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Earnshaw’s Theorem in Electrostatics and a
Conditional Converse to Dirichlet’s Theorem ∗

Jeffrey Rauch †

Abstract

For the dynamics x′′ = −∇xV (x), an equilibrium point x are al-
ways unstable when on a neighborhood of x the non constant V satis-
fies P (x, ∂)V = 0 for a real second order elliptic P . The proof uses a
result of Kozlov [6].

1 Introduction

This article presents an instability theorem for Newton’s law

d2x

dt2
= −∇xV (x) , V ∈ C∞(|x| < r) , x ∈ Rd . (1.1)

The theorem implies, in particular, Earnshaw’s Theorem [3] that equilibria
in electrostatic fields are always unstable.

Example 1.1 Here is an example of an electrostatic equilibrium for which
the instability is easy to understand. Consider a point charge placed midway
between two positive charges.
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The middle position is an unstable equilibrium.
If the charge in the middle is positive, then if it starts at rest just above the
middle, it will be repelled to infinity vertically. If the charge in the middle is
negative a small displacement to the right has the particle accellerated to a
finite time collision with the charge on the right. The nature of the instability
depends on the sign of the test charge.

Earnshaw’s Theorem is discussed in the very interesting §116 of Maxwell’s
Treatise [8]. There are two standard proofs. Maxwell’s proof is based on the
flawed idea that for small displacement from a stable equilibrium there must
be a restoring force, see §3. The other proof observes that the potential en-
ergy is harmonic and therefore cannot have a local minimum, see §2. In those
sections, examples show that the each of the two instability arguments are
insufficient. However, the fact that V is harmonic is sufficient for instability
applying a nontrivial result of Kozlov.
We prove that equilibria of convervative mechanical system whose poten-
tial energy is a solution of any real second order elliptic partial differential
equation are all unstable.

Hypothesis. Suppose that r > 0 and that

P (x, ∂) :=
d∑

I,j=1

aij(x)∂i∂j +
∑

j

bj(x)∂j + c(x) (1.2)

has real coefficients in C∞(|x| < r).

Definition 1.1 P (x, ∂) is elliptic at x when

∀ ξ ∈ Rd \ 0,
∑

i,j

aij(x) ξiξj 6= 0 .

Theorem 1.2 Suppose that the non constant real valued V ∈ C∞(|x| < r)
satisfies P (x, ∂)V = 0 with P as above. If x is an equilibrium for x′′ =
−∇V (x) and P is elliptic at x then the equilibrium is unstable.

Since the electrostatic potential, discussed in §2.4 is harmonic, this implies
Earnshaw’s Theorem.

2 Dirichlet’s Theorem and its converse

The phase space formulation of (1.1) is
dx

dt
= v ,

dv

dt
= −∇xV (x) .

The equilibria in x, v-space are points (x, 0) with x a critical point of V .
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2.1 Dirichlet’s Theorem

Theorem 2.1 If r > 0 and V ∈ C2(|x| < r) has a strict local minimum
at 0 in the sense that V (0) < V (x) for all 0 < |x| < r then 0 is a stable
equilibrium.

Sketch of proof. A minimum is a critical point, hence an equilbrium.
Conservation of the energy E implies that the open sets

Oα :=
{

(x, v) : E :=
|v|2
2

+ V (x) < α
}

are invariant. For 0 < α define Uα to be the connected component of Oα that
contains (0, 0). For α decreasing to zero the Uα are a neighborhood basis of
the origin in Rd+d

x,v . This implies stability.

2.2 Converse Dirichlet is false

The assertion that critical points for which there are arbitrarily nearby points
of lower potential energy are unstable is standard lore in physics. It is rea-
sonable to think that if x is a critical point that is NOT a local minimum,
then there will be orbits that accellerate away from x toward regions of lower
potential energy.
Here is a classical counterexample. For x ∈ R define

V (x) := e−1/|x| sin 1/|x| .

The graph of V oscillates rapidly between ±e−1/|x|. Two peaks of the graph
are sketched. Orbits with energy E = V (x) + v2/2 < a must lie in the set
{V < a} ∩ {v2 < 2a}.

V increases as one moves radially 

away from the equilibrium at the center

As a→ 0, r(a)→ 0.
An orbit with E < a that starts in {|x| < r} stays in |x| < r. To escape it
would hit x = ±r where E ≥ V = a.
Thus Ua := {|x| < r(a) , v2 < 2a , E < a} are flow invariant. They are a
neighborhood basis for (0, 0). Proving stability in spite of the fact that V (0)
is not a local minimum.
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2.3 Two easy instability theorems

There are two easy proofs of instability. In the case of d = 1 with V =
c xm + h.o.t. with m odd and c 6= 0, one finds an unstable orbit (that is
converges to the origin as t→ −∞) using level curves of the energy.
In any dimension, if the hessian of V at an equilibrium has at least one strictly
negative eigenvalue then there is instability by a theorem of Lyapunov. More
generally, if the hessian has k negative eigenvalue, counting multiplicities,
then there is an unstable manifold with dimension k.

2.4 Arnold’s conjecture

In his 1976 talk on the Hilbert Problems, Arnold proposed his own problems.
One is to prove that for x′′ = −∇V (x), if V ∈ Cω and x is an equilibrium
that is not a local minimum, then the equilibrium is unstable.
The conjecture is easy when d = 1. Taliaferro [10] proved the case d = 2 in
1980.
In electrostatics, a compactly supported finite signed measure ρ descibes the
charges. The electric field is given by Coulomb’s law

E = − grad
(
ρ ∗ 1

|x|
)
.

The field E has a partial differential equations characterization as the unique
solution of

curlE = 0 , divE = 4πρ , E = O(1/|x|2) as x→∞ . (2.1)

Since curlE = 0 there is a potential function V (x) so that E = −gradV . In
regions without charge,

∆V = div gradV = −divE = 0 , so V ∈ Cω .

In particular, E is smooth outside of the support of ρ. The O(1/|x|2) in (2.1)
is in the classical sense |E(x)| = O(1/|x|2).
The maximum principal for harmonic functions implies that V cannot have
a minimum. The lack of minima is one of the two standard proofs of instabil-
ity. However not having a minimum is insufficient for instability. Since the
electrostatic potential is real analytic, Arnold’s conjecture if proved would
imply Earnshaw’s theorem.
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3 Discussion of Maxwell’s proof

3.1 Gauss’ Theorem

The instability argument in §116 of Maxwell [8] uses Gauss’ Theorem.

Theorem 3.1 If B an open ball, whose boundary does not meet supp ρ, then,

the flux of E through ∂B = 4π
(

total charge in B
)
.

Proof.
∫
∂B
E · n dσ =

∫
B

divE dx =
∫
B

4π dρ .

Example 3.2 If there are no charges in B, then the total flux through ∂B
vanishes.

3.2 Maxwell’s argument

Maxwell asserts in §116 that if x is a stable equilibrium for a positive test
charge, then the field E at nearby x + δx, must push back toward the equi-
librium at x. In the next sentence he reveals that what he means by this is
that the force F must satisfy F (x+ δx) · δx < 0.
For a positive test charge, this asserts that E(x + δx) · δx < 0. This cannot
be the case. If B is a small ball centered at x, then taking δx with length
equal to the radius yields

∫

∂B

E · n dσ =

∫

∂B

negative dσ < 0 .

Gauss’ Theorem implies that there is a net negative charge in B violating
the assumption that B is charge free. In the case of a negative test charge
one finds that B must contain postive charges. The erroneous statement in
this argument is in italics. We present a detailed discussion.
For the differential equation x′′ = F (x), introduce two conditions,

(∗) ∃r > 0, ∀x, 0 < |x− x| < r ⇒ F (x) · (x− x) < 0 ,

and,

(∗∗) ∀r > 0, ∃x, |x− x| < r, and F (x) · (x− x) > 0 .

Maxwell asserts that stability ⇒ (∗). Equivalently, the denial of (∗) implies
instability.
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(∗∗) is stronger than the denial of (∗). The denial has F · (x− x) ≥ instead
of >. We will see that even the stronger condition (∗∗) does not imply
instability. One could hope that (∗) implies stability.

Theorem 3.3 i. Condition (∗) implies stability if F is conservative (Defn.
F (x) = −∇V (x)), but not in general.

ii. Condition (∗∗) does not imply instability, even in the conservative case.

Proof. i. Denote by V (x) the potential in the conservative case. (∗) implies
that for 0 < |x − x| < r, V (x) is strictly increasing on the ray [0, 1] 3 s 7→
x+ s(x− x) connecting the center x to x.

r(a)=1/|ln a|

a

−r r

Therefore V has a strict local minimum at x. Dirichlet’s Theorem implies
that the equilibrium is stable.

An example shows that (∗) does not imply stability in the non conservative
case. In R2, ∂θ := x2∂1 − x1∂2. Define

F (ε, x) := (x2 , −x1)− ε x = ∂θ − εx , 0 < ε << 1 ,

with equilibrium x = 0. The linear system x′ = v, v′ = F (0, x) has matrix



0 0 1 0
0 0 0 1
0 1 0 0
−1 0 0 0


 with eigenvalues

1± i√
2
,
−1± i√

2
.

Since F · x = −ε |x|2, F satisfies (∗) for ε > 0. For ε << 1 the matrix has
eigenvalues near (1 ± i)/

√
2 so lying in the right half plane. This implies

instability.

ii. Subsection 2.2 gives an example of a V with a stable equilibrium at 0 and
so that V (0) is not a local minimum. Thus there are nearby p with V (p) < 0.
On the segment [x, p], V has decreased. This proves that the conservative
system satisfies (∗∗) and nevertheless is stable. This example proves ii.
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4 Proof of the instability Theorem 1.2

The proof combines two ingredients. The first is a theorem of Kozlov’s and
the second is a study of the Taylor series at an equilibrium of a potential
satisfying PV = 0.

4.1 A theorem of Kozlov

In the direction of converse Dirichlet, Kozlov proved several important result.
One of them is the following [6]. The differentiability hypothesis is radically
reduced to in [11].

Theorem 4.1 Suppose V ∈ C∞, 0 is a critical point, and, 0 is not a local
minimum. Suppose that the Taylor expansion at 0 is

V ∼ Vm(x) + Vm+1(x) + · · ·

with Vj homogeneous of degree j. If the leading term Vm does not have a local
minimum at 0, then the equilibrium (0, 0) is unstable.

4.1.1 An illustrative example of Kozlov’s theorem

When V = Vm, Kozlov’s Theorem is an elementary computation. Denote
by p a point on the unit sphere |x| = 1 where Vm attains its minimum with
V (p) < 0.
Orbits starting at rest on the ray from the origin through through p remain on
that ray since the acceleration −∇Vm must have no component perpendicular
to p thanks to the minimality on the sphere.
At p the Euler homogeneity relation implies ∇V (p) = mV (p) := −b < 0 .

The orbit starting at rest at the point a p with a > 0 is equal to a(t) p where
a(t) is the unique solution of

a′′ = b am−1 , a(0) = a , a′(0) = 0 .

It follows that a(t) decreases to zero as t→ −∞.
Kozlov’s Theorem implies that such an orbit survives perturbation by higher
order terms. The solution just computed is the leading term of an asymptotic
expansion that describes an orbit that coverges to the equilibrium as t →
−∞.
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4.2 Critical points of solutions of elliptic equations

Theorem 4.2 Suppose that the non constant V ∈ C∞(|x| < r) satisfies

V (0) = 0, ∇xV (0) = 0, and, P (x, ∂)V = 0

with P elliptic at 0. Then there is an m ≥ 2 so that the Taylor expansion of
V at 0 is

V ∼ Vm(x) + h.o.t. (4.1)

where Vm is a nonzero homogeneous polynomial of degree m that satisfies the
elliptic equation ∑

i,j

aij(0)∂i∂jVm = 0 . (4.2)

The critical point 0 is not a local minimum of Vm.

Proof. By the strong unique continuation theorem for scalar real second
order elliptic partial differential equations, V is not infinitely flat at the
origin. Thus V has a Taylor expansion (4.1) with Vm 6= 0.
Compute the leading order terms in the Taylor expansions to find

aij(x) ∂i∂jV (x) = aij(0) ∂i∂jVm(x) + O(|x|m−1),
bj(x) ∂jV (x) = bj(0) ∂jVm(x) + O(|x|m) = O(|x|m−1) ,
c(x)V (x) = c(0)Vm(x) + O(|x|m+1) = O(|x|m) .

Therefore with leading term homogeneous of degree m− 2,

PV (x) =
∑

i,j

aij(0)∂i∂jVm(x) + O(|x|m−1) .

With x fixed but arbitrary and ε→ 0,
(
P (x, ∂)V

)
(εx) = εm−2

∑

i,j

aij(0)∂i∂jVm(x) + O(εm−1) .

The equation PV = 0 implies that the left hand side vanishes. Therefore
∑

i,j

aij(0)∂i∂jVm(x) = O(ε).

Letting ε→ 0 proves (4.2).
The minimum principal for the elliptic operator

∑
i,j aij(0)∂i∂j implies that

if Vm has a local minimum, then Vm is constant. Since Vm(0) = 0, if Vm is
constant it is identically zero. This contradicts the definition of Vm as the
non zero leading term.
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4.3 Proof of Theorem 1.2

Proof. Theorem 4.2 shows that any non constant potential V (x) that sat-
isfies a homogeneous second order elliptic equation satisfies the hypotheses
of Kozlov’s Theorem at all critical points. Therefore all such equilibria are
unstable.

Summary and prospects. i. I think that it is more important that V
satisfies a second order equation, than that V is real analytic. The differential
equation imparts more structure.
iii. There is more to the story. There are further instability theorems stated
in §116 of Maxwell’s Treatise. One of these asserts that for a charged per-
fectly conducting body in an electrostatic field, there is no stable position
of equilibrium. The proof of that theorem will appear in joint work with
G. Allaire [1]. Maxwell also asserts the equilibria of a rigid body with fixed
charges are also unstable. If the body is only allows translational motion
Kozlov applies. The rotating case is work in progress.
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