ε2
,
z

ε2

)
, (26)

the rescaled function φ̂ε defined by

p̂ε(ω,x, z) = exp
(
i
ω

ε4

z

c0

)
φ̂ε
( ω
ε4
,
x

ε2
, z
)

(27)

satisfies

ε4∂2
z φ̂

ε +

(
2i
ω

c0
∂zφ̂

ε + ∆⊥φ̂
ε +

ω2

εc20
µ
(
x,

z

ε2

)
φ̂ε
)

= 0. (28)

The ansatz (27) corresponds to an up-going plane wave with a slowly varying
envelope. In the regime ε � 1, it has been shown in [23] that the forward-
scattering approximation and the white-noise approximation are both valid,
which means that the second-order derivative in z in (28) can be neglected and
the random potential 1

εµ
(
x, zε2

)
can be replaced by a Gaussian field that is

white noise in the z-direction. The mathematical statement is that the random
function φ̂ε(ω,x, z) converges in distribution to the solution φ̂(ω,x, z) of the
Itô-Schrödinger equation

2i
ω

c0
dφ̂(ω,x, z) + ∆⊥φ̂(ω,x, z)dz +

ω2

c20
φ̂(ω,x, z) ◦ dB(x, z) = 0, (29)
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where B(x, z) is a Brownian field, that is a Gaussian process with mean zero
and covariance function (14). Here the ◦ stands for the Stratonovich stochas-

tic integral [23]. We introduce the fundamental solution Ĝ
(
ω, (x, z), (x0, z0)

)
,

which is defined as the solution of the equation in (x, z) (for z > z0):

2i
ω

c0
dĜ+ ∆⊥Ĝdz +

ω2

c20
Ĝ ◦ dB(x, z) = 0, (30)

starting from Ĝ
(
ω, (x, z = z0), (x0, z0)

)
= δ(x−x0). In a homogeneous medium

(B ≡ 0) the fundamental solution is (for z > z0)

Ĝ0

(
ω, (x, z), (x0, z0)

)
=

ω

2iπc0(z − z0)
exp

(
i
ω|x− x0|2
2c0(z − z0)

)
. (31)

In a random medium, the first two moments of the random fundamental solution
have the following expressions.

Proposition 3.1 The first order-moment of the random fundamental solution
exhibits frequency-dependent damping:

E
[
Ĝ
(
ω, (x, z), (x0, z0)

)]
=Ĝ0

(
ω, (x, z), (x0, z0)

)
exp

(
−γ0(0)ω2|z − z0|

8c20

)
, (32)

where γ0 is given by (15).
The second order-moment of the random fundamental solution exhibits frequency-

dependent spatial decorrelation:

E
[
Ĝ
(
ω, (x, z), (x0, z0)

)
Ĝ
(
ω, (x′, z), (x0, z0)

)]

= Ĝ0

(
ω, (x, z), (x0, z0)

)
Ĝ0

(
ω, (x′, z), (x0, z0)

)

× exp
(
− γ2(x− x′)ω2|z − z0|

4c20

)
, (33)

where

γ2(x) =

∫ 1

0

(
γ0(0)− γ0(xs)

)
ds, (34)

with γ0 given by (15).

These are classical results (see [24, Chapter 20] or [23]) once the random
paraxial equation has been proved to be correct, as is the case here. The result
(32) on the first-order moment shows that any coherent wave imaging method
cannot give good images if the range is larger than the scattering mean free path
lsca = 8c20/(γ0(0)ω2), because the coherent wave components are then exponen-
tially damped. This is the situation we have in mind, and this is the situation
in which imaging by migration of cross correlations turns out to be efficient.
The result (33) on the second-order moment is used in the next subsection to
analyze the cross correlation of the recorded signals in a quantitative way. Note
that γ2(0) = 0, which implies that the fields recorded at two nearby points are
correlated.
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3.3 The Cross Correlation of the Recorded Field

We consider again the situation described in Figure 2. In the random paraxial
scaling regime described above, the scalar field pε(t, ~x; ~xs) corresponding to the
emission from an element ~xs = (ε2xs, 0) of the surface source array is solution of

1

cε(~x)2

∂2pε

∂t2
−∆pε = F ε(t, ~x; ~xs), (35)

where
– the source term is F ε(t, ~x; ~xs) = fε(t)δ(z)δ(x − ε2xs), with ~x = (x, z), the
pulse is of the form

fε(t) = f
( t
ε4

)
, (36)

where the support of the Fourier transform of f is bounded away from zero and
of rapid decay at infinity, with central frequency ω0 and bandwidth B,
– the medium is random in the region z ∈ (0, L):

1

cε(~x)2
=

1

c20

(
1 + ε3µ

( x
ε2
,
z

ε2

))
, ~x ∈ R2 × (0, L), (37)

and homogeneous with background velocity c0 in the two half-spaces z ∈ (−∞, 0)
and z ∈ (L,∞), except for the reflector as described by (10).

We consider the cross correlation of the signals recorded at the receiver array

(~xq)
Nq

q=1, ~xq = (ε2xq, L), defined by:

Cε
(
τ, ~xq, ~xq′

)
=

Ns∑

s=1

∫

R
pε(t, ~xq; ~xs)p

ε(t+ τ, ~xq′ ; ~xs)dt. (38)

Using the Born approximation for the point reflector at ~y in the homogeneous
medium above the auxiliary receiver array, and the continuum approximation
(for any smooth test function φ)

1

Ns

Ns∑

s=1

φ(xs) '
1

πb2

∫

R2

φ(ys)dys,

for some b > 0, we obtain the following proposition proved in [20].

Proposition 3.2 In the random paraxial wave regime ε → 0, when there is
a point reflector at ~y = (ε2y, Ly) and when the source array covers the whole
surface z = 0, then the cross correlation of the recorded signals at the receiver
array satisfies

ε4Cε
(2Ly − 2L

c0
+ ε4s, ~xq, ~xq′

)
ε→0−→ − σref

64π4c0(Ly − L)2b2

∫

R
iω|f̂(ω)|2

× exp
(
− iω

(
s− 1

2c0

|y − xq|2 + |y − xq′ |2
Ly − L

))
dω, (39)

in probability.
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The convergence in probability of the cross correlation comes from the self-
averaging property of the product of two Green’s functions when integrated
over frequency, which is the case here because the bandwidth of the source (of
order ε−4) is much larger than the frequency coherence radius of the Green’s
function (of order ε−2). The same mechanism ensures the statistical stability of
the refocused wave during a time-reversal experiment, meaning that the focal
spot of the refocused wave depends on the statistical properties of the random
medium, but not on the particular realization.

This proposition shows that
– the cross correlation τ → Cε(τ, ~xq, ~xq′) has a peak at time lag τ equal to

τxq,xq′ =
2Ly − 2L

c0
+

ε4

2c0

|y − xq|2 + |y − xq′ |2
Ly − L

, (40)

since

ε4Cε
(
τxq,xq′ +ε4s, ~xq, ~xq′

) ε→0−→ − σref

64π4c0(Ly − L)2b2

∫

R
iω|f̂(ω)|2e−iωsdω (41)

has a peak centered at s = 0. The time lag τxq,xq′ is the sum of travel times
from ~xq to ~y and from ~y to ~xq′ in the paraxial approximation:

|~xq − ~y|
c0

+
|~y − ~xq′ |

c0

=
1

c0

√
(Ly − L)2 + ε4|y − xq|2 +

1

c0

√
(Ly − L)2 + ε4|y − xq′ |2

=
2Ly − 2L

c0
+

ε4

2c0

|y − xq|2 + |y − xq′ |2
Ly − L

+O(ε8)

= τxq,xq′ +O(ε8). (42)

– the effect of the random medium has completely disappeared.
The conclusion is that Kirchhoff migration with cross correlations of the receiver
array produces images as if the medium was homogeneous and the receiver array
was active.

When the source array has a finite aperture, with the source array diameter
equal to ε2b, then an important quantity is the effective source array diameter
ε2beff defined by (16). The effective source array diameter can be interpreted as
the one seen from the receiver array through the random medium. It is increased
by wave scattering in the random medium. As we see in the next section, this
increase in turn enhances the resolution of the imaging function.

More precisely the following proposition proved in [21] shows that only the
receivers that are within the cone determined by the effective source array di-
ameter contribute to the cross correlation. As a result, the cross correlation is
the same as in the case of a source array with full aperture provided that the
effective array diameter is larger than a certain threshold value. In the homo-
geneous case, this requires that the source array diameter must be larger than
the threshold value. In the random medium, the source array does not need to

Josselin Garnier

XIII–14



be large, only the effective source array diameter needs to be larger than the
threshold value, which can be achieved because of the second term in (16) which
is due to scattering.

Proposition 3.3 We consider the random paraxial wave regime ε → 0, when
there is a point reflector at ~y = (ε2y, Ly) and when the source array covers a
domain of radius ε2b at the surface z = 0. If the effective source array diameter

is large enough in the sense that the effective Fresnel number
b2eff
λ0L

>
Ly

Ly−L ,

where λ0 = 2πc0/ω0 is the carrier wavelength, then the cross correlation of the
recorded signals at the receiver array satisfies

ε4Cε
(2Ly − 2L

c0
+ε4s, ~xq, ~xq′

)
ε→0−→ − σref

64π4c0(Ly − L)2b2eff

∫

R
iω|f̂(ω)|2ψeff(xq,y)

× exp
(
− iω

(
s− 1

2c0

|y − xq|2 + |y − xq′ |2
Ly − L

))
dω, (43)

in probability, where

ψeff(xq,y) = exp
(
− |xq − yL/Ly|

2

a2
eff

)
, (44)

with aeff and beff given by (16-17).

In order to get an explicit closed-form expression for the effective truncation
function ψeff , we have assumed that the source array (~xs)

Ns
s=1, ~xs = (ε2xs, 0),

is dense and that the source density (or cut-off profile) at the surface z = 0 is
described by the function

ψs(ys) =
Ns

πb2
exp

(
− |ys|

2

b2

)
, (45)

that is a Gaussian profile with radius b, so that we can use the continuum
approximation (for any smooth test function φ)

1

Ns

Ns∑

s=1

φ(xs) '
1

πb2

∫

R2

φ(ys) exp
(
− |ys|

2

b2

)
dys.

The result stated in Proposition 3.3 is qualitatively true for an arbitratry form
of the function ψs, but then the effective truncation function ψeff has no closed-
form expression.

The finite aperture of the source array limits the angular diversity of the
illumination, and as a result only a portion of the receiver array contributes
to the cross correlation as characterized by the effective truncation function
ψeff(xq,y). In a homogeneous medium (left picture, figure 3) the effective trun-
cation function has a clear geometric interpretation: only the receivers localized
along rays going from the sources to the reflector can contribute. In a random
medium, the angular diversity of the illumination is enhanced by scattering and
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the effective truncation function is characterized by the effective source array
diameter ε2beff that depends on the source array diameter ε2b and on the an-
gular diversity enhancement induced by scattering (see (16)). Eq. (44) shows
that, in terms of the effective receiver array diameter ε2aeff defined by (17), we
have the following:
• If aeff > a so that |xq − yL/Ly| < aeff for all ~xq = (ε2xq, L) in the receiver
array, then the effective truncation function ψeff plays no role and we obtain
the same result as in the case of a source array with full, infinite, aperture. The
Kirchhoff migration function takes the form (51) below, in this case.
• If aeff < a, then the effective truncation function ψeff does play a role and
we obtain a result that is different from the case of a source array with full
aperture. The Kirchhoff migration function takes the form (52) below, in this
case.
• In both cases scattering is helpful as it increases the angular diversity and
reduces the impact of the effective truncation function ψeff .

3.4 Kirchhoff Migration of Cross Correlations

The Kirchhoff migration function for the search point ~yS is

IεC(~yS) =
1

N2
q

Nq∑

q,q′=1

Cε
( |~xq − ~yS |+ |~yS − ~xq′ |

c0
, ~xq, ~xq′

)
, (46)

where Nq is the number of receivers at the auxiliary receiver array. The following
proposition describes the resolution properties of the imaging function when the
source array has full aperture. It is proved in [20].

Proposition 3.4 If the auxiliary receiver array at the plane z = L is a dense
square array centered at (0, L) and with sidelength ε2a, if the source array covers
the surface z = 0, if we assume additionally Hypothesis (47):

The bandwidth B of the source pulse is small compared
to the central frequency ω0,

(47)

then, parameterizing the search point around the reflector by

~yS = ~y + (ε2ξ, ε4η), (48)

we have

ε4IεC(~yS)
ε→0−→ σref

64π4c0(Ly − L)2b2
sinc2

( πaξ1
λ0(Ly − L)

)
sinc2

( πaξ2
λ0(Ly − L)

)

× exp
(
− i ω0

c0(Ly − L)

(
|ξ|2 + 2ξ · y

)) ∫

R
iω|f̂(ω)|2 exp

(
2i
ω

c0
η
)
dω. (49)

This shows that the migration of the cross correlation gives the same result
as if we were migrating the array response matrix of the auxiliary receiver array.
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Indeed the imaging function (49) is exactly the imaging function that we would
obtain if the medium was homogeneous, if the passive receiver array could be
used as an active array, and if the response matrix of the array was migrated
to the search point ~yS . In particular the cross range resolution is λ0(Ly −L)/a
(as given by the two sinc2 functions in (49)) and the range resolution is c0/B

(as given by the integral in |f̂(ω)|2 in (49)).
The following proposition describes the resolution properties of the imaging

function when the source array has finite aperture. It is proved in [21].

Proposition 3.5 If the auxiliary receiver array at the plane z = L is a dense
square array centered at (0, L) and with sidelength ε2a, if the source array has
finite aperture with diameter ε2b and density (45), if we assume additionally
Hypothesis (47), then, parameterizing the search point by (48) we have

ε4IεC(~yS)
ε→0−→ σref

64π4c0(Ly − L)2b2eff

sinc
( πaξ1
λ0(Ly − L)

)
sinc

( πaξ2
λ0(Ly − L)

)

× 1

a2

∫

[−a/2,a/2]2
dxq exp

(
− |xq − yL/Ly|

2

a2
eff

+ i
ω0

c0(Ly − L)
ξ · xq

)

× exp
(
− i ω0

c0(Ly − L)

(
|ξ|2 + 2ξ · y

)) ∫

R
iω|f̂(ω)|2 exp

(
2i
ω

c0
η
)
dω. (50)

This shows that:

1. If the effective source array diameter is large enough so that |xq−yL/Ly| ≤
aeff for all xq ∈ [−a/2, a/2]2, then we get the same result (49) as in the
case of a source array with full aperture:

ε4IεC(~yS)
ε→0−→ σref

64π4c0L2
ya

2
eff

sinc2
( πaξ1
λ0(Ly − L)

)
sinc2

( πaξ2
λ0(Ly − L)

)

× exp
(
− i ω0

c0(Ly − L)

(
|ξ|2 + 2ξ · y

)) ∫

R
iω|f̂(ω)|2 exp

(
2i
ω

c0
η
)
dω. (51)

2. If the effective source array diameter aeff is smaller than a, then we get

ε4IεC(~yS)
ε→0−→ σref

64π3c0L2a2
sinc

( πaξ1
λ0(Ly − L)

)
sinc

( πaξ2
λ0(Ly − L)

)

× exp
(
− i ω0

c0(Ly − L)

(
|ξ|2 + (2− L

Ly
)ξ · y

)) ∫

R
iω|f̂(ω)|2 exp

(
2i
ω

c0
η
)
dω.

(52)

Note that the difference with (51) is that the sinc functions have no square.
This shows that the cross-range resolution is reduced (compared to the case of
a source array with full aperture) and the range resolution is not affected.
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